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ON THE STRUCTURE OF LEAST COMMON MULTIPLE MATRICES FROM SOME

CLASS OF MATRICES

For non-singular matrices with some restrictions, we establish the relationships between Smith

normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith

normal form) of two matrices with corresponding matrices of their least common right multiple

over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the

well-known task of M. Newman. Moreover, for such matrices, received a new method for finding

their least common right multiple which is based on the search for its Smith normal form and

transforming matrices.
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INTRODUCTION

Among the different problems and methods of their solutions that are considered in the

commutative ring theory the special role is played by those that are similar to integer arith-

metic ones, and they are the essential part of rings arithmetics. One of the mentioned prob-

lems, that are connected to the elementary divisibility theory, is how one can find the great-

est common divisor and the least common multiple of given matrices over some ring and

when such objects exist. The research in the area of such problems has started at the be-

ginning of 20th century. Due in essence to E. Cahen and A. Chatelet, C. MacDuffee [4] has

proposed elegant method of finding the greatest common divisor and the least common mul-

tiple of matrices using their Hermite forms. M. Newman and R. Thompson [10] studied the

question: how to find the invariant multipliers of greatest common divisor and least common

multiple of matrices over commutative principal ideal domains. The similar researches over

the Euclidean domains became rather active in the recent years, as can be seen in the works

of V. Nanda [5] , C. Yang, B. Li [1], S. Damkaew, S. Prugsapitak [2], N. Erawaty, M. Bahri,

L. Haraynto, A. Amir [3] et al. In the current research author propose a method how to find

least common multiple of matrices over commutative principal ideal domains, based on the

properties of their Smith normal forms and the invertible matrices that transform these matri-

ces to their Smith normal forms.

Let R be a commutative principal ideal domain with 1 6= 0, Mn(R) be a ring n × n matrices

over R. Consider a nonsingular matrix A ∈ Mn(R). Since R is a principal ideal domain there

are invertible matrices PA, QA, such that

PAAQA = E = diag(1, ε, . . . , ε).
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The matrix E above is called the Smith normal form or (canonical diagonal form) of matrix

A, and matrices PA and QA are left and right transforming matrices of A respectively.

By PA we denote the set of all left transforming matrices of matrix A. According to the

results [8, 11] we know that PA = GEPA , where

GE = {H ∈ GLn(R) | ∃H1 ∈ GLn(R) : HE = EH1}.

Note that it is a multiplicative group.

Suppose that the greatest common divisor of minor of size n − 1 of matrix B equals 1. Then

B ∼ ∆ = diag(1, . . . , 1, δ).

In the following we will use the set of matrices

L(E, ∆) = {L ∈ GLn(R) | ∃L1 ∈ Mn(R) : LE = ∆L1},

which is called a generating set (introdused by V. Shchedryk [8]).

If A = BC, then we will say that B is a left divisor of matrix A and A is a right multiple of

B.

Moreover, if M = AA1 = BB1 then the matrix M is called a common right multiple of

matrices A and B. If in addition the matrix M above is a left divisor of any other common right

multiple of matrices A and B then we say that M is a least common right multiple of A and

B. ( [A, B]r in notation).

By the symbols (a, b) and [a, b] we denote the greatest common divisor and the least com-

mon multiple of the elements a and b respectively, and the notation a|b means that the element

a divides the element b.

1 MAIN RESULTS

Lemma 1. Let PBP−1
A = S =

∥

∥sij

∥

∥

n

1
. Then the element ((ε, δ), sn1) is an invariant with respect

to transforming matrices PB and PA.

Proof. Let FA ∈ PA and FB ∈ PB be some other left transforming matrices of A and B. Then

exist matrices HA ∈ GE and HB ∈ G∆ such that FA = HAPA, FB = HBPB. Consider the

following product of the matrices:

FBF−1
A = HBPB(HAPA)

−1 = HBPBP−1
A H−1

A = HBSH−1
A ,

where S = PBP−1
A . Let’s denote HBS =

∥

∥kij

∥

∥

n

1
. In view of Corollary 6 [8] HB is of the form

HB =

∥

∥

∥

∥

∥

∥

∥

∥

∥

h11 . . . h1.n−1 h1n

. . . . . . . . . . . .

hn−1.1 . . . hn−1.n−1 hn−1.n

δhn1 . . . δhn.n−1 hnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

Hence,

kn1 =
∥

∥ δhn1 . . . δhn.n−1 hnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

s11
...

sn−1.1

sn1

∥

∥

∥

∥

∥

∥

∥

∥

∥

= δ(hn1s11 + · · ·+ hn.n−1sn−1.1) + hnnsn1 = δl + hnnsn1.
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Consider the following greatest common divisor:

((ε, δ), kn1) = ((ε, δ), δl + hnnsn1) = ((ε, δ), hnnsn1).

The invertibility of HB implies that (δ, hnn) = 1 . Therefore, ((ε, δ), hnn) = 1 and

((ε, δ), kn1) = ((ε, δ), sn1).

Let’s denote SH−1
A =

∥

∥tij

∥

∥

n

1
. Since H−1

A ∈ GE then according to Corollary 6 of [8] the matrix

H−1
A has the form

H−1
A =

∥

∥

∥

∥

∥

∥

∥

∥

∥

v11 v12 . . . v1n

εv21 v22 . . . v2n

. . . . . . . . . . . .

εvn1 vn2 . . . vnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

Hence,

tn1 =
∥

∥ sn1 sn2 . . . snn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

v11

εv21
...

εvn1

∥

∥

∥

∥

∥

∥

∥

∥

∥

= sn1v11 + ε(sn2v21 + . . . + snnvn1).

Consider

((ε, δ), tn1) = ((ε, δ), sn1v11 + ε(sn2v21 + . . . + snnvn1)) = ((ε, δ), sn1v11).

Since (ε, v11) = 1, then ((ε, δ), sn1v11) = ((ε, δ), sn1). Hence

((ε, δ), tn1) = ((ε, δ), sn1).

Applying the associativity of Mn(R) completes the proof.

Lemma 2. Let S = ‖sij‖
n
1 ∈ GLn(R), Ω = diag(ω1 , ω2, . . . , ωn), where ωi | ωi+1,

i = 1, 2, . . . , n − 1, and E | Ω, ∆ | Ω. In order to SLA = LB, where LA ∈ L(Ω, E), LB ∈ L(Ω, ∆)

it is necessary and sufficient that (a, b) | sn1, where a = ε
(ε,ω1)

, b = δ
(δ,ω1)

.

Proof. Necessity. Since E | Ω then according to Corollary 5 of [8] matrices LA and LB are of

forms:

LA =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

p11 p12 . . . p1n
ε

(ε,ω1)
p21 p22 . . . p2n

...
... . . .

...
ε

(ε,ω1)
pn1 pn2 . . . pnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, LB =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

q11 . . . q1.n−1 q1n

q21 . . . q2.n−1 q2n
...

... . . .
...

δ
(δ,ω1)

qn1 . . . δ
(δ,ωn−1)

qn−1.n−1 qnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

,

respectively. Using the Property 4.8 [9], in this case, the set L(Ω, E) is a group. Then S =

LBL−1
A , where L−1

A ∈ L(Ω, E). It follows that

(
ε

(ε, ω1)
,

δ

(δ, ω1)
) | sn1.

If we denote a = ε
(ε,ω1)

, b = δ
(δ,ω1)

then we will get that (a, b) | sn1.
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Sufficiency. Let sn1 = (a, b)t. By Theorem 2.13 [9] there exist some matrices H1 ∈ G∆ and

U ∈ GE such that

H1SU =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 . . . 0 0

k21 1 . . . 0 0
... . . .

. . .
...

...

kn−1.1 kn−1.2 . . . 1 0

(a, b)kn1 kn2 . . . kn.n−1 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

K11 0

K21 1

∥

∥

∥

∥

.

Obviously, K11 is invertible. Hence there exists some matrix H2 =

∥

∥

∥

∥

K−1
11 0

0 1

∥

∥

∥

∥

∈ G∆ such that

H2H1SU =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 . . . 0 0

0 1 . . . 0 0
... . . .

. . .
...

...

0 0 . . . 1 0

(a, b)kn1 kn2 . . . kn.n−1 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

= K.

Since H1, H2 ∈ G∆ then H3 = H2H1 ∈ G∆. Therefore K = H3SU. Moreover, one can find

v1, v2 ∈ R such that

(a, b)kn1 = (av1 + bv2)kn1 = av1kn1 + bv2kn1.

If we consider the matrices

H4 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 . . . 0 0

0 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0

bv2kn1 0 . . . 0 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∈ L(Ω, ∆)

and

V =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1 0 . . . 0 0

0 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0

−av1kn1 −kn2 . . . −kn.n−1 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∈ L(Ω, E).

we obtain that H3SUV = H4. Then SUV = H−1
3 H4. Using Properties 2 and 3 [8] we will have

H−1
3 H4 = LB ∈ L(Ω, ∆), UV = LA ∈ L(Ω, E), and so SLA = LB which had to be proved.

Theorem 1. Let R be a commutative principal ideal domain and let

A ∼ diag(1, ε, . . . , ε), B ∼ diag(1, . . . , 1, δ),

PBP−1
A = ‖sij‖

n
1 , PB ∈ PB, PA ∈ PA. Then

[A, B]r = (LAPA)
−1

Ω = (LBPB)
−1

Ω,

where

Ω = diag(
(ε, δ)

((ε, δ), sn1)
, ε, . . . , ε, [ε, δ]),

LA , LB belong to sets L(Ω, E), L(Ω, ∆) respectively and satisfy the equality:

(PBP−1
A )LA = LB.
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Proof. Remark that according to Lemma (1), the element ((ε, δ), sn1), and hence the matrix Ω,

does not depend on the choice of transforming matrices PA and PB.

By Theorem 2 [6] the Smith normal form of the greatest common left divisor of the matrices

A and B is of the form

(A, B)l ∼ diag(1, . . . , 1, (ε, δ, sn1)).

According to Corollary 1.5 [9] we obtain

±detAdetB = det(A, B)ldet[A, B]r ,

i.e.

det[A, B]r = ±
detAdetB

det(A, B)l
= ±

εn−1δ

(ε, δ, sn1)
= ω1ω2 . . . ωn−1ωn.

It follows from [10] that ωn = [ε, δ] and ωi | ε, i = 2, . . . , n − 1. Since E | Ω then ε | ωi, for

i = 2, . . . , n − 1, that is ωi = ε, i = 2, . . . , n − 1. Hence,

ω1 = ±
εn−1δ(ε, δ)

εn−2εδ(ε, δ, sn1)
= ±

(ε, δ)

(ε, δ, sn1)
.

Taking into account that the invariant factors of matrix are chosen precisely to the divisors of

unit, we obtain that the Smith normal form of the least common right multiple of matrices A

and B has the form:

Ω = diag(
(ε, δ)

((ε, δ), sn1)
, ε, . . . , ε, [ε, δ]).

By Lemma 1 [7] we will have

(
ε

(ε, ω1)
,

δ

(δ, ω1)
) = (

(ε, δ)

((ε, δ), ω1)
) = µ.

Since ω1 = (ε,δ)
(ε,δ,sn1)

, then

µ =
(ε, δ)

((ε, δ), (ε,δ)
((ε,δ),sn1)

)
=

(ε, δ)((ε, δ), sn1)

((ε, δ)((ε, δ), sn1), (ε, δ))
= ((ε, δ), sn1).

This means that µ | sn1. According to Lemma (2) there exist matrices LA ∈ L(Ω, E), LB ∈

L(Ω, ∆) such that PBP−1
A LA = LB, so

P−1
A LAΩ = P−1

B LBΩ = M.

Since E | Ω and ∆ | Ω, then using Theorem 1 [8] the matrix M is the common right multiple of

A and B.

Let N be least common right multiple of matrices A and B. From the above, it follows

that N ∼ Ω. Hence N = P−1
N ΩQ−1

N . Then M = P−1
A LAΩ = P−1

M Ω is a right multiple of N :

M = NN1. According to Theorem 1 [8] this is equivalent to the fact that PN = LPM, where

L ∈ L(Ω, Ω). Using Property 4.6 [9] we get the equality L(Ω, Ω) = GΩ. Then by Corollary

2 [8] the matrices M and N are right associated. Thus, M is the least common right multiples

of matrices A and B. The theorem is proved.
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Романiв А.M. Структура найменшого спiльного кратного матриць певного класу // Карпатськi

матем. публ. — 2018. — Т.10, №1. — C. 179–184.

Для неособливих матриць, при певних обмеженнях, встановлено взаємозв’язки мiж фор-

мами Смiта та перетворювальними матрицями (оборотними матрицями, що зводять матрицю

до її форми Смiта) двох матриць з вiдповiдними матрицями їх найменшого спiльного правого

кратного над комутативними областями головних iдеалiв. Тим самим, для такого класу ма-

триць, дано вiдповiдь на вiдому задачу М. Ньюмена. Бiльше того, для таких матриць, вказано

новий метод знаходження їх найменшого спiльного правого кратного, яких ґрунтується на

пошуку його форми Смiта та перетворювальних матриць.

Ключовi слова i фрази: форма Смiта, перетворювальнi матрицi, найменше спiльне кратне

матриць, комутативна область головних iдеалiв.


