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ON THE GROWTH OF A COMPOSITION OF ENTIRE FUNCTIONS

Let γ be a positive continuous on [0, +∞) function increasing to +∞ and f and g be arbitrary

entire functions of positive lower order and finite order.

In order to

lim
r→+∞

ln ln M f (g)(r)

ln ln M f (exp{γ(r)})
= +∞, M f (r) = max{| f (z)| : |z| = r},

it is necessary and sufficient (ln γ(r))/(ln r) → 0 as r → +∞. This statement is an answer to the

question posed by A.P. Singh and M.S. Baloria in 1991.

Also in order to

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= 0, F(z) = f (g(z)),

it is necessary and sufficient (ln γ(r))/(ln r) → ∞ as r → +∞.
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INTRODUCTION

For an entire function f 6≡ const we put M f (r) = max{| f (z)| : |z| = r}. The quantities

̺[ f ] = lim
r→+∞

ln ln M f (r)

ln r
, λ[ f ] = lim

r→+∞

ln ln M f (r)

ln r
(1)

are called [7, p. 61] the order and the lower order of f accordingly.

G.D. Song and C.C. Yang [6] have proved that if f and g are transcendental entire functions,

0 < λ[ f ] ≤ ̺[ f ] < +∞ and F(z) = f (g(z)) then

lim
r→+∞

ln ln MF(r)

ln ln M f (r)
= +∞.

A.P. Singh and M.S. Baloria [3] posed a question: how to find R = R(r) such that

lim
r→+∞

ln ln MF(r)

ln ln M f (R)
< +∞ ?

They have proved the following theorems.
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Theorem A. Let f and g be entire functions of positive lower order and of finite order, and

F(z) = f (g(z)). Then lim
r→+∞

ln ln MF(r)

ln ln M f (rA)
= +∞ for every positive constant A.

Theorem B. Let f and g be entire functions of finite order with ̺[g] < ̺[ f ] and F(z) = f (g(z)).

Then lim
r→+∞

ln ln MF(r)

ln ln M f (exp{r̺[ f ]})
= 0.

The aim of proposed article is research of the above mentioned problem from [4].

1 MAIN RESULTS

Next theorem gives an answer to the question of A.P. Singh and M.S. Baloria.

Theorem 1. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f and g

be arbitrary entire functions with 0 < λ[ f ] ≤ ̺[ f ] < +∞ and λ[g] > 0. In order to

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= +∞, F(z) = f (g(z)), (2)

it is necessary and sufficient

lim
r→+∞

ln γ(r)

ln r
= 0. (3)

Proof. G. Polya [2] has proved that if f and g are entire functions, |g(0)| = 0 and F(z) = f (g(z))

then there exists a constant c ∈ (0, 1) independent of f and g such that for all r > 0

MF(r) ≥ M f

(

cMg

( r

2

))

and (4)

MF(r) ≤ M f (Mg(r)). (5)

J. Clunie [1] defines more precisely inequality (4). He proved that

MF(r) ≥ M f

(

1

8
Mg

( r

2

)

− |g(0)|

)

. (6)

We assume that the function γ satisfies (3), that is ln γ(r) = o(ln r) as r → +∞. If the

lower orders λ[ f ] and λ[g] are positive then for λ ∈ (0, min{λ[ f ], λ[g]}) and all r ≥ r0(λ) the

inequalities ln ln M f (r) ≥ λ ln r and ln ln Mg(r) ≥ λ ln r are true. Therefore, in view of (6)

ln ln MF(r) ≥ ln ln M f

(

1

8
Mg

( r

2

)

− |g(0)|

)

≥ λ ln

(

1

8
Mg

( r

2

)

− |g(0)|

)

= λ(1 + o(1)) ln Mg

( r

2

)

≥ (1 + o(1))λ2−lrλ, r → +∞.

(7)

On the other hand, if ̺[ f ] < +∞ then ln ln M f (exp{γ(r)}) ≤ ̺γ(r) for ̺ > ̺[ f ] and all

r ≥ r0(̺). Therefore, in view of (7)

ln ln MF(r)

ln ln M f (exp{γ(r)})
≥ (1 + o(1))

λ

2λ(̺[ f ] + ε)

rλ

γ(r)
→ +∞, r → +∞, (8)

because λ ln r − ln γ(r) = (1+ o(1))λ ln r → +∞ as r → +∞. The sufficiency of (3) is proved.
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To prove the necessity of (3) we assume that (3) does not hold. Then ln γ(rn) ≥ δ ln rn for

some δ > 0 and an increasing to +∞ sequence (rn). We choose f (z) = ez and g(z) = E̺(z)

with ̺ < δ, where E̺ is the Mittag-Leffler function. Then M f (r) = er and [7, p. 115]

ME̺
(r) = E̺(r) = (1 + o(1))̺er̺

, r → +∞. (9)

Therefore,

ln ln MF(r) = ln Mg(r) = r̺ + ln ̺ + o(1), r → +∞. (10)

Thus,

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
≤ lim

n→+∞

ln ln MF(rn)

ln ln M f (exp{γ(rn)})

= lim
n→+∞

r
̺
n

γ(rn)
≤ lim

n→+∞

r
̺
n

rδ
n

= 0,

(11)

that is, if (3) does not hold then there exist entire functions f and g with λ[ f ] = ̺[ f ] = 1 and

λ[g] = ̺[g] = ̺ ∈ (0,+∞), for which (2) is false. Theorem 1 is proved.

The following theorem complements Theorem 1.

Theorem 2. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f and g

be arbitrary entire functions with 0 < λ[g] ≤ ̺[g] < +∞ and λ[ f ] > 0. In order to

lim
r→+∞

ln ln MF(r)

ln ln Mg(exp{γ(r)})
= +∞, F(z) = f (g(z)),

it is necessary and sufficient that (3) holds.

Proof. As in the proof of Theorem 1 we obtain (7) and for the function g we have

ln ln Mg(exp{γ(r)}) ≤ ̺ ln γ(r) for every ̺ > ̺[g] and all r ≥ r0(̺). Therefore, estimate

(8) is true with ̺[g] instead ̺[ f ] and the sufficiency of (3) is proved.

If there exists a sequence (rn) such that ln γ(rn) ≥ δ ln rn, δ > 0, then again we choose f

and g as in the proof of Theorem 1. Then (9) holds and

ln ln Mg(exp{γ(r)}) = ln ln ((1 + o(1))̺e̺γ(r)) = ̺γ(r) + o(1), r → +∞.

In view of (9) as above we have

lim
r→+∞

ln ln MF(r)

ln ln Mg(exp{γ(r)})
≤ lim

n→+∞

r
̺
n

̺γ(rn)
≤ lim

n→+∞

r
̺
n

̺rδ
n

= 0.

Theorem 2 is proved.

For the functions f (z) = ez, g(z) = E̺(z) and F(z) = f (g(z)) chose the proof of Theorems

1 and 2 the following equalities are true

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= lim

r→+∞

ln ln MF(r)

ln ln Mg(exp{γ(r)})
= 0.

The following question arises: what is condition on γ providing existence of the limit

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})

(

lim
r→+∞

ln ln MF(r)

ln ln Mg(exp{γ(r)})

)

= 0.

The following theorem gives an answer to this question.



184 SHEREMETA M.M.

Theorem 3. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f and g

be arbitrary entire functions with 0 < λ[ f ] ≤ ̺[ f ] < +∞ and ̺[g] < +∞. In order to

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= 0, F(z) = f (g(z)), (12)

it is necessary and sufficient that

lim
r→+∞

ln γ(r)

ln r
= +∞. (13)

Proof. We assume that the function γ satisfies (13), that is ln r = o(ln γ(r)) as r → +∞. If

the orders ̺[ f ] and ̺[g] are finite then ln ln M f (r) ≤ ̺ ln r and ln ln Mg(r) ≤ ̺ ln r for ̺ >

max{̺[ f ], ̺[g]} and all r ≥ r0(̺). Therefore, in view of (5)

ln ln MF(r) ≤ ln ln M f (Mg(r)) ≤ ̺ ln Mg(r) ≤ ̺r̺, r ≥ r0(̺).

On the other hand, for λ < λ[ f ] and all r ≥ r0(λ) ln ln M f (e
γ(r)) ≥ lγ(r). Therefore,

ln ln MF(r)

ln ln M f (exp{γ(r)})
≤

̺r̺

λγ(r)
→ 0, r → +∞,

because ̺ ln r − ln γ(r) = (1 + o(1)) ln γ(r) → −∞ as r → +∞. The sufficiency of (13) is

proved.

Now we assume that (13) does not hold, that is for some δ < +∞ and an increasing to +∞

sequence (rn) the inequality ln γ(rn) ≤ δ ln rn is true. We choose f (z) = ez and g(z) = E̺(z)

with ̺ > δ. Then in view of (10)

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
≥ lim

n→+∞

ln ln MF(rn)

ln ln M f (exp{γ(rn)})

= lim
n→+∞

r
̺
n

γ(rn)
≥ lim

n→+∞

r
̺
n

rδ
n

= +∞,

(14)

that is equality (12) does not hold. Theorem 3 is proved.

The following theorem is proved similarly.

Theorem 4. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f and g

be arbitrary entire functions with 0 < λ[g] ≤ ̺[g] < +∞ and ̺[ f ] < +∞. In order to

lim
r→+∞

ln ln MF(r)

ln ln Mg(exp{γ(r)})
= 0, F(z) = f (g(z)),

it is necessary and sufficient that (13) holds.

Remark 1.1. From the proofs of Theorems 1 and 3 one can see that equality (3) is true provided,

γ is an arbitrary slowly increasing function, and (12) holds if γ increase rapidly than power

functions.

Remark 1.2. If we choose f and g as in the proofs of Theorem 1 and 2 and γ(r) = ar̺, then

there exists the limit

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{α(r)})
= lim

r→+∞

r̺

α(r)
=

1

a
,

that is for each K ∈ (0, +∞) there exist entire functions of a finite order and a positive lower

order and a positive continuous on [0, +∞) function γ such that

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= K.
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2 OTHER RESULTS

In [5] the following analogue of Theorem A is proved.

Theorem C. Let f , g, h be entire functions of positive lower order and of finite order and

F(z) = f (g(z)), Φ(z) = f (h(z)). If ̺[h] < λ[g] then for every A ∈ (0, λ[g]/̺[h])

lim
r→+∞

ln ln MF(r)

ln ln MH(rA)
= +∞.

We will complement this theorem by two next statements.

Proposition 2.1. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f ,

g and h be arbitrary entire functions with 0 < λ[ f ] ≤ ̺[ f ] < +∞, λ[g] > 0 and ̺[h] < +∞. In

order to

lim
r→+∞

ln ln MF(r)

ln ln MΦ(eγ(r))
= +∞, F(z) = f (g(z)), Φ(z) = f (h(z)), (15)

it is necessary and sufficient that

lim
r→+∞

γ(r)

ln r
= 0. (16)

Proof. In view of (5) for arbitrary ̺ > max{̺[ f ], ̺[h]} and all r ≥ r0(̺) we have

ln ln MΦ(e
γ(r)) ≤ ̺ ln Mh(e

γ(r)) ≤ ̺e̺γ(r).

Therefore, in view of (7)
ln ln MF(r)

ln ln MΦ(eγ(r))
≥ (1 + o(1))

l2−λ

̺

rλ

e̺γ(r)
→ +∞, r → +∞, because

by the condition (16)
rl

e̺γ(r)
= exp{λ ln r − ̺γ(r)} → +∞ as r → +∞. The sufficiency of (16)

is proved.

Now we assume that (16) does not hold, that is for some δ < +∞ and an increasing to

+∞ sequence (rn) the inequality γ(rn) ≥ δ ln rn is true. We choose f (z) = h(z) = ez and

g(z) = E̺(z) with ̺ < δ. Then ln ln MΦ(r) = r and in view of (10)

lim
r→+∞

ln ln MF(r)

ln ln MΦ(exp{γ(r)})
≤ lim

n→+∞

ln ln MF(rn)

ln ln MΦ(exp{γ(rn)})

= lim
n→+∞

r
̺
n

exp{γ(r)}
≤ lim

n→+∞

r
̺
n

rδ
n

= 0,

(17)

that is there exist entire functions f , g and h for which (13) is false. Proposition 1 is proved.

Proposition 2.2. Let γ be a positive continuous on [0, +∞) function increasing to +∞. Let f ,

g and h be arbitrary entire functions with 0 < l[ f ] ≤ ̺[ f ] < +∞, ̺[g] < +∞ and λ[h] > 0. In

order to

lim
r→+∞

ln ln MF(r)

ln ln MΦ(exp{γ(r)})
= 0, F(z) = f (g(z)), Φ(z) = f (h(z)), (18)

it is necessary and sufficient that

lim
r→+∞

γ(r)

ln r
= +∞. (19)
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Proof. We assume that the function γ satisfies (19), that is ln r = o(γ(r)) as r → +∞. If the

orders ̺[ f ] and ̺[g] are finite then for ̺ > max{̺[ f ], ̺[g]} and all r ≥ r0(̺) in view of (5) we

have ln ln MF(r) ≤ ̺r̺ for r ≥ r0(̺). On the other hand, using (6) for 0 < λ < min{λ[ f ], λ[ f ]}

and r ≥ r0(λ) we obtain

ln ln MΦ(e
γ(r)) ≥ ln ln M f

(

1

8
Mg

( r

2

)

− |g(0)|

)

≥ (1 + o(1))λ2−λeλγ(r), r → +∞.

Therefore,
ln ln MF(r)

ln ln MΦ(exp{γ(r)})
≤

(1 + o(1))λ

̺2λ
e̺ ln r−λγ(r) → 0, r → +∞. The sufficiency of

(19) is proved.

Now we assume that (19) does not hold, that is for some δ < +∞ and an increasing to

+∞ sequence (rn) the inequality γ(rn) ≤ δ ln rn is true. We choose f (z) = h(z) = ez and

g(z) = E̺(z) with ̺ > δ. Then in view of (10)

lim
r→+∞

ln ln MF(r)

ln ln MΦ(exp{γ(r)})
≥ lim

n→+∞

ln ln MF(rn)

ln ln MΦ(exp{γ(rn)})

= lim
n→+∞

r
̺
n

exp{γ(rn)}
≥ lim

n→+∞

r
̺
n

rδ
n

= +∞,

(20)

that is (18) does not hold. Proposition 2 is proved.

Finally, we will prove a result on the growth of a composition of entire functions in the

terms of generalized orders. By L we denote a class of all positive continuous on (−∞,+∞)

functions α such that α(x) = α(x0) for −∞ < x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞.

For α ∈ L and β ∈ L the generalized order ̺αβ[ f ] and a lower generalized order λαβ[ f ] of

an entire function f are defined [3] by the formulas

̺α,β[ f ] = lim
r→+∞

α(ln M f (r))

β(ln r)
, lα,β[ f ] = lim

r→+∞

α(ln M f (r))

β(ln r)
.

Proposition 2.3. Let α ∈ L, β ∈ L, β(x + O(1)) = (1 + o(1)β(x) as x → +∞ and f , g be entire

functions with 0 < λα,β[ f ] ≤ ̺α,β[ f ] < +∞ and 0 < lα,β[g] ≤ ̺α,β[g] < +∞. In order to

lim
r→+∞

α(ln MF(r))

α(ln M f (r))
= +∞, F(z) = f (g(z)), (21)

it is necessary and sufficient that

lim
x→+∞

β(x)

α(x)
= +∞. (22)

Proof. If (22) holds then from (6) and the definition of the lower generalized order it follows

that for each 0 < λ < λ1 < min{λα,β[ f ], λα,β[g]} and r ≥ r0(λ)

α(ln MF(r)) ≥ α

(

ln M f

(

1

8
Mg

( r

2

)

− |g(0)|

))

≥ λ1β
(

ln Mg

( r

2

)

+ O(1)
)

= λ1(1 + o(1))β
(

ln Mg

( r

2

))

= λ1(1 + o(1))β
(

α−1
(

α
(

ln Mg

( r

2

))))

≥ λ1(1 + o(1))β(α−1(λ1(1 + o(1))β(ln r))) ≥ λβ(α−1(λβ(ln r))).
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On the other hand, for ̺ > ̺α,β[ f ] and all r ≥ r0(̺) we have α(ln M f (r)) ≤ ̺β(ln r). Therefore,

lim
r→+∞

α(ln MF(r))

α(ln M f (r))
≥ lim

r→+∞

λβ(α−1(λβ(ln r)))

̺β(ln r)
=

l2

̺
lim

x→+∞

β(x)

α(x)
= +∞,

that is (21) is true. If (22) does not hold, that is lim
x→+∞

β(x)/α(x) < +∞ then in view of (5) for

λ < λα,β[ f ], ̺ > max{̺α,β[ f ], ̺α,β[ f ]} and all r enough large

lim
r→+∞

α(ln MF(r))

α(ln M f (r))
≤ lim

r→+∞

̺β(ln Mg(r))

λβ(ln r)
= lim

r→+∞

̺β(α−1(α(ln Mg(r))))

λβ(ln r)

≤ lim
r→+∞

̺β(α−1(̺β(ln r)))

lβ(ln r)
=

̺2

l
lim

x→+∞

β(x)

α(x)
< +∞,

that is (21) is false. Proposition 3 is proved.
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Шеремета М.М. Про зростання композицiй цiлих функцiй // Карпатськi матем. публ. — 2017.

— Т.9, №2. — C. 181–187.

Нехай γ — додатна, неперервна на [0, +∞) i зростаюча до +∞ функцiя, а f i g — довiльнi

цiлi функцiї додатного нижнього порядку i скiнченногo порядку.

Для того, щоб

lim
r→+∞

ln ln M f (g)(r)

ln ln M f (exp{γ(r)})
= +∞, M f (r) = max{| f (z)| : |z| = r},

необхiдно i досить, щоб (ln γ(r))/(ln r) → 0 при r → +∞. Це твердження є вiдповiддю на

питання, поставлене А. Сiнхом i М. Балорiа у 1991 р.

Також для того, щоб

lim
r→+∞

ln ln MF(r)

ln ln M f (exp{γ(r)})
= 0, F(z) = f (g(z)),

необхiдно i достатньо, щоб (ln γ(r))/(ln r) → ∞ при r → +∞.

Ключовi слова i фрази: цiла функцiя, композицiя функцiй, узагальнений порядок.


