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ON WICK CALCULUS ON SPACES OF NONREGULAR GENERALIZED FUNCTIONS

OF LÉVY WHITE NOISE ANALYSIS

Development of a theory of test and generalized functions depending on infinitely many vari-

ables is an important and actual problem, which is stipulated by requirements of physics and math-

ematics. One of successful approaches to building of such a theory consists in introduction of spaces

of the above-mentioned functions in such a way that the dual pairing between test and generalized

functions is generated by integration with respect to some probability measure. First it was the

Gaussian measure, then it were realized numerous generalizations. In particular, important results

can be obtained if one uses the Lévy white noise measure, the corresponding theory is called the

Lévy white noise analysis.

In the Gaussian case one can construct spaces of test and generalized functions and introduce

some important operators (e.g., stochastic integrals and derivatives) on these spaces by means of a

so-called chaotic representation property (CRP): roughly speaking, any square integrable random vari-

able can be decomposed in a series of repeated Itô’s stochastic integrals from nonrandom functions.

In the Lévy analysis there is no the CRP, but there are different generalizations of this property.

In this paper we deal with one of the most useful and challenging generalizations of the CRP in

the Lévy analysis, which is proposed by E. W. Lytvynov, and with corresponding spaces of nonreg-

ular generalized functions. The goal of the paper is to introduce a natural product (a Wick product)

on these spaces, and to study some related topics. Main results are theorems about properties of the

Wick product and of Wick versions of holomorphic functions. In particular, we prove that an oper-

ator of stochastic differentiation satisfies the Leibniz rule with respect to the Wick multiplication. In

addition we show that the Wick products and the Wick versions of holomorphic functions, defined

on the spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s

generalization of the CRP, coincide on intersections of these spaces.

Our research is a contribution in a further development of the Lévy white noise analysis.
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INTRODUCTION

Development of a theory of test and generalized functions depending on infinitely many

variables (i.e., with arguments belonging to infinite-dimensional spaces) is an important and

actual problem, which is stipulated by requirements of physics and mathematics (in particular,

of the quantum field theory, of the mathematical physics, of the theory of random processes).

A successful (but, of course, not the only) approach to building of such a theory consists in

introduction of spaces of the above-mentioned functions in such a way that the dual pairing
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between test and generalized functions is generated by integration with respect to some prob-

ability measure. First it was the Gaussian measure, the corresponding theory is called the

Gaussian white noise analysis (e.g., [7, 19, 33, 35, 37]), then it were realized numerous generaliza-

tions. In particular, important results can be obtained if one uses the Lévy white noise measure

(e.g., [10, 11, 38]), the corresponding theory is called the Lévy white noise analysis.

In the Gaussian white noise analysis one can construct spaces of test and generalized func-

tions and introduce some important operators (e.g., stochastic integrals and derivatives) on

these spaces by means of a so-called chaotic representation property (CRP). This property consists,

roughly speaking, in the following: any square integrable random variable can be decomposed

in a series of repeated Itô’s stochastic integrals from nonrandom functions (see, e.g., [39] for

a detailed presentation). In the Lévy white noise analysis there is no the CRP (more exactly,

the only Lévy processes with the CRP are Wiener and Poisson processes) [44]; but there are

different generalizations of this property: Itô’s generalization [21], Nualart-Schoutens’ gener-

alization [40, 41], Lytvynov’s generalization [38], Oksendal’s generalization [10, 11], etc. The

interconnections between these generalizations are described in, e.g., [4, 10, 11, 29, 38, 43, 45].

Now, depending on problems under consideration, one can select a most suitable generaliza-

tion of the CRP and construct corresponding spaces of test and generalized functions.

In this paper we deal with one of the most useful and challenging generalizations of the

CRP in the Lévy analysis, which is proposed by E. W. Lytvynov [38] (see also [9]). The idea

of this generalization is to decompose square integrable with respect to the Lévy white noise

measure random variables in series of special orthogonal functions (see Subsection 1.2), by

analogy with decompositions of square integrable random variables by Hermite polynomials

in the Gaussian analysis (remind that the last decompositions are equivalent to decompositions

by repeated stochastic integrals). In a sense, the most natural spaces that can be constructed

using Lytvynov’s generalization of the CRP, are spaces of regular test and generalized func-

tions [25]. In a moment these spaces are well studied. In particular, the extended stochastic

integral and the Hida stochastic derivative on them are introduced and studied in [14, 25],

operators of stochastic differentiation — in [12, 13, 16], some elements of a Wick calculus —

in [15]. But, as in the Gaussian analysis, in connection with some problems of the mathe-

matical physics and of the stochastic analysis (in particular, of the theory of stochastic equa-

tions with Wick-type nonlinearities), it is necessary to introduce into consideration so-called

spaces of nonregular test and generalized functions in terms of Lytvynov’s generalization of the

CRP [25], and to study operators and operations on these spaces. Note that, as distinct from

the Gaussian analysis, now the spaces of regular generalized functions are not embedded into

the spaces of nonregular generalized functions, and, accordingly, the spaces of nonregular

test functions are not embedded into the spaces of regular test functions. Moreover, one can

widen the extended stochastic integral from the space of square integrable random variables to

the spaces of nonregular generalized functions, and, accordingly, to restrict the Hida stochas-

tic derivative and the operators of stochastic differentiation to the spaces of nonregular test

functions; but the extended stochastic integral cannot be naturally restricted to the spaces of

nonregular test functions, and, accordingly, it is impossible to widen in a natural way the Hida

stochastic derivative and the operators of stochastic differentiation to the spaces of nonregular

generalized functions. Therefore it is necessary to introduce and to study natural analogs of

the above-mentioned operators on the corresponding spaces. The stochastic integrals, deriva-

tives, operators of stochastic differentiation, and their analogs on the spaces of nonregular test
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and generalized functions are studied in detail in [25, 30, 31]. The goal of the present paper is

to make the next natural step — to introduce a natural product (a Wick product) on the spaces

of nonregular generalized functions, by analogy with the Gaussian analysis [34] and with the

Lévy analysis on the spaces of regular generalized functions [15], and to study some related

topics (Wick versions of holomorphic functions, an interconnection between the Wick calculus

and the operators of stochastic differentiation). Main results of the paper are theorems about

properties of the Wick product and of the Wick versions of holomorphic functions. In partic-

ular, we prove that, as in the regular case, the operator of stochastic differentiation is a differ-

entiation (satisfies the Leibniz rule) with respect to the Wick multiplication. In addition we

show that the Wick products and the Wick versions of holomorphic functions, defined on the

spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s

generalization of the CRP, coincide on intersections of these spaces.

Note that some results of the paper can be transferred to weighted symmetric Fock spaces,

by analogy with [32]. This gives an opportunity to extend an area of possible applications

of these results. In particular, one can transfer them to any spaces isomorphic to the above-

mentioned Fock spaces.

The paper is organized in the following manner. In the first section we introduce a Lévy

process L and construct a probability triplet connected with L, convenient for our consider-

ations; then we describe Lytvynov’s generalization of the CRP; and construct a nonregular

rigging of the space of square integrable random variables (the positive and negative spaces

of this rigging are the spaces of nonregular test and generalized functions respectively). The

second section is devoted to the Wick calculus: in the first subsection we introduce and study

the Wick product and the Wick versions of holomorphic functions on the spaces of nonregular

generalized functions; in the second subsection we consider a question about an interconnec-

tion between Wick calculuses in the regular and nonregular cases; in the third subsection we

study an interconnection between the Wick calculus and the operator of stochastic differentia-

tion.

1 PRELIMINARIES

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the real, i.e.,

bilinear scalar product in a space H; and by 〈·, ·〉H or 〈〈·, ·〉〉H the dual pairing generated by the

scalar product in a space H.

1.1 A Lévy process and its probability space

Denote R+ := [0,+∞). In this paper we deal with a real-valued locally square integrable

Lévy process L = (Lu)u∈R+ (a random process on R+ with stationary independent increments

and such that L0 = 0) without Gaussian part and drift. As is well known (e.g., [11]), the

characteristic function of L is

E[eiθLu ] = exp
[
u
∫

R

(eiθx − 1 − iθx)ν(dx)
]

, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B de-

notes the Borel σ-algebra; E denotes the expectation. We assume that ν is a Radon measure

whose support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that∫
R

x2eε|x|ν(dx) < ∞, and
∫

R
x2ν(dx) = 1.
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Let us define a measure of the white noise of L. Let D denote the set of all real-valued

infinite-differentiable functions on R+ with compact supports. As is well known, D can be

endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [8];

see also Subsection 1.3). Let D′ be the set of linear continuous functionals on D. For ω ∈ D′

and ϕ ∈ D denote ω(ϕ) by 〈ω, ϕ〉; note that actually 〈·, ·〉 is the dual pairing generated by

the scalar product in the space L2(R+) of (classes of) square integrable with respect to the

Lebesgue measure real-valued functions on R+ [8]. The notation 〈·, ·〉 will be preserved for

dual pairings in tensor powers of the complexification of a rigging D′ ⊃ L2(R+) ⊃ D.

Definition 1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-

algebra, with the Fourier transform

∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x)duν(dx)
]

, ϕ ∈ D, (2)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner-Minlos theorem (e.g., [20]), see [38]. Below we

assume that the σ-algebra C(D′) is completed with respect to µ.

Denote by (L2) := L2(D′, C(D′), µ) the space of (classes of) complex-valued square in-

tegrable with respect to µ functions on D′ (in what follows, this notation will be used very

often). Let f ∈ L2(R+) and a sequence (ϕk ∈ D)k∈N converge to f in L2(R+) as k → ∞

(as is well known (e.g., [8]), D is a dense set in L2(R+)). One can show [10, 11, 29, 38] that

〈◦, f 〉 := (L2)− lim
k→∞

〈◦, ϕk〉 is well-defined as an element of (L2).

Denote by 1A the indicator of a set A. Put 1[0,0) ≡ 0 and consider 〈◦, 1[0,u)〉 ∈ (L2), u ∈ R+.

It follows from (1) and (2) that
(
〈◦, 1[0,u)〉

)
u∈R+

can be identified with a Lévy process on the

probability space (triplet) (D′, C(D′), µ) (see [10, 11]). So, one can write Lu = 〈◦, 1[0,u)〉 ∈ (L2).

Remark 1. The derivative in the sense of generalized functions (e.g., [17]) of a Lévy process (a

Lévy white noise) is L′
·(ω) = 〈ω, δ·〉 = ω(·), where δ is the Dirac delta-function. Therefore L′

is a generalized random process (in the sense of [17]) with trajectories from D′, and µ is the

measure of L′ in the classical sense of this notion [18].

Remark 2. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy

measure ν is a point mass at 1, i.e., if for each ∆ ∈ B(R) ν(∆) = δ1(∆). This measure does not

satisfy the conditions accepted above (the support of δ1 does not contain an infinite number of

points); nevertheless, all results of the present paper have natural (and often strong) analogs

in the Poissonian analysis. The reader can find more information about peculiarities of the

Poissonian case in [29], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

Denote by ⊗̂ the symmetric tensor multiplication, by a subscript C — complexifications of

spaces. Set Z+ := N ∪ {0}. Denote by P the set of complex-valued polynomials on D′ that

consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, f (n) ∈ D⊗̂n
C

, N f ∈ Z+, f (N f ) 6= 0,
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here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0
C

:= C. The measure µ

of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (2) and

properties of the measure ν, see also [38]), then P is a dense set in (L2) [42]. Denote by Pn,

n ∈ Z+, the set of polynomials of power smaller or equal to n, by Pn the closure of Pn in (L2).

Let for n ∈ N Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)), P0 := P0. It is clear that

(L2) =
∞
⊕

n=0
Pn. (3)

Let f (n) ∈ D⊗̂n
C

, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection of a monomial

〈◦⊗n, f (n)〉 onto Pn. Let us define real, i.e., bilinear scalar products (·, ·)ext on D⊗̂n
C

, n ∈ Z+, by

setting for f (n), g(n) ∈ D⊗̂n
C

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω). (4)

The proof of the well-posedness of this definition coincides up to obvious modifications with

the proof of the corresponding statement in [38].

By | · |ext we denote the norms corresponding to scalar products (4), i.e.,

| f (n) |ext :=

√
( f (n) , f (n))ext.

Denote by H
(n)
ext , n ∈ Z+, the completions of D⊗̂n

C
with respect to the norms | · |ext. For

F(n) ∈ H
(n)
ext define a Wick monomial : 〈◦⊗n, F(n)〉 :

def
= (L2)− lim

k→∞
: 〈◦⊗n, f

(n)
k 〉 :, where D⊗̂n

C
∋

f
(n)
k → F(n) as k → ∞ in H

(n)
ext (the well-posedness of this definition can be proved by the

method of "mixed sequences"). One can show that : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and

: 〈◦, F(1)〉 : = 〈◦, F(1)〉 (cf. [38]).

Since, as is easy to see, for each n ∈ Z+ the set {: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n
C

} is dense in Pn,

the next statement from (3) follows.

Theorem 1. (Lytvynov’s generalization of the CRP, cf. [38]) A random variable F ∈ (L2) if and

only if there exists a unique sequence of kernels F(n) ∈ H
(n)
ext such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (5)

(the series converges in (L2)) and ‖F‖2
(L2)

=
∫
D′ |F(ω)|2µ(dω) = E|F|2 = ∑

∞
n=0 n!|F(n)|2ext < ∞.

Remark 3. In order to consider many problems of the Lévy white noise analysis, in terms of

Lytvynov’s generalization of the CRP, it is necessary to know an explicit formula for the scalar

products (·, ·)ext. Such a formula is calculated in [38]; in another record form (more convenient

for some calculations) it is given in, e.g., [13, 15, 16].

Denote H := L2(R+), then HC = L2(R+)C (in what follows, this notation will be used very

often). It follows from the explicit formula for (·, ·)ext that H
(1)
ext = HC, and for n ∈ N\{1} one

can identify H⊗̂n
C

with the proper subspace of H
(n)
ext that consists of "vanishing on diagonals"

elements (roughly speaking, such that F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n}: k 6= j,

but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n

C
(this explains why we use the

subscript "ext" in our designations).
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1.3 A nonregular rigging of (L2)

Denote by T the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an infinite differentiable

function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Let Hτ be the real Sobolev space on R+ of

order τ1 weighted by the function τ2, i.e., Hτ is the completion of D with respect to the norm

generated by the scalar product

(ϕ, ψ)Hτ
=

∫

R+

(
ϕ(u)ψ(u) +

τ1

∑
k=1

ϕ[k](u)ψ[k](u)
)

τ2(u)du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ respectively. It is well known

(e.g., [8]) that D = pr lim
τ∈T

Hτ (moreover, for any n ∈ N D⊗̂n = pr lim
τ∈T

H⊗̂n
τ , see, e.g., [6] for

details), and for each τ ∈ T Hτ is densely and continuously embedded into H ≡ L2(R+).

Therefore one can consider the chain

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,

where H−τ, τ ∈ T, are the spaces dual of Hτ with respect to H. Note that by the Schwartz

theorem [8] D′ = ind lim
τ∈T

H−τ (it is convenient for us to consider D′ as a topological space

with the inductive limit topology). By analogy with [28] one can easily show that the measure

µ of a Lévy white noise is concentrated on H−τ̃ with some τ̃ ∈ T, i.e., µ(H−τ̃) = 1. Excepting

from T the indexes τ such that µ is not concentrated on H−τ, we will assume, in what follows,

that for each τ ∈ T µ(H−τ) = 1.

Denote the norms in Hτ,C and its tensor powers by | · |τ, i.e., for f (n) ∈ H⊗̂n
τ,C, n ∈ Z+,

| f (n) |τ =

√
( f (n), f (n))

H⊗̂n
τ,C

(note that H⊗̂0
τ,C := C and | f (0) |τ = | f (0) |).

The next statement easily follows from results of [25].

Lemma 1. There exists τ′ ∈ T such that for each n ∈ Z+ the space H⊗̂n
τ′,C is densely and con-

tinuously embedded into the space H
(n)
ext . Moreover, for all f (n) ∈ H⊗̂n

τ′,C | f (n)|2ext ≤ n!cn| f (n)|2τ′ ,

where c > 0 is some constant.

It follows from this lemma that if for some τ ∈ T the space Hτ is continuously embedded

into the space Hτ′ then for each n ∈ Z+ the space H⊗̂n
τ,C is densely and continuously embedded

into the space H
(n)
ext , and there exists c(τ) > 0 such that for all f (n) ∈ H⊗̂n

τ,C

| f (n)|2ext ≤ n!c(τ)n | f (n)|2τ . (6)

In what follows, it will be convenient to assume that the indexes τ such that Hτ is not contin-

uously embedded into Hτ′ , are removed from T.

Accept on default q ∈ Z+ and τ ∈ T. Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈

D⊗̂n
C

, N f ∈ Z+
}
⊂ (L2). Define real scalar products (·, ·)τ,q on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)τ,q :=

min(N f ,Ng)

∑
n=0

(n!)22qn( f (n), g(n))
H⊗̂n

τ,C
. (7)
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Let ‖ · ‖τ,q be the corresponding norms, i.e., ‖ f‖τ,q =
√
( f , f )τ,q. In order to verify the well-

posedness of this definition, i.e., that formula (7) defines scalar, and not just quasiscalar prod-

ucts, we note that if f ∈ PW and ‖ f‖τ,q = 0 then by (7) for each kernel f (n) we have | f (n)|τ = 0

and therefore by (6) | f (n)|ext = 0. So, in this case f = 0 in (L2).

Let (Hτ)q be completions of PW with respect to the norms ‖ · ‖τ,q, (Hτ) := pr lim
q→∞

(Hτ)q,

(D) := pr lim
τ∈T,q→∞

(Hτ)q. As is easy to see, f ∈ (Hτ)q if and only if f can be presented in the form

f =
∞

∑
n=0

: 〈◦⊗n, f (n)〉 :, f (n) ∈ H⊗̂n
τ,C (8)

(the series converges in (Hτ)q), with

‖ f‖2
τ,q := ‖ f‖2

(Hτ )q
=

∞

∑
n=0

(n!)22qn| f (n)|2τ < ∞ (9)

(since for each n ∈ Z+ H⊗̂n
τ,C ⊆ H

(n)
ext , for f (n) ∈ H⊗̂n

τ,C : 〈◦⊗n, f (n)〉 : is a well defined Wick

monomial, see Subsection 1.2). Further, f ∈ (Hτ) ( f ∈ (D)) if and only if f can be presented

in form (8) and norm (9) is finite for each q ∈ Z+ (for each τ ∈ T and each q ∈ Z+).

Lemma 2. For each τ ∈ T there exists q0(τ) ∈ Z+ such that the space (Hτ)q is densely and

continuously embedded into (L2) for each q ∈ Nq0(τ) := {q0(τ), q0(τ) + 1, . . .}.

The proof coincides up to obvious modifications with the proof of the corresponding state-

ment in the real case [25]. In view of this lemma one can consider a chain

(D′) ⊃ (H−τ) ⊃ (H−τ)−q ⊃ (L2) ⊃ (Hτ)q ⊃ (Hτ) ⊃ (D), τ ∈ T, q ∈ Nq0(τ), (10)

where (H−τ)−q, (H−τ) = ind lim
q′→∞

(H−τ)−q′ and (D′) = ind lim
τ̂∈T,q′→∞

(H−τ̂)−q′ are the spaces dual

of (Hτ)q, (Hτ) and (D) with respect to (L2).

Definition 2. Chain (10) is called a nonregular rigging of the space (L2). The positive spaces

of this chain (Hτ)q, (Hτ) and (D) are called Kondratiev spaces of nonregular test functions.

The negative spaces of this chain (H−τ)−q, (H−τ) and (D′) are called Kondratiev spaces of

nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces (H−τ)−q. Let us consider chains

D′
C

(m)
⊃ H

(m)
−τ,C ⊃ H

(m)
ext ⊃ H⊗̂m

τ,C ⊃ D⊗̂m
C

, (11)

m ∈ Z+ (for m = 0 D⊗̂0
C

= H⊗̂0
τ,C = H

(0)
ext = H

(0)
−τ,C = D′

C

(0) = C), where H
(m)
−τ,C and D′

C

(m) =

ind lim
τ̂∈T

H
(m)
−τ̂,C are the spaces dual of H⊗̂m

τ,C and D⊗̂m
C

with respect to H
(m)
ext . In what follows, we

denote by 〈·, ·〉ext the real dual pairings between elements of negative and positive spaces from

chains (11), these pairings are generated by the scalar products in H
(m)
ext . The next statement

follows from the definition of the spaces (H−τ)−q and the general duality theory (cf. [25, 28]).
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Proposition 1. There exists a system of generalized functions

{
: 〈◦⊗m, F

(m)
ext 〉 : ∈ (H−τ)−q | F

(m)
ext ∈ H

(m)
−τ,C, m ∈ Z+

}

such that

1) for F
(m)
ext ∈ H

(m)
ext ⊂ H

(m)
−τ,C : 〈◦⊗m, F

(m)
ext 〉 : is a Wick monomial that is defined in Subsec-

tion 1.2;

2) any generalized function F ∈ (H−τ)−q can be presented as a series

F =
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext 〉 :, F

(m)
ext ∈ H

(m)
−τ,C, (12)

that converges in (H−τ)−q, i.e.,

‖F‖2
−τ,−q := ‖F‖2

(H−τ)−q
=

∞

∑
m=0

2−qm|F
(m)
ext |

2

H
(m)
−τ,C

< ∞; (13)

and, vice versa, any series (12) with finite norm (13) is a generalized function from (H−τ)−q

(i.e., such a series converges in (H−τ)−q);

3) the dual pairing between F ∈ (H−τ)−q and f ∈ (Hτ)q that is generated by the scalar

product in (L2), has the form

〈〈F, f 〉〉(L2 ) =
∞

∑
m=0

m!〈F
(m)
ext , f (m)〉ext, (14)

where F
(m)
ext ∈ H

(m)
−τ,C and f (m) ∈ H⊗̂m

τ,C are the kernels from decompositions (12) and (8) for F

and f respectively.

It is clear that F ∈ (H−τ) (F ∈ (D′)) if and only if F can be presented in form (12) and norm

(13) is finite for some q ∈ Nq0(τ) (for some τ ∈ T and some q ∈ Nq0(τ)).

2 ELEMENTS OF A WICK CALCULUS

In this paper we construct a Wick calculus on the spaces (H−τ); but, as is easy to verify, all

our results hold true up to obvious modifications on the space (D′).

2.1 A Wick product and Wick versions of holomorphic functions

One can introduce a Wick product and Wick versions of holomorphic functions on (H−τ)

by different ways. We use the most natural and convenient from technical point of view clas-

sical way, based on a so-called S-transform.

Definition 3. Let F ∈ (H−τ). We define an S-transform (SF)(λ), λ ∈ DC, as a formal series

(SF)(λ) :=
∞

∑
m=0

〈F
(m)
ext , λ⊗m〉ext ≡ F

(0)
ext +

∞

∑
m=1

〈F
(m)
ext , λ⊗m〉ext, (15)

where F
(m)
ext ∈ H

(m)
−τ,C are the kernels from (12) for F. In particular, (SF)(0) = F

(0)
ext , S1 ≡ 1.
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Remark 4. As is easily seen, each term in series (15) is well-defined, but the series can di-

verge. However, the last is not an obstruction in order to construct the Wick calculus (cf. [15]);

moreover, it is easy to obtain a simple sufficient condition under which series (15) converges.

Namely, by the generalized and classical Cauchy-Bunyakovsky inequalities

|(SF)(λ)| ≤
∞

∑
m=0

|F
(m)
ext |H(m)

−τ,C

|λ|mτ =
∞

∑
m=0

(
2−qm/2|F

(m)
ext |H(m)

−τ,C

)(
2qm/2|λ|mτ

)

≤

√
∞

∑
m=0

2−qm|F
(m)
ext |

2

H
(m)
−τ,C

√
∞

∑
m=0

2qm|λ|2m
τ = ‖F‖−τ,−q

√
∞

∑
m=0

2qm|λ|2m
τ

(see (13)). Therefore series (15) converges if F ∈ (H−τ)−q and λ ∈ DC is such that |λ|τ < 2−q/2.

Note that the last inequality is true if and only if a function fλ(◦) := ∑
∞
m=0

1
m! : 〈◦

⊗m, λ⊗m〉 : ∈

(Hτ)q, in this case ‖ fλ‖τ,q =
√

∑
∞
m=0 2qm|λ|2m

τ < ∞ (see (9)). Now one can define the S-

transform of F by the formula (SF)(λ) = 〈〈F, fλ〉〉(L2) (cf. [34]), see (14). Note that in the

Gaussian (and Poissonian) analysis fλ(◦) = exp♦{〈◦, λ〉}, where exp♦ is a Wick version of

the exponential function (e.g., [34]), and therefore fλ is called a Wick exponential; in the Lévy

analysis this representation for fλ does not hold.

Definition 4. For F, G ∈ (H−τ) and a holomorphic at (SF)(0) function h : C → C we define a

Wick product F♦G and a Wick version h♦(F) by setting formally

F♦G := S−1(SF · SG), h♦(F) := S−1h(SF). (16)

It is obvious that the Wick multiplication ♦ is commutative, associative and distributive

over a field C.

Remark 5. A function h can be decomposed in a Taylor series

h(u) =
∞

∑
m=0

hm

(
u − (SF)(0)

)m
. (17)

Using this decomposition, it is easy to calculate that

h♦(F) =
∞

∑
m=0

hm
(
F − (SF)(0)

)♦m
, (18)

where F♦m := F♦ · · ·♦F︸ ︷︷ ︸
m times

, F♦0 := 1.

Let us write out "coordinate formulas" for the Wick product and for the Wick versions

of holomorphic functions (i.e., representations of F♦G and h♦(F) via kernels from decom-

positions (12) for F and G and coefficients from decomposition (17) for h). We need a small

preparation: it is necessary to introduce an analog of the symmetric tensor multiplication on

the spaces H
(m)
−τ,C, m ∈ Z+.

Consider a family of chains

D′
C

⊗̂m
⊃ H⊗̂m

−τ,C ⊃ H⊗̂m
C

⊃ H⊗̂m
τ,C ⊃ D⊗̂m

C
, m ∈ Z+ (19)
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(as is well known (e.g., [6, 8]), H⊗̂m
−τ,C and D′

C

⊗̂m = ind lim
τ̂∈T

H⊗̂m
−τ̂,C are the spaces dual of H⊗̂m

τ,C

and D⊗̂m
C

respectively; in the case m = 0 all spaces from chain (19) are equal to C). Since

the spaces of test functions in chains (19) and (11) coincide, there exists a family of natural

isomorphisms Um : D′
C

(m) → D′
C

⊗̂m, m ∈ Z+, such that for all F
(m)
ext ∈ D′

C

(m) and f (m) ∈ D⊗̂m
C

〈F
(m)
ext , f (m)〉ext = 〈UmF

(m)
ext , f (m)〉. (20)

It is easy to see that the restrictions of Um to H
(m)
−τ,C are isometric isomorphisms between the

spaces H
(m)
−τ,C and H⊗̂m

−τ,C.

Remark 6. As we saw above, H
(1)
ext = HC, therefore in the case m = 1 chains (19) and (11)

coincide. Thus U1 is the identity operator on D′
C

(1) = D′
C

⊗̂1 = D′
C

. In the case m = 0 U0 is,

obviously, the identity operator on C.

For F
(n)
ext ∈ H

(n)
−τ,C and G

(m)
ext ∈ H

(m)
−τ,C, n, m ∈ Z+, set

F
(n)
ext ⋄ G

(m)
ext := U−1

n+m

[
(UnF

(n)
ext )⊗̂(UmG

(m)
ext )

]
∈ H

(n+m)
−τ,C . (21)

It follows from properties of operators Um and of the symmetric tensor multiplication that

the multiplication ⋄ is commutative, associative and distributive over a field C. Further, since

Um : H
(m)
−τ,C → H⊗̂m

−τ,C, m ∈ Z+, are isometric isomorphisms,

|F
(n)
ext ⋄ G

(m)
ext |H(n+m)

−τ,C

= |(UnF
(n)
ext )⊗̂(UmG

(m)
ext )|H⊗̂n+m

−τ,C

≤ |UnF
(n)
ext |H⊗̂n

−τ,C
|UmG

(m)
ext |H⊗̂m

−τ,C
= |F

(n)
ext |H(n)

−τ,C

|G
(m)
ext |H(m)

−τ,C

.
(22)

Finally, by (20) and (21) for λ ∈ DC

〈F
(n)
ext , λ⊗n〉ext〈G

(m)
ext , λ⊗m〉ext = 〈UnF

(n)
ext , λ⊗n〉〈UmG

(m)
ext , λ⊗m〉

= 〈(UnF
(n)
ext )⊗ (UmG

(m)
ext ), λ⊗n+m〉 = 〈(UnF

(n)
ext )⊗̂(UmG

(m)
ext ), λ⊗n+m〉

= 〈U−1
n+m

[
(UnF

(n)
ext )⊗̂(UmG

(m)
ext )

]
, λ⊗n+m〉ext = 〈F

(n)
ext ⋄ G

(m)
ext , λ⊗n+m〉ext.

Using (16), (15) and this equality, by analogy with the Meixner analysis [28] one can prove the

following statement.

Proposition 2. For F1, . . . , Fn ∈ (H−τ)

F1♦ · · ·♦Fn =
∞

∑
m=0

: 〈◦⊗m, ∑
k1,...,kn∈Z+ :
k1+···+kn=m

F
(k1)
1 ⋄ · · · ⋄ F

(kn)
n 〉 :; (23)

in particular, for F, G ∈ (H−τ)

F♦G =
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

F
(k)
ext ⋄ G

(m−k)
ext 〉 :. (24)
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Here F
(k j)

j ∈ H
(k j)

−τ,C, j ∈ {1, . . . , n}, are the kernels from decompositions (12) for Fj; F
(k)
ext ∈

H
(k)
−τ,C, G

(m−k)
ext ∈ H

(m−k)
−τ,C , are the kernels from the same decompositions for F and G respec-

tively. Further, for F ∈ (H−τ) and a holomorphic at (SF)(0) = F
(0)
ext function h : C → C

h♦(F) = h0 +
∞

∑
m=1

: 〈◦⊗m,
m

∑
n=1

hn ∑
k1,...,kn∈N:

k1+···+kn=m

F
(k1)
ext ⋄ · · · ⋄ F

(kn)
ext 〉 :, (25)

where F
(k)
ext ∈ H

(k)
−τ,C, k ∈ Z+, are the kernels from decomposition (12) for F; hn ∈ C, n ∈ Z+,

are the coefficients from decomposition (17) for h.

Remark 7. Formulas (24) and (25) can be used as alternative definitions of the Wick product

and of the Wick version of a holomorphic function respectively.

It is clear that in order to give an informal sense to notions "the Wick product" and "the Wick

version of a holomorphic function", it is necessary to study a question about convergence of

series (23) and (25) in the spaces (H−τ).

Theorem 2. 1) Let F1, . . . , Fn ∈ (H−τ). Then F1♦ · · ·♦Fn ∈ (H−τ). Moreover, the Wick multi-

plication is continuous in the sense that

‖F1♦ · · ·♦Fn‖−τ,−q ≤
√

max
m∈Z+

[2−m(m + 1)n−1]‖F1‖−τ,−(q−1) · · · ‖Fn‖−τ,−(q−1), (26)

where q ∈ N is such that F1, . . . , Fn ∈ (H−τ)−(q−1). 2) Let F ∈ (H−τ) and a function h : C → C

be holomorphic at (SF)(0). Then h♦(F) ∈ (H−τ).

Proof. 1) It is sufficient to prove (26), the fact that F1♦ · · ·♦Fn ∈ (H−τ) follows from this es-

timate. Let F
(k)
j ∈ H

(k)
−τ,C be the kernels from decompositions (12) for Fj, j ∈ {1, . . . , n}; and

q ∈ N be such that F1, . . . , Fn ∈ (H−τ)−(q−1) (such q exists because by Schwartz’s theorem

(H−τ) =
⋃

q∈Nq0(τ)

(H−τ)−q (Nq0(τ) is defined in Lemma 2), see, e.g., [8] for details). Using (23),

(13), a known estimate for a norm
∥∥∑

p
l=1 al

∥∥2
≤ p ∑

p
l=1 ‖al‖

2 and (22), we obtain

‖F1♦ · · ·♦Fn‖
2
−τ,−q =

∞

∑
m=0

2−qm
∣∣ ∑

k1,...,kn∈Z+ :
k1+···+kn=m

F
(k1)
1 ⋄ · · · ⋄ F

(kn)
n

∣∣2
H

(m)
−τ,C

=
∞

∑
m=0

2−qm
∣∣

m

∑
k1=0

m−k1

∑
k2=0

· · ·
m−k1−···−kn−2

∑
kn−1=0

F
(k1)
1 ⋄ · · · ⋄ F

(kn−1)
n−1 ⋄ F

(m−k1−···−kn−1)
n

∣∣2
H

(m)
−τ,C

≤
∞

∑
m=0

2−qm(m + 1)
m

∑
k1=0

∣∣
m−k1

∑
k2=0

· · ·
m−k1−···−kn−2

∑
kn−1=0

F
(k1)
1 ⋄ · · · ⋄ F

(m−k1−···−kn−1)
n

∣∣2
H

(m)
−τ,C

≤ · · · ≤
∞

∑
m=0

2−qm(m + 1)n−1
m

∑
k1=0

m−k1

∑
k2=0

· · ·
m−k1−···−kn−2

∑
kn−1=0

|F
(k1)
1 ⋄ · · · ⋄ F

(m−k1−···−kn−1)
n |2

H
(m)
−τ,C

≤
∞

∑
m=0

[
2−m(m + 1)n−1

]
2−(q−1)m
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×
m

∑
k1=0

m−k1

∑
k2=0

· · ·
m−k1−···−kn−2

∑
kn−1=0

|F
(k1)
1 |2

H
(k1)
−τ,C

· · · |F
(m−k1−···−kn−1)
n |2

H
(m−k1−···−kn−1)

−τ,C

≤ C(n)
∞

∑
k1=0

2−(q−1)k1|F
(k1)
1 |2

H
(k1)
−τ,C

∞

∑
m=k1

m−k1

∑
k2=0

· · ·
m−k1−···−kn−2

∑
kn−1=0

2−(q−1)k2|F
(k2)
2 |2

H
(k2)
−τ,C

· · · 2−(q−1)(m−k1−···−kn−1)|F
(m−k1−···−kn−1)
n |2

H
(m−k1−···−kn−1)

−τ,C

= C(n)‖F1‖
2
−τ,−(q−1)

∞

∑
m=0

m

∑
k2=0

· · ·
m−k2−···−kn−2

∑
kn−1=0

2−(q−1)k2|F
(k2)
2 |2

H
(k2)
−τ,C

· · · 2−(q−1)(m−k2−···−kn−1)|F
(m−k2−···−kn−1)
n |2

H
(m−k2−···−kn−1)

−τ,C

= · · · = C(n)‖F1‖
2
−τ,−(q−1) · · · ‖Fn‖

2
−τ,−(q−1), (27)

where C(n) := maxm∈Z+

[
2−m(m + 1)n−1

]
.

2) Let us establish that for some q ∈ Z+ ‖h♦(F)‖−τ,−q < ∞, it is enough to assert that

h♦(F) ∈ (H−τ). Let F
(k)
ext ∈ H

(k)
−τ,C, k ∈ Z+, be the kernels from decomposition (12) for F. Since

by Schwartz’s theorem for some q̃ ∈ Z+ F ∈ (H−τ)−q̃, by (13) for each k we have |F
(k)
ext |H(k)

−τ,C

≤

‖F‖−τ,−q̃2q̃k/2. Further, it follows from the holomorphy of h that there exists q′ ∈ Z+ such that

for each n ∈ Z+ |hn| ≤ 2q′n, where hn ∈ C are the coefficients from decomposition (17) for h.

Using these estimates, (13), (25), (22) and the estimate ∑
k1,...,kn∈N:

k1+···+kn=m

1 = Cn−1
m−1 ≤ 2m−1, we obtain

‖h♦(F)‖2
−τ,−q = |h0|

2 +
∞

∑
m=1

2−qm
∣∣

m

∑
n=1

hn ∑
k1,...,kn∈N:

k1+···+kn=m

F
(k1)
ext ⋄ · · · ⋄ F

(kn)
ext

∣∣2
H

(m)
−τ,C

≤ |h0|
2 +

∞

∑
m=1

2−qm
( m

∑
n=1

|hn| ∑
k1,...,kn∈N:

k1+···+kn=m

|F
(k1)
ext |

H
(k1)
−τ,C

· · · |F
(kn)
ext |

H
(kn)
−τ,C

)2

≤ |h0|
2 +

∞

∑
m=1

2−qm
( m

∑
n=1

2q′n ∑
k1,...,kn∈N:

k1+···+kn=m

‖F‖n
−τ,−q̃2q̃m/2

)2

≤ |h0|
2 +

1

4

∞

∑
m=1

2(q̃+2−q)m
( m

∑
n=1

(2q′‖F‖−τ,−q̃)
n
)2

< ∞,

(28)

if q ∈ Z+ is sufficiently large.

Remark 8. Let h♦N(F), N ∈ N, be the Wick version of the N-th partial sum of decomposition

(17) for h. It follows from calculation (28) that h♦N(F) → h♦(F) as N → ∞ in (H−τ).

Remark 9. One of generalizations of the Gaussian white noise analysis is a so-called biorthogo-

nal analysis (see [1,2,5,23,24,36]) that developed actively in 90th of the last century. Its main idea

is to use as orthogonal bases in spaces of test functions so-called generalized Appell polynomi-

als (or their generalizations), in this case orthogonal bases in spaces of generalized functions

are biorthogonal to the above-mentioned polynomials generalized functions. Over time the

interest to the biorthogonal analysis went down because of the lack of interesting applications.
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But methods developed within its framework, and some its results can be successfully used

in another generalizations of the Gaussian analysis, in particular, in the Lévy analysis. For

example, the proof of Theorem 2 is adopted from the biorthogonal analysis, cf. [24].

2.2 Interconnection between the Wick calculuses in the regular and nonregular cases

In the paper [15], in particular, a Wick product and Wick versions of holomorphic functions

are introduced and studied on so-called parametrized Kondratiev-type spaces of regular generalized

functions of the Lévy white noise analysis [15, 25]. As distinct from the Gaussian or Poissonian

analysis, these spaces are not embedded into the spaces of nonregular generalized functions,

but have with the last wide intersections (for example, (L2) is a part of all these intersections).

So, it is natural to consider a question about interconnection between the Wick calculuses

on the spaces of regular and nonregular generalized functions. The answer is very simple:

actually, on the above-mentioned intersections the Wick products and the Wick versions of

holomorphic functions, introduced in [15] and in this paper, coincide. Now we’ll explain this

in detail.

Definition 5. Accept on default β ∈ [0, 1]. Parametrized Kondratiev-type spaces of regular

generalized functions (L2)
−β
−q and (L2)−β can be defined as follows: (L2)

−β
−q consists of formal

series (5) such that ‖F‖2

(L2)
−β
−q

= ∑
∞
n=0(n!)1−β2−qn|F(n)|2ext < ∞; (L2)−β := ind lim

q→∞
(L2)

−β
−q .

The well-posedness of this definition is proved in [15, 25]. Note that the space of square

integrable random variables (L2) = (L2)0
0 is densely and continuously embedded into each

(L2)
−β
−q and therefore into (L2)−β.

Remark 10. Let (L2)
β
q , (L2)β = pr lim

q→∞

(L2)
β
q be parametrized Kondratiev-type spaces of regular

test functions [15, 25], i.e., the positive spaces of a chain (L2)−β ⊃ (L2)
−β
−q ⊃ (L2) ⊃ (L2)

β
q ⊃

(L2)β. It is not difficult to understand that (L2)
β
q consist of elements of form (5) such that

‖F‖2

(L2)
β
q

= ∑
∞
n=0(n!)1+β2qn|F(n)|2ext < ∞. By analogy one can introduce spaces (Hτ)

β
q that

consist of formal series (8) such that ‖ f‖2

(Hτ )
β
q

= ∑
∞
n=0(n!)1+β2qn| f (n)|2τ < ∞. It is possible to

study properties of these spaces and of its projective limits, to introduce and to study operators

and operations on them; such considerations are interesting by itself and can be useful for

applications. But, in contrast to the Gaussian and Poissonian analysis, in the Lévy analysis

(Hτ)
β
q 6⊂ (L2) if β < 1, generally speaking, so, we cannot consider (Hτ)

β
q with β < 1 as spaces

of test functions.

Definition 6 ([15]). For F ∈ (L2)−β we define an S̃-transform (S̃F)(λ), λ ∈ DC, as a formal

series

(S̃F)(λ) :=
∞

∑
m=0

(F(m), λ⊗m)ext ≡ F(0) +
∞

∑
m=1

(F(m), λ⊗m)ext, (29)

where F(m) ∈ H
(m)
ext are the kernels from decomposition (5) for F (cf. (15)). In particular,

(S̃F)(0) = F(0), S̃1 ≡ 1.

Definition 7 ([15]). For F, G ∈ (L2)−β and a holomorphic at (S̃F)(0) function h : C → C we

define a Wick product F♦̃G and a Wick version h♦̃(F) by setting formally (cf. (16))

F♦̃G := S̃−1(S̃F · S̃G), h♦̃(F) := S̃−1h(S̃F). (30)
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As in the nonregular case, the Wick multiplication ♦̃ is commutative, associative and dis-

tributive over a field C, and the following statement is fulfilled (cf. Theorem 2).

Theorem 3 ( [15]). 1) Let F1, . . . , Fn ∈ (L2)−β. Then F1♦̃ · · · ♦̃Fn ∈ (L2)−β. Moreover, the Wick

multiplication is continuous in the sense that for any q, q′ ∈ Z+ such that F1, . . . , Fn ∈ (L2)
−β
−q′

and q > q′ + (1 − β) log2 n + 1

‖F1♦̃ · · · ♦̃Fn‖(L2)
−β
−q

≤
√

max
m∈Z+

[2−m(m + 1)n−1]‖F1‖(L2)
−β

−q′
· · · ‖Fn‖(L2)

−β

−q′

(cf. (26)). 2) Let F ∈ (L2)−β and a function h : C → C be holomorphic at (S̃F)(0). Then

h♦̃(F) ∈ (L2)−1.

Remark 11. Theorem 3 can be proved with the use of "coordinate formulas" for the Wick prod-

uct and for the Wick versions of holomorphic functions on the spaces (L2)−β [15]. Formally

these formulas coincide with the corresponding formulas in the nonregular case, see Proposi-

tion 2. Actually, this coincidence is not accidental: the restriction of the multiplication ⋄ to the

spaces H
(n)
ext , n ∈ Z+, is an analog of the symmetric tensor multiplication on these spaces, the

proof of this fact coincides up to obvious modifications with the proof of the corresponding

statement in the real case [31].

Comparing (15) with (29), (16) with (30), and taking into account Theorems 2 and 3, we

obtain the following statement.

Theorem 4. 1) Let F1, . . . , Fn ∈ (H−τ) ∩ (L2)−β. Then

F1♦ · · ·♦Fn = F1♦̃ · · · ♦̃Fn ∈ (H−τ) ∩ (L2)−β.

2) Let F ∈ (H−τ) ∩ (L2)−β and a function h : C → C be holomorphic at (SF)(0) = (S̃F)(0).

Then h♦(F) = h♦̃(F) ∈ (H−τ) ∩ (L2)−1.

2.3 Interconnection between the Wick calculus and operators of stochastic differentiation

As is well known, a very important role in the Gaussian white noise analysis and its gen-

eralizations belongs to the extended stochastic integral and to its adjoint operator — the Hida

stochastic derivative. Together with these operators, it is natural and useful to introduce and to

study so-called operators of stochastic differentiation, which are closely related with the stochastic

integral and derivative. Roughly speaking, one can understand the stochastic differentiation as

a "differentiation" with respect to a "stochastic argument", i.e., the operator of stochastic differ-

entiation acts on an orthogonal decomposition of a (generalized) random variable in common

with an action of the differentiation operator on Taylor’s decomposition of a function. The op-

erators of stochastic differentiation can be used, in particular, in order to study some proper-

ties of the extended stochastic integral and of solutions of stochastic equations with Wick-type

nonlinearities.

As is known [3], in the Gaussian analysis the operator of stochastic differentiation of order

1 is a differentiation (i.e., satisfies the Leibniz rule) with respect to the Wick multiplication.

This important for applications property holds true in a Gamma-analysis (i.e., a white noise

analysis connected with a so-called Gamma-measure) [22], in a Meixner analysis [26, 27], and

in the Lévy analysis on the spaces of regular generalized functions [15]. But, in contrast to the
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Gaussian case, in the Lévy analysis (in the same way as in the Gamma- and Meixner analysis)

the operators of stochastic differentiation (in the same way as the Hida stochastic derivative)

cannot be naturally continued from (L2) to the spaces of nonregular generalized functions,

see [30] for details. Nevertheless, one can introduce on these spaces natural analogs of the

above-mentioned operators. These analogs are introduced and studied (in a real case) in [30].

They have properties similar to properties of "classical" operators of stochastic differentiation

[13], and can be accepted as operators of stochastic differentiation on the spaces of nonregular

generalized functions. Now we’ll recall the definition of such operator of order 1, and will

show that this operator satisfies the Leibniz rule with respect to the Wick multiplication ♦.

Let F
(m)
ext ∈ H

(m)
−τ,C, m ∈ N\{1}, g ∈ Hτ,C. We define a generalized partial pairing

〈F
(m)
ext , g〉ext ∈ H

(m−1)
−τ,C by setting for any f (m−1) ∈ H⊗̂m−1

τ,C

〈〈F
(m)
ext , g〉ext, f (m−1)〉ext = 〈F

(m)
ext , g⊗̂ f (m−1)〉ext. (31)

Since by the generalized Cauchy-Bunyakovsky inequality

|〈F
(m)
ext , g⊗̂ f (m−1)〉ext| ≤ |F

(m)
ext |H(m)

−τ,C

|g⊗̂ f (m−1)|τ ≤ |F
(m)
ext |H(m)

−τ,C

|g|τ | f
(m−1)|τ,

this definition is well posed and

|〈F
(m)
ext , g〉ext|H(m−1)

−τ,C

≤ |F
(m)
ext |H(m)

−τ,C

|g|τ . (32)

Definition 8. Let g ∈ Hτ,C. We define (the analog of) the operator of stochastic differentiation

(D◦)(g) : (H−τ) → (H−τ) (33)

as a linear continuous operator that is given by the formula

(DF)(g) :=
∞

∑
m=1

m: 〈◦⊗m−1, 〈F
(m)
ext , g〉ext〉 :, (34)

where F
(m)
ext ∈ H

(m)
−τ,C are the kernels from decomposition (12) for F ∈ (H−τ).

The proof of the well-posedness of this definition is based on estimate (32) and coincides

up to obvious modifications with the proof of the corresponding statement in a real case [30].

Let us define a characterization set of the space (H−τ) in terms of the S-transform, setting

Bτ := S(H−τ) ≡
{

SF : F ∈ (H−τ)
}

(cf. [15]). It is clear that Bτ is a linear space, which

consists of formal series ∑
∞
m=0〈F

(m)
ext , ·⊗m〉ext (see (15)) with the kernels F

(m)
ext ∈ H

(m)
−τ,C satisfying

a condition: there exists q ∈ Nq0(τ) ⊆ Z+ such that ∑
∞
m=0 2−qm|F

(m)
ext |

2

H
(m)
−τ,C

< ∞. It follows from

Definition 4 and Theorem 2 that Bτ is an algebra with respect to the pointwise multiplication.

Moreover, if we introduce on Bτ a topology induced by the topology of (H−τ), then the S-

transform becomes a topological isomorphism between a topological algebra (H−τ) with the

Wick multiplication and a topological algebra Bτ with the pointwise multiplication.

Denote by

dg : Bτ → Bτ, g ∈ Hτ,C, (35)
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a directional derivative, i.e., for (SF)(·) = ∑
∞
m=0〈F

(m)
ext , ·⊗m〉ext = ∑

∞
m=0〈UmF

(m)
ext , ·⊗m〉 ∈ Bτ (see

(15), (20); F ∈ (H−τ), F
(m)
ext ∈ H

(m)
−τ,C are the kernels from decomposition (12) for F)

dg(SF)(·) =
∞

∑
m=1

m〈UmF
(m)
ext , g⊗̂(·⊗m−1)〉 =

∞

∑
m=1

m〈F
(m)
ext , g⊗̂(·⊗m−1)〉ext

=
∞

∑
m=1

m〈〈F
(m)
ext , g〉ext, ·

⊗m−1〉ext =
(
S(DF)(g)

)
(·) ∈ Bτ

(36)

(see (20), (31), (34) and (15)). As we see, directional derivative (35) is the image on Bτ of operator

of stochastic differentiation (33) under the S-transform (in particular, (35) is a linear continuous

operator). Vice versa, operator of stochastic differentiation (33) is a pre-image of directional

derivative (35) under the S-transform, i.e., for all F ∈ (H−τ) and g ∈ Hτ,C

(DF)(g) = S−1dgSF ∈ (H−τ). (37)

Now we are ready to prove the main result of this subsection.

Theorem 5. Operator of stochastic differentiation (33) is a differentiation (i.e., satisfies the

Leibniz rule) with respect to the Wick multiplication, i.e., for all F, G ∈ (H−τ) and g ∈ Hτ,C
(

D(F♦G)
)
(g) = (DF)(g)♦G + F♦(DG)(g) ∈ (H−τ). (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of

(38) belong to (H−τ), this follows from the definition of operator (33) and Theorem 2. As for

equality (38), using (37), (16), the fact that the directional derivative satisfies the Leibniz rule,

and (36), we obtain
(

D(F♦G)
)
(g) = S−1dg

(
S(F♦G)

)
= S−1dg(SF · SG) = S−1

[
(dgSF) · SG + SF · (dgSG)

]

= S−1
[(

S(DF)(g)
)
· SG + SF ·

(
S(DG)(g)

)]
= (DF)(g)♦G + F♦(DG)(g),

which is what had to be proved.

Corollary. Let F ∈ (H−τ), g ∈ Hτ,C, and h : C → C be a holomorphic at (SF)(0) function.

Then (
Dh♦(F)

)
(g) = h′♦(F)♦(DF)(g) ∈ (H−τ), (39)

where h′♦ is the Wick version of the usual derivative of a function h.

Proof. Using (38), one can prove by the mathematical induction method that for each m ∈ Z+

(
D
(

F − (SF)(0)
)♦m)

(g) = m
(

F − (SF)(0)
)♦m−1

♦(DF)(g). (40)

Further, let h♦N(F), N ∈ N, be the Wick version of the N-th partial sum of decomposition

(17) for h, i.e., h♦N(F) = ∑
N
m=0 hm

(
F − (SF)(0)

)♦m
, see (18). It follows from the linearity of the

operator D, (40), Theorem 2 and Remark 8 that

(
Dh♦N(F)

)
(g) =

N

∑
m=0

hm

(
D
(
F − (SF)(0)

)♦m)
(g)

=
N

∑
m=1

hmm
(

F − (SF)(0)
)♦m−1

♦(DF)(g) →
N→∞

h′♦(F)♦(DF)(g)

in (H−τ). On the other hand, it follows from Remark 8 and the continuity of the operator

(D◦)(g) on (H−τ) that
(

Dh♦N(F)
)
(g) →

(
Dh♦(F)

)
(g) as N → ∞ in (H−τ). Therefore equality

(39) is valid.
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In a forthcoming paper we’ll consider an interconnection between the Wick calculus and

the stochastic integration on the spaces of nonregular generalized functions, and give examples

of integral stochastic equations with Wick-type nonlinearities.
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Качановський М.О. Про Вiкiвське числення на просторах нерегулярних узагальнених функцiй ана-

лiзу бiлого шуму Левi // Карпатськi матем. публ. — 2018. — Т.10, №1. — C. 114–132.

Розвиток теорiї основних i узагальнених функцiй, що залежать вiд нескiнченної кiлькостi

змiнних, є важливою та актуальною задачею, яка обумовлена потребами фiзики i математики.

Один з успiшних пiдходiв до побудови такої теорiї полягає у введеннi просторiв вищезгаданих

функцiй таким чином, що дуальне спарювання мiж основними i узагальненими функцiями

породжується iнтегруванням за деякою ймовiрнiсною мiрою. Спочатку це була гауссiвська

мiра, згодом були зробленi численнi узагальнення. Зокрема, важливi результати можна отри-

мати, використовуючи мiру бiлого шуму Левi, вiдповiдна теорiя називається аналiзом бiлого

шуму Левi.

У гауссiвському випадку можна будувати простори основних i узагальнених функцiй та

уводити деякi важливi оператори (наприклад, стохастичнi iнтеграли i похiднi) на цих про-

сторах за допомогою так званої властивостi хаотичного розкладу (ВХР): грубо кажучи, кожну

квадратично iнтегровну випадкову величину можна розкласти у ряд повторних стохастичних

iнтегралiв Iто вiд невипадкових функцiй. У аналiзi Левi нема ВХР, але є рiзнi узагальнення цiєї

властивостi.

У цiй статтi ми маємо справу з одним з найбiльш корисних i перспективних узагальнень

ВХР у аналiзi Левi, запропонованим Є. В. Литвиновим, та з вiдповiдними просторами нерегу-

лярних узагальнених функцiй. Метою статтi є увести природний добуток (вiкiвський добуток)

на цих просторах, та вивчити деякi пов’язанi питання. Основними результатами є теореми про

властивостi вiкiвського добутку i вiкiвських версiй голоморфних функцiй. Зокрема, ми дово-

димо, що оператор стохастичного диференцiювання задовольняє правило Лейбнiца вiдносно

вiкiвського множення. Крiм того, ми показуємо, що вiкiвськi добутки i вiкiвськi версiї голо-

морфних функцiй, визначенi на просторах регулярних i нерегулярних узагальнених функцiй,

побудованих за допомогою литвинiвського узагальнення ВХР, спiвпадають на перетинах цих

просторiв.

Нашi дослiдження є внеском у подальший розвиток аналiзу бiлого шуму Левi.

Ключовi слова i фрази: процес Левi, вiкiвський добуток, стохастичне диференцiювання.


