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ADVANCEMENT ON THE STUDY OF GROWTH ANALYSIS OF DIFFERENTIAL

POLYNOMIAL AND DIFFERENTIAL MONOMIAL IN THE LIGHT OF SLOWLY

INCREASING FUNCTIONS

Study of the growth analysis of entire or meromorphic functions has generally been done thro-

ugh their Nevanlinna’s characteristic function in comparison with those exponential functions. But

if one is interested to compare the growth rates of any entire or meromorphic function with respect

to another, the concepts of relative growth indicators will come. The field of study in this area may

be more significant through the intensive applications of the theories of slowly increasing functions

which actually means that L(ar) ∼ L(r) as r → ∞ for every positive constant a, i.e. lim
r→∞

L(ar)
L(r)

= 1,

where L ≡ L (r) is a positive continuous function increasing slowly. Actually in the present paper,

we establish some results depending on the comparative growth properties of composite entire and

meromorphic functions using the idea of relative pL∗-order, relative pL∗- type, relative pL∗-weak

type and differential monomials, differential polynomials generated by one of the factors which

extend some earlier results, where pL∗ is nothing but a weaker assumption of L.

Key words and phrases: entire function, meromorphic function, relative pL∗-order, relative pL∗-
type, relative pL∗-weak type, growth, differential monomial, differential polynomial, slowly increas-
ing function.
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INTRODUCTION, DEFINITIONS AND NOTATIONS

Let us consider that the reader is familiar with the fundamental results and the standard

notations of the Nevanlinna theory of meromorphic functions which are available in [13, 16,

22, 23]. We also use the standard notations and definitions of the theory of entire functions

which are available in [24] and therefore we do not explain those in details.

For x ∈ [0, ∞) and k ∈ N, we define the following functions exp[k] x = exp
(

exp[k−1] x
)

and log[k] x = log
(

log[k−1] x
)

, where N be the set of all positive integers.

Let f be an entire function defined in the open complex plane C. The maximum modulus

function M f (r) corresponding to f is defined on |z| = r as M f (r) = max|z| = r | f (z)|. In this

connection the following definition is relevant.

Definition 1 ([4]). A non-constant entire function f is said have the Property (A) if for any

σ > 1 and for all sufficiently large r,
[

M f (r)
]2

≤ M f (r
σ) holds.
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For examples of functions with or without the Property (A) we refer the reader to [4].

When f is meromorphic, one may introduce another function Tf (r) known as Nevanlinna’s

characteristic function of f , playing the same role as M f (r) .

Now we just recall the following properties of meromorphic functions which will be need-

ed in the sequel.

Let n0j, n1j, . . . , nkj (k ≥ 1) be non-negative integers such that for each j the following in-

equality holds
k

∑
i=0

nij ≥ 1. For a non-constant meromorphic function f , we call Mj [ f ] =

Aj ( f )n0j

(

f (1)
)n1j

· · ·
(

f (k)
)nkj

, where T
(

r, Aj

)

= S (r, f ) to be a differential monomial gen-

erated by f . The numbers γMj =
k

∑
i=0

nijandΓMj =
k

∑
i=0

(i + 1)nij are called the degree and weight

of Mj [ f ] respectively [6, 19]. The expression P [ f ] =
s

∑
j=1

Mj [ f ] is called a differential polyno-

mial generated by f . The numbers γP = max
1≤ j≤ s

γMj and ΓP = max
1≤ j≤ s

ΓMj are called the degree

and weight of P [ f ] respectively [6, 19]. Also we call the numbers γP
−

= min
1≤ j≤ s

γMj and k (the

order of the highest derivative of f ) the lower degree and the order of P [ f ] respectively. If

γp
−

= γP, P [ f ] is called a homogeneous differential polynomial. Throughout the paper, we

consider only the non-constant differential polynomials and we denote by P0 [ f ] a differential

polynomial not containing f , i.e. for which n0j = 0 for j = 1, 2, . . . , s. We consider only those

P [ f ] , P0 [ f ] singularities of whose individual terms do not cancel each other. We also denote

by M [ f ] a differential monomial generated by a transcendental meromorphic function f .

However, the Nevanlinna’s Characteristic function of a meromorphic function f is defined

as

Tf (r) = N f (r) + m f (r) ,

wherever the function N f (r, a)
( −

N f (r, a)
)

known as counting function of a-points (distinct

a-points) of meromorphic f is defined as follows:

N f (r, a) =

r
∫

0

n f (t, a)− n f (0, a)

t
dt + n f (0, a) log r





−
N f (r, a) =

r
∫

0

−
n f (t, a)−

−
n f (0, a)

t
dt +

−
n f (0, a) log r



 ,

in addition we represent by n f (r, a)
(

−
n f (r, a)

)

the number of a-points (distinct a-points) of

f in |z| ≤ r and an ∞-point is a pole of f . In many occasions N f (r, ∞) and
−

N f (r, ∞) are

symbolized by N f (r) and
−

N f (r) respectively.

On the other hand, the function m f (r, ∞) alternatively indicated by m f (r) known as the

proximity function of f is defined as follows

m f (r) =
1

2π

2π
∫

0

log+
∣

∣

∣ f
(

reiθ
)∣

∣

∣ dθ, where log+ x = max (log x, 0) for all x > 0.
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Also we may employ m
(

r, 1
f−a

)

by m f (r, a).

If f is entire, then the Nevanlinna’s Characteristic function Tf (r) of f is defined as

Tf (r) = m f (r) .

Moreover for any non-constant entire function f , Tf (r) is strictly increasing and continuous

functions of r. Also its inverse T−1
f :

(∣

∣Tf (0)
∣

∣ , ∞
)

→ (0, ∞) exists, where lim
s→∞

T−1
f (s) = ∞.

In this connection we immediately remind the following definition which is relevant.

Definition 2. Let a be a complex number, finite or infinite. The Nevanlinna’s deficiency and

the Valiron deficiency of a with respect to a meromorphic function f are defined as

δ(a; f ) = 1 − lim
r→∞

N f (r, a)

Tf (r)
= lim

r→∞

m f (r, a)

Tf (r)

and

∆(a; f ) = 1 − lim
r→∞

N f (r, a)

Tf (r)
= lim

r→∞

m f (r, a)

Tf (r)
.

Definition 3. The quantity Θ(a; f ) of a meromorphic function f is defined as follows

Θ(a; f ) = 1 − lim
r→∞

−
N f (r, a)

Tf (r)
.

Definition 4 ([21]). For a ∈ C ∪ {∞}, we denote by n f |=1(r, a), the number of simple zeros of

f − a in |z| ≤ r. N f |=1(r, a) is defined in terms of n f |=1(r, a) in the usual way. We put

δ1(a; f ) = 1 − lim
r→∞

N f |=1(r, a)

Tf (r)
,

the deficiency of a corresponding to the simple a-points of f , i.e. simple zeros of f − a.

Yang [20] proved that there exists at most a denumerable number of complex numbers

a ∈ C ∪ {∞} for which δ1(a; f ) > 0 and ∑
a∈C∪{∞}

δ1(a; f ) ≤ 4.

Definition 5 ([14]). For a ε C ∪ {∞} , let np(r, a; f ) denotes the number of zeros of f − a in

|z| ≤ r, where a zero of multiplicity < p is counted according to its multiplicity and a zero of

multiplicity ≥ p is counted exactly p times and Np(r, a; f ) is defined in terms of np(r, a; f ) in

the usual way. We define

δp(a; f ) = 1 − lim
r→∞

Np(r, a; f )

Tf (r)
.

Definition 6 ([1]). P[ f ] is said to be admissible if

(i) P[ f ] is homogeneous, or

(ii) P[ f ] is non homogeneous and m f (r) = S f (r).

However in case of any two meromorphic functions f and g, the ratio
Tf (r)

Tg(r)
as r → ∞

is called as the growth of f with respect to g in terms of their Nevanlinna’s Characteristic

functions. Further the concept of the growth measuring tools such as order and lower order

which are conventional in complex analysis and the growth of entire or meromorphic functions

can be studied in terms of their orders and lower orders are normally defined in terms of their

growth with respect to the exp function which are shown in the following definition.



34 BISWAS T.

Definition 7. The order ρ f (the lower order λ f ) of a meromorphic function f is defined as

ρ f = lim
r→∞

log Tf (r)

log Texp z (r)
= lim

r→∞

log Tf (r)

log
(

r
π

) = lim
r→∞

log Tf (r)

log (r) + O(1)

(

λ f = lim
r→∞

log Tf (r)

log Texp z (r)
= lim

r→∞

log Tf (r)

log
(

r
π

) = lim
r→∞

log Tf (r)

log (r) + O(1)

)

.

If f is entire, then

ρ f = lim
r→∞

log log M f (r)

log log Mexp z (r)
= lim

r→∞

log[2] M f (r)

log r

(

λ f = lim
r→∞

log log M f (r)

log log Mexp z (r)
= lim

r→∞

log[2] M f (r)

log r

)

.

Somasundaram and Thamizharasi [18] introduced the notions of L-order and L-type for

entire functions, where L ≡ L (r) is a positive continuous function increasing slowly, i.e.

L (ar) ∼ L (r) as r → ∞ for every positive constant a. The more generalized concept of

L-order and L-type of meromorphic functions are L∗-order and L∗-type (resp. L∗- lower type)

respectively which are as follows.

Definition 8 ([18]). The L∗-order ρL∗

f and the L∗-lower order λL∗

f of a meromorphic function f

are defined by

ρL∗

f = lim
r→∞

log Tf (r)

log
[

reL(r)
] and λL∗

f = lim
r→∞

log Tf (r)

log
[

reL(r)
] ,

where L ≡ L (r) is a positive continuous function increasing slowly.

If f is entire, then

ρL∗

f = lim
r→∞

log[2] M f (r)

log
[

reL(r)
] and λL∗

f = lim
r→∞

log[2] M f (r)

log
[

reL(r)
] .

Definition 9 ([18]). The L∗-type σL∗

f and L∗-lower type σL∗

f of a meromorphic function f such

that 0 < ρL∗

f < ∞ are defined as

σL∗

f = lim
r→∞

Tf (r)
[

reL(r)
]ρL∗

f

and σL∗

f = lim
r→∞

Tf (r)
[

reL(r)
]ρL∗

f

,

where L ≡ L (r) is a positive continuous function increasing slowly.

If f is entire, then

σL∗

f = lim
r→∞

log M f (r)
[

reL(r)
]ρL∗

f

and σL∗

f = lim
r→∞

log M f (r)
[

reL(r)
]ρL∗

f

.

Analogously in order to determine the relative growth of two meromorphic functions hav-

ing same non zero finite L∗-lower order one may introduce the definition of L∗-weak type of

meromorphic functions having finite positive L∗-lower order in the following way.
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Definition 10. The L∗-weak type denoted by τL∗

f of a meromorphic function f having

0 < λL∗

f < ∞ is defined as follows

τL∗

f = lim
r→∞

Tf (r)
[

reL(r)
]λL∗

f

,

where L ≡ L (r) is a positive continuous function increasing slowly.

Similarly the growth indicator τL∗

f is defined as

τL∗

f = lim
r→∞

Tf (r)
[

reL(r)
]λL∗

f

, where 0 < λL∗

f < ∞ .

If f is entire, then

τL∗

f = lim
r→∞

log M f (r)
[

reL(r)
]λL∗

f

and τL∗

f = lim
r→∞

log M f (r)
[

reL(r)
]λL∗

f

, where 0 < λL∗

f < ∞ .

Extending the notion of Somasundaram and Thamizharasi [18], one may introduce concept

of pL∗-order, pL∗-type and pL∗-weak type of a meromorphic function f as follows.

Definition 11. For any positive integer p, the pL∗-order ρL∗

p ( f ) and the pL∗-lower order λL∗

p ( f )

of a meromorphic function f are defined by

ρL∗

p ( f ) = lim
r→∞

log Tf (r)

log
[

r exp[p] L (r)
] and λL∗

p ( f ) = lim
r→∞

log Tf (r)

log
[

r exp[p] L (r)
] ,

where L ≡ L (r) is a positive continuous function increasing slowly.

If f is entire, then

ρL∗

p ( f ) = lim
r→∞

log[2] M f (r)

log
[

r exp[p] L (r)
] and λL∗

p ( f ) = lim
r→∞

log[2] M f (r)

log
[

r exp[p] L (r)
] .

Definition 12. For any positive integer p, the pL∗-type σL∗

p ( f ) and pL∗-lower type σL∗

p ( f ) of a

meromorphic function f such that 0 < ρL∗

p ( f ) < ∞ are defined by

σL∗

p ( f ) = lim
r→∞

Tf (r)
[

r exp[p] L (r)
]ρL∗

p ( f )
and σL∗

p ( f ) = lim
r→∞

Tf (r)
[

r exp[p] L (r)
]ρL∗

p ( f )
,

where L ≡ L (r) is a positive continuous function increasing slowly.

If f is entire, then

σL∗

p ( f ) = lim
r→∞

log M f (r)
[

r exp[p] L (r)
]ρL∗

p ( f )
and σL∗

p ( f ) = lim
r→∞

log M f (r)
[

r exp[p] L (r)
]ρL∗

p ( f )
.

Definition 13. For any positive integer p, the pL∗-weak type denoted by τL∗

p ( f ) of a meromor-

phic function f having 0 < λL∗

p ( f ) < ∞ is defined by

τL∗

p ( f ) = lim
r→∞

Tf (r)
[

r exp[p] L (r)
]λL∗

p ( f )
,
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where L ≡ L (r) is a positive continuous function increasing slowly.

Similarly the growth indicator τL∗

p ( f ) is defined by

τL∗

p ( f ) = lim
r→∞

Tf (r)
[

r exp[p] L (r)
]λL∗

p ( f )
, where 0 < λL∗

p ( f ) < ∞ .

If f is entire, then for 0 < λL∗

p ( f ) < ∞,

τL∗

p ( f ) = lim
r→∞

log M f (r)
[

r exp[p] L (r)
]λL∗

p ( f )
and τL∗

p ( f ) = lim
r→∞

log M f (r)
[

r exp[p] L (r)
]λL∗

p ( f )
.

Lahiri and Banerjee [17] introduced the following definition of relative order of a meromor-

phic function with respect to an entire function.

Definition 14 ([17]). Let f be meromorphic and g be entire functions. The relative order of f

with respect to g denoted by ρg ( f ) is defined as

ρ ( f , g) = inf
{

µ > 0 : Tf (r) < Tg (r
µ) for all sufficiently large r

}

= lim
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one [17] if g (z) = exp z.

Similarly one can define the relative lower order of a meromorphic function f with respect

to an entire g denoted by λg ( f ) in the following manner

λ ( f , g) = lim
r→∞

log T−1
g Tf (r)

log r
.

In order to make some progress in the study of relative order, now we introduce relative

pL∗-order and relative pL∗- lower order of a meromorphic function f with respect to an entire

function g.

Definition 15. The relative pL∗-order denoted as ρL∗

p ( f , g) and relative pL∗- lower order de-

noted as λL∗

p ( f , g) of a meromorphic function f with respect to an entire g are defined as

ρL∗

p ( f , g) = lim
r→∞

log T−1
g Tf (r)

log
[

r exp[p] L (r)
] and λL∗

p ( f , g) = lim
r→∞

log T−1
g Tf (r)

log
[

r exp[p] L (r)
] ,

where p is any positive integers and L ≡ L (r) is a positive continuous function increasing

slowly.

Further to compare the relative growth of two meromorphic functions having same non

zero finite relative pL∗-order with respect to another entire function, one may introduce the

definitions of relative pL∗-type and relative pL∗-lower type in the following manner.

Definition 16. The relative pL∗-type and relative pL∗-lower type denoted respectively by

σL∗

p ( f , g) and σL∗

p ( f , g) of a meromorphic function f with respect to an entire function g such

that 0 < ρL∗

p ( f , g) < ∞ are respectively defined by

σL∗

p ( f , g) = lim
r→∞

T−1
g Tf (r)

[

r exp[p] L (r)
]ρL∗

p ( f ,g)
and σL∗

p ( f , g) = lim
r→∞

T−1
g Tf (r)

[

r exp[p] L (r)
]ρL∗

p ( f ,g)
,

where L ≡ L (r) is a positive continuous function increasing slowly.
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Analogously to determine the relative growth of two meromorphic functions having same

non zero finite relative pL∗-lower order with respect to an entire function one may introduce

the definition of relative pL∗-weak type in the following way.

Definition 17. The relative pL∗-weak type denoted by τL∗

p ( f , g) of a meromorphic function f

with respect to an entire function g such that 0 < λL∗

p ( f , g) < ∞ is defined by

τL∗

p ( f , g) = lim
r→∞

T−1
g Tf (r)

[

r exp[p] L (r)
]λL∗

p ( f ,g)
,

where L ≡ L (r) is a positive continuous function increasing slowly.

Similarly one may define the growth indicator τL∗

p ( f , g) of a meromorphic function f with

respect to an entire function g as follows

τL∗

p ( f , g) = lim
r→∞

T−1
g Tf (r)

[

r exp[p] L (r)
]λL∗

p ( f ,g)
, 0 < λL∗

p ( f , g) < ∞.

In the paper we establish some new results depending on the comparative growth proper-

ties of composite entire or meromorphic functions using relative pL∗-order, relative pL∗- type,

relative pL∗-weak type and differential monomials, differential polynomials generated by one

of the factors which in fact extend and improve some results of [9] and [10].

1 LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([7]). Let f be a meromorphic function either of finite order or of non-zero lower

order such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire

function with regular growth and non zero finite type. Also let Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or

δ (∞; h) = ∑
a 6=∞

δ (a; h) = 1. Then for homogeneous P0 [ f ] and P0 [g],

lim
r→∞

T−1
P0[h]

TP0[ f ] (r)

T−1
h Tf (r)

=

(

γP0[ f ]

γP0[h]

) 1
ρh

.

Lemma 2 ([8]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function with regular

growth and non zero finite type. Also let ∑
a∈C∪{∞}

δ1(a; h) = 4. Then

lim
r→∞

T−1
P[h]

TP[ f ] (r)

T−1
h Tf (r)

=

(

ΓM[ f ] − (ΓM[ f ] − γM[ f ])Θ(∞; f )

ΓM[h] − (ΓM[h] − γM[h])Θ(∞; h)

) 1
ρh

,

where

Θ(∞; f ) = 1 − lim
r→∞

N f (r)

Tf (r)
and Θ(∞; h) = 1 − lim

r→∞

Nh(r)

Th(r)
.
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Lemma 3 ([5]). Let f be a meromorphic function either of finite order or of non-zero lower

order such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire

function with regular growth having non zero finite order and Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or

δ (∞; h) = ∑
a 6=∞

δ (a; h) = 1. Then for any positive integer p, the relative pL∗-order and relative

pL∗-lower order of P0 [ f ] with respect to P0 [h] are same as those of f with respect to h for

homogeneous P0 [ f ] and P0 [h].

Lemma 4 ([5]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function with regular

growth and non zero finite order. Also let ∑
a∈C∪{∞}

δ1(a; h) = 4. Then for any positive integer

p, the relative pL∗-order and relative pL∗-lower order of M[ f ] with respect to M[h] are same as

those of f with respect to h., i.e.

ρL∗

p (M [ f ] , M [h]) = ρL∗

p ( f , h) and λL∗

p (M [ f ] , M [h]) = λL∗

p ( f , h) .

Lemma 5. Let f be a meromorphic function either of finite order or of non-zero lower order

such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire function

of regular growth having non zero finite type and Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) =

∑
a 6=∞

δ (a; h) = 1. Then for any positive integer p, the relative pL∗-type and relative pL∗-lower

type of P0 [ f ] with respect to P0 [h] are
(

γP0[ f ]

γP0[h]

)
1

ρh times that of f with respect to h if ρL∗

p ( f , h) is

positive finite, where P0 [ f ] and P0 [h] are homogeneous.

Proof. By Lemma 3 and Lemma 1 and above we get that

σL∗

p (P0 [ f ] , P0 [h]) = lim
r→∞

T−1
P0[h]

TP0[ f ] (r)

[

r exp[p] L (r)
]ρL∗

p (P0[ f ],P0[h])

= lim
r→∞

T−1
P0[h]

TP0[ f ] (r)

T−1
h Tf (r)

· lim
r→∞

T−1
h Tf (r)

[

r exp[p] L (r)
]ρL∗

p ( f ,h)
=

(

γP0[ f ]

γP0[h]

) 1
ρg

· σL∗

p ( f , h) .

Similarly σL∗

p (P0 [ f ] , P0 [h]) =
(

γP0 [ f ]

γP0 [h]

) 1
ρh · σL∗

p ( f , h) .

In the line of Lemma 5 we may state the following lemma without its proof.

Lemma 6. Let f be a meromorphic function either of finite order or of non-zero lower order

such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire function

of regular growth having non zero finite type and Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) =

∑
a 6=∞

δ (a; h) = 1. Then τL∗

p (P0 [ f ] , P0 [h]) and τL∗

p (P0 [ f ] , P0 [h]) are
(

γP0[ f ]

γP0[h]

) 1
ρh times that of f

with respect to h, i.e.

τL∗

p (P0 [ f ] , P0 [h]) =

(

γP0[ f ]

γP0[h]

) 1
ρh

· τL∗

p ( f , h) and τL∗

p (P0 [ f ] , P0 [h]) =

(

γP0[ f ]

γP0[h]

) 1
ρh

· τL∗

p ( f , h) ,
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when λL∗

p ( f , h) is positive finite and P0 [ f ], P0 [h] are homogeneous.

In the line of Lemma 5 and with the help of Lemma 2 and Lemma 4, we may state the

following two lemmas without their proofs.

Lemma 7. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function of regular

growth having non zero finite type and ∑
a∈C∪{∞}

δ1(a; h) = 4. Then for any positive inte-

ger p, the relative pL∗-type and relative pL∗-lower type of M[ f ] with respect to M[h] are
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

) 1
ρh

times that of f with respect to h if ρL∗

p ( f , h) is positive finite,

where

Θ(∞; f ) = 1 − lim
r→∞

N f (r)

Tf (r)
and Θ(∞; h) = 1 − lim

r→∞

Nh(r)

Th(r)
.

Lemma 8. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function of regular

growth having non zero finite type and ∑
a∈C∪{∞}

δ1(a; h) = 4. Then τL∗

p (M [ f ] , M [h]) and

τL∗

p (M [ f ] , M [h]) are

(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

) 1
ρh

times that of f with respect to h, i.e.

τL∗

p (M [ f ] , M [h]) =

(

ΓM[ f ] − (ΓM[ f ] − γM[ f ])Θ(∞; f )

ΓM[h] − (ΓM[h] − γM[h])Θ(∞; h)

) 1
ρh

· τL∗

p ( f , h)

and τL∗

p (M [ f ] , M [h]) =

(

ΓM[ f ] − (ΓM[ f ] − γM[ f ])Θ(∞; f )

ΓM[h] − (ΓM[h] − γM[h])Θ(∞; h)

) 1
ρh

· τL∗

p ( f , h) ,

when λL∗

p ( f , h) is positive finite and

Θ(∞; f ) = 1 − lim
r→∞

N f (r)

Tf (r)
and Θ(∞; h) = 1 − lim

r→∞

Nh(r)

Th(r)
.

Lemma 9 ([2]). If f is a meromorphic function and g is an entire function then for all suffi-

ciently large values of r we have

Tf ◦g (r) ≤ {1 + o (1)}
Tg (r)

log Mg (r)
Tf

(

Mg (r)
)

.

Lemma 10 ([3]). Let f be meromorphic function and g be entire function and suppose that

0 < µ < ρg ≤ ∞. Then for a sequence of values of r tending to infinity

Tf ◦g (r) ≥ Tf (exp (rµ)) .

Lemma 11 ([15]). Let f be meromorphic function and g be entire function such that 0 < ρg < ∞

and 0 < λ f . Then for a sequence of values of r tending to infinity

Tf ◦g(r) > Tg (exp (rµ)) ,

where 0 < µ < ρg.
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Lemma 12 ([11]). Let f be a meromorphic function and g be an entire function such that λg <

µ < ∞ and 0 < λ f ≤ ρ f < ∞. Then for a sequence of values of r tending to infinity

Tf ◦g(r) < Tf (exp (rµ)) .

Lemma 13 ([11]). Let f be a meromorphic function of finite order and g be an entire function

such that 0 < λg < µ < ∞. Then for a sequence of values of r tending to infinity

Tf ◦g(r) < Tg (exp (rµ)) .

Lemma 14 ([12]). Let f be an entire function which satisfies the Property (A), β > 0, δ > 1 and

α > 2. Then

βTf (r) < Tf

(

αrδ
)

.

2 THEOREMS

In this section we present the main results of the paper. It is needless to mention that in the

paper, the admissibility and homogeneity of P0 [ f ] for meromorphic f will be needed as per

the requirements of the theorems.

Theorem 1. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let g be an entire function and 0 < λL∗

p ( f , h) < ∞, σL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < ρL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤ σL∗

p (g) .

Proof. Let us consider that α > 2 and δ → 1+ in Lemma 14. Since T−1
h (r) is an increasing

function of r, it follows from Lemma 9, Lemma 14 and the inequality Tg(r) ≤ log Mg(r) ([13])

for a sequence of values of r tending to infinity that

T−1
h Tf ◦g (r) 6 T−1

h

[

{1 + o(1)} Tf

(

Mg (r)
)]

,

i.e. T−1
h Tf ◦g (r) 6 α

[

T−1
h Tf

(

Mg (r)
)

]

,

i.e. log T−1
h Tf ◦g (r) 6 log T−1

h Tf

(

Mg (r)
)

+ O(1),

i.e. log T−1
h Tf ◦g (r) 6

(

λL∗

p ( f , h) + ε
) [

log Mg (r) + exp[p−1] L
(

Mg (r)
)

]

+ O(1),

i.e. log T−1
h Tf ◦g (r) 6

(

λL∗

p ( f , h) + ε
)

×

[

(

σL∗

p (g) + ε
) [

r exp[p] L (r)
]ρL∗

p (g)
+ exp[p−1] L

(

Mg (r)
)

]

+ O(1).

(1)

Further in view of Lemma 3, we obtain for all sufficiently large values of r that

log T−1
P0[h]

TP0 [ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

)

≥
(

λL∗

p (P0 [ f ] , P0 [h])− ε
) [

[r exp L (r)]ρ
L∗
p (g) + exp[p−1] L

(

exp [r exp L (r)]ρ
L∗
p (g)

)]

,
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i.e. log T−1
P0[h]

TP0[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

)

≥
(

λL∗

p ( f , h) − ε
)

· [r exp L (r)]ρ
L∗
p (g) .

Now from (1) and above it follows for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0 [ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

)

≤
O (1) +

(

λL∗

p ( f , h) + ε
)

·
[(

σL∗

p (g) + ε
)

[r exp L (r)]ρ
L∗
p (g) + exp[p−1] L

(

Mg (r)
)

]

(

λL∗
p ( f , h)− ε

)

· [r exp L (r)]ρ
L∗
p (g)

,

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0 [ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
O (1)

(

λL∗
p ( f , h)− ε

)

· [r exp L (r)]ρ
L∗
p (g)

+

(

λL∗

p ( f , h) + ε
)

·

[

(

σL∗

p (g) + ε
)

+
exp[p−1] L(Mg(r))

[r exp L(r)]
ρL∗

p (g)

]

(

λL∗
p ( f , h) − ε

) .

(2)

As β < ρL∗

p (g) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞, we obtain that

lim
r→∞

exp[p−1] L
(

Mg (r)
)

[r exp L (r)]ρ
L∗
p (g)

= 0. (3)

Since ε (> 0) is arbitrary, it follows from (2) and (3) that

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤ σL∗

p (g) .

Thus the theorem is established.

Remark 1. In Theorem 1 the condition 0 < λL∗

p ( f , h) < ∞ can be replaced by the condition

0 < ρL∗

p ( f , h) < ∞. If we will replace this condition by 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗

p ( f , h)
,

and if in addition we will replace the condition σL∗

p (g) < ∞ by σL∗

p (g) < ∞ then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗
p ( f , h)

.

In the line of Theorem 1 and with the help of Lemma 4, one can easily prove the following

theorem and therefore its proof is omitted.

Theorem 2. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let g be an entire function and 0 < λL∗

p ( f , h) < ∞, σL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < ρL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤ σL∗

p (g) .
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Remark 2. In Theorem 2 the condition 0 < λL∗

p ( f , h) < ∞ can be replaced by the condition

0 < ρL∗

p ( f , h) < ∞. If we will replace this condition by 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗
p ( f , h)

,

and if in addition we will replace the condition σL∗

p (g) < ∞ by σL∗

p (g) < ∞ then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗

p ( f , h)
.

Now we state the following theorem without proof as it can be carried out in the line of

Theorem 1.

Theorem 3. Let g be an entire function either of finite order or of non-zero lower order such

that Θ (∞; g) = ∑
a 6=∞

δp (a; g) = 1 or δ (∞; g) = ∑
a 6=∞

δ (a; g) = 1 and k be an entire function

with regular growth having non zero finite order and Θ (∞; k) = ∑
a 6=∞

δp (a; k) = 1 or δ (∞; k) =

∑
a 6=∞

δ (a; k) = 1. Also let f be a meromorphic function and h be an entire function such that

λL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0 and σL∗

p (g) < ∞, where p is any positive integer. If h satisfy the

Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β <

ρL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[k]

TP0 [g]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
λL∗

p ( f , h) · σL∗

p (g)

λL∗
p (g, k)

. (4)

Remark 3. In Theorem 3, if we will replace the conditions λL∗

p ( f , h) < ∞ and λL∗

p (g, k) > 0

by ρL∗

p ( f , h) < ∞ and ρL∗

p (g, k) > 0 respectively, then is need to go the same replacement in

right part of (4). Also if we will replace only the condition λL∗

p ( f , h) < ∞ by ρL∗

p ( f , h) < ∞ in

Theorem 3, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[k]

TP0 [g]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗
p (g, k)

.

Remark 4. In Theorem 3, if we will replace the conditions λL∗

p ( f , h) < ∞ and σL∗

p (g) < ∞ by

ρL∗

p ( f , h) < ∞ and σL∗

p (g) < ∞ respectively, then is need to go the same replacement in right

part of (4).

In the line of Theorem 3 and with the help of Lemma 4, one can easily prove the following

theorem and therefore its proof is omitted.

Theorem 4. Let g be a transcendental entire function of finite order or of non-zero lower order

such that ∑
a∈C∪{∞}

δ1(a; g) = 4 and k be a transcendental entire function with regular growth
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and non zero finite order and ∑
a∈C∪{∞}

δ1(a; k) = 4. Also let f be a meromorphic function and

h be an entire function such that λL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0 and σL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < ρL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[k]

TM[g]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
λL∗

p ( f , h) · σL∗

p (g)

λL∗
p (g, k)

. (5)

Remark 5. In Theorem 4, if we will replace the conditions λL∗

p ( f , h) < ∞ and λL∗

p (g, k) > 0

by ρL∗

p ( f , h) < ∞ and ρL∗

p (g, k) > 0 respectively, then is need to go the same replacement in

right part of (5). Also if we will replace only the condition λL∗

p ( f , h) < ∞ by ρL∗

p ( f , h) < ∞ in

Theorem 4, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[k]

TM[g]

(

exp [r exp L (r)]ρ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · σL∗

p (g)

λL∗
p (g, k)

.

Remark 6. In Theorem 4, if we will replace the conditions λL∗

p ( f , h) < ∞ and σL∗

p (g) < ∞ by

ρL∗

p ( f , h) < ∞ and σL∗

p (g) < ∞ respectively, then is need to go the same replacement in right

part of (5).

Further we state the following two theorems which are based on PL∗-weak type.

Theorem 5. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Let g be an entire function and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, τL∗

p (g) < ∞, where p

is any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗
p ( f , h)

.

Theorem 6. Let g be an entire function either of finite order or of non-zero lower order such

that Θ (∞; g) = ∑
a 6=∞

δp (a; g) = 1 or δ (∞; g) = ∑
a 6=∞

δ (a; g) = 1 and k be an entire function

with regular growth having non zero finite order and Θ (∞; k) = ∑
a 6=∞

δp (a; k) = 1 or δ (∞; k) =

∑
a 6=∞

δ (a; k) = 1. Also let f be a meromorphic function and h be an entire function such that

ρL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0 and τL∗

p (g) < ∞, where p is any positive integer. If h satisfy the

Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β <

λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[k]

TP0 [g]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗
p (g, k)

.
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The proofs of the above two theorems can be carried out in the line of Theorem 1 and

Theorem 3 respectively and therefore their proofs are omitted.

In the line of Theorem 5 and Theorem 6 respectively and with the help of Lemma 4, one

can easily prove the following two theorems and therefore their proofs are omitted.

Theorem 7. Let meromorphic function f and entire function h satisfy the conditions of Lemma

4. Also let g be an entire function and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, τL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗

p ( f , h)
.

Theorem 8. Let g be a transcendental entire function of finite order or of non-zero lower order

such that ∑
a∈C∪{∞}

δ1(a; g) = 4 and k be a transcendental entire function with regular growth

and non zero finite order and ∑
a∈C∪{∞}

δ1(a; k) = 4. Also let f be a meromorphic function and

h be an entire function such that ρL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0 and τL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[k]

TM[g]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗

p (g, k)
.

Using the concept of the growth indicator τL∗

p (g) of an entire function g, we may state the

subsequent two theorems without their proofs since those can be carried out in the line of

Theorem 1 and Theorem 3 respectively.

Theorem 9. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let g be an entire function and 0 < λL∗

p ( f , h) < ∞, τL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤ τL∗

p (g) .

Remark 7. In Theorem 9 the condition 0 < λL∗

p ( f , h) < ∞ can be replaced by the condition

0 < ρL∗

p ( f , h) < ∞. If we will replace this condition by 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗

p ( f , h)
.

Theorem 10. Let entire functions g and k satisfy the conditions of Theorem 3. Let f be a

meromorphic function and h be an entire function such that λL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0
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and τL∗

p (g) < ∞, where p is any positive integer. If h satisfy the Property (A) and

exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[k]

TP0[g]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
λL∗

p ( f , h) · τL∗

p (g)

λL∗
p (g, k)

. (6)

Remark 8. In Theorem 10, if we will replace the condition λL∗

p ( f , h) < ∞ by ρL∗

p ( f , h) < ∞,

then is need to go the same replacement in right part of (6).

Remark 9. In Theorem 10, if we will replace the conditions λL∗

p ( f , h) < ∞ and λL∗

p (g, k) > 0

by ρL∗

p ( f , h) < ∞ and ρL∗

p (g, k) > 0 respectively, then is need to go the same replacement in

right part of (6).

In the line of Theorem 9 and Theorem 10 respectively, one can easily prove the following

six theorems and therefore their proofs are omitted.

Theorem 11. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let g be an entire function and 0 < λL∗

p ( f , h) < ∞, τL∗

p (g) < ∞, where p is

any positive integer. If h satisfy the Property (A) and exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤ τL∗

p (g) .

Remark 10. In Theorem 11 the condition 0 < λL∗

p ( f , h) < ∞ can be replaced by the condition

0 < ρL∗

p ( f , h) < ∞. If we will replace this condition by 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
ρL∗

p ( f , h) · τL∗

p (g)

λL∗
p ( f , h)

.

Theorem 12. Let the entire functions g and k satisfy the conditions of Theorem 4. Let f be

a meromorphic function and h be an entire function such that λL∗

p ( f , h) < ∞, λL∗

p (g, k) > 0

and τL∗

p (g) < ∞, where p is any positive integer. If h satisfy the Property (A) and

exp[p−1] L
(

Mg (r)
)

= o
(

[r exp L (r)]β
)

as r → ∞ and for some positive β < λL∗

p (g), then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[k]

TM[g]

(

exp [r exp L (r)]λ
L∗
p (g)

) ≤
λL∗

p ( f , h) · τL∗

p (g)

λL∗
p (g, k)

. (7)

Remark 11. In Theorem 12, if we will replace the condition λL∗

p ( f , h) < ∞ by ρL∗

p ( f , h) < ∞,

then is need to go the same replacement in right part of (7).

Remark 12. In Theorem 12, if we will replace the conditions λL∗

p ( f , h) < ∞ and λL∗

p (g, k) > 0

by ρL∗

p ( f , h) < ∞ and ρL∗

p (g, k) > 0 respectively, then is need to go the same replacement in

right part of (7).
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Theorem 13. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 5. Also let g be an entire function and 0 < ρL∗

p ( f , h) < ρg, σL∗

p ( f , h) > 0, where p is any

positive integer. If exp[p−1] L

(

exp
(

reL(r)
)β
)

= o

(

[

r exp[p] L (r)
]β
)

(r → ∞) for any β > 0,

then

lim
r→∞

log T−1
h Tf ◦g

(

reL(r)
)

T−1
P0[h]

TP0 [ f ] (r)
≥

λL∗

p ( f , h)
(

γP0[ f ]

γP0[h]

) 1
ρh · σL∗

p ( f , h)

.

Proof. From the definition of relative pL∗- type of meromorphic function and in view of Lemma

5, we obtain for all sufficiently large values of r that

T−1
P0[h]

TP0[ f ] (r) ≤
(

σL∗

p (P0 [ f ] , P0 [h]) + ε
) [

r exp[p] L (r)
]ρL∗

p (P0[ f ],P0[h])
,

i.e. T−1
P0[h]

TP0[ f ] (r) ≤





(

γP0[ f ]

γP0 [h]

) 1
ρh

· σL∗

p ( f , h) + ε





[

r exp[p] L (r)
]ρL∗

p ( f ,h)
. (8)

As 0 < ρL∗

p ( f , h) < ρg, we obtain in view of Lemma 10 for a sequence of values of r tending to

infinity that

log T−1
h Tf ◦g

(

reL(r)
)

≥ log T−1
h Tf

(

exp
(

reL(r)
)ρL∗

p ( f ,h)
)

, i.e.

log T−1
h Tf ◦g

(

reL(r)
)

≥
(

λL∗

p ( f , h)− ε
)

[

[

reL(r)
]ρL∗

p ( f ,h)
+ exp[p−1] L

(

exp
(

reL(r)
)ρL∗

p ( f ,h)
)]

.

Therefore from (8) and above, it follows for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g

(

reL(r)
)

T−1
P0[h]

TP0 [ f ] (r)
≥

(

λL∗

p ( f , h) − ε
)

[

[

reL(r)
]ρL∗

p ( f ,h)
+ exp[p−1] L

(

exp
(

reL(r)
)ρL∗

p ( f ,h)
)]

(

(

γP0[ f ]

γP0[h]

)
1

ρh · σL∗
p ( f , h) + ε

)

[

r exp[p] L (r)
]ρL∗

p ( f ,h)
.

Since lim
r→∞

exp[p−1] L

(

exp(reL(r))
ρL∗

p ( f ,h)

)

[r exp[p] L(r)]
ρL∗

p ( f ,h)
= 0 as exp[p−1] L

(

exp
(

reL(r)
)β
)

= o

(

[

r exp[p] L (r)
]β
)

(r → ∞) for any α > 0, we obtain from above that

lim
r→∞

log T−1
h Tf ◦g

(

reL(r)
)

T−1
P0[h]

TP0 [ f ] (r)
≥

λL∗

p ( f , h)
(

γP0[ f ]

γP0[h]

) 1
ρh · σL∗

p ( f , h)

.

Thus the theorem follows.

Remark 13. If we take τL∗

p ( f , h) > 0 instead of σL∗

p ( f , h) > 0 and the other conditions remain

the same, then with the help of Lemma 6, one can easily verify that the conclusion of Theorem

13 remains valid with σL∗

p ( f , h) replaced by τL∗

p ( f , h).
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In the line of Theorem 13 and in view of Lemma 7, one can easily prove the following

theorem and therefore its proofs is omitted.

Theorem 14. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 7. Also let g be an entire function and 0 < ρL∗

p ( f , h) < ρg, σL∗

p ( f , h) > 0, where p is any

positive integer. If exp[p−1] L

(

exp
(

reL(r)
)β
)

= o

(

[

r exp[p] L (r)
]β
)

(r → ∞) for any β > 0,

then

lim
r→∞

log T−1
h Tf ◦g

(

reL(r)
)

T−1
M[h]

TM[ f ] (r)
≥

λL∗

p ( f , h)
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

) 1
ρh
· σL∗

p ( f , h)

.

Remark 14. If we take τL∗

p ( f , h) > 0 instead of σL∗

p ( f , h) > 0 and the other conditions remain

the same, then with the help of Lemma 8, one can easily verify that the conclusion of Theorem

14 remains valid with σL∗

p ( f , h) replaced by τL∗

p ( f , h).

Theorem 15. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 5. Also let g be an entire function, h satisfy the Property (A), ρL∗

p ( f , h) = ρL∗

p (g) ,

σL∗

p (g) < ∞ and σL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0 [h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0[h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

ρL∗

p ( f , h) · σL∗

p (g)
(

γP0 [ f ]

γP0 [h]

) 1
ρh · σL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ ρL∗

p ( f , h) .

Proof. Let us consider that α > 2 and δ → 1+ in Lemma 14. Since T−1
h (r) is an increasing func-

tion of r, it follows from Lemma 9, Lemma 14 and the inequality Tg(r) ≤ log Mg(r) (cf. [13])

for all sufficiently large values of r that

T−1
h Tf ◦g (r) 6 T−1

h

[

{1 + o(1)} Tf

(

Mg (r)
)]

,

i.e. T−1
h Tf ◦g (r) 6 α

[

T−1
h Tf

(

Mg (r)
)

]

,

i.e. log T−1
h Tf ◦g (r) 6 log T−1

h Tf

(

Mg (r)
)

+ O(1),

i.e. log T−1
h Tf ◦g (r) 6

(

ρL∗

p ( f , h) + ε
) (

log Mg (r) + exp[p−1] L
(

Mg (r)
)

)

+ O(1),

i.e. log T−1
h Tf ◦g (r) 6

(

ρL∗

p ( f , h) + ε
) (

σL∗

p (g) + ε
) [

r exp[p] L (r)
]ρL∗

p (g)

+
(

ρL∗

p ( f , h) + ε
)

exp[p−1] L
(

Mg (r)
)

+ O(1).

In view of condition (ii) we obtain from above for all sufficiently large values of r that

log T−1
h Tf ◦g (r) 6

(

ρL∗

p ( f , h) + ε
) (

σL∗

p (g) + ε
) [

r exp[p] L (r)
]ρL∗

p ( f ,h)

+
(

ρL∗

p ( f , h) + ε
)

exp[p−1] L
(

Mg (r)
)

+ O(1).
(9)
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Again from the definition of relative pL∗-lower type we get in view of Lemma 5, for all suffi-

ciently large values of r that

T−1
P0[h]

TP0 [ f ] (r) ≥
(

σL∗

p (P0 [ f ] , P0 [h])− ε
) [

r exp[p] L (r)
]ρL∗

p (P0[ f ],P0[h])
, i.e.

T−1
P0[h]

TP0 [ f ] (r) ≥





(

γP0[ f ]

γP0[h]

) 1
ρh

· σL∗

p ( f , h)− ε





[

r exp[p] L (r)
]ρL∗

p ( f ,h)
, i.e.

[

r exp[p] L (r)
]ρL∗

p ( f ,h)
≤

T−1
P0[h]

TP0[ f ] (r)
(

(

γP0[ f ]

γP0 [h]

) 1
ρh · σL∗

p ( f , h) − ε

) .

(10)

Now from (9) and (10) , it follows for all sufficiently large values of r that

log T−1
h Tf ◦g (r) 6

(

ρL∗

p ( f , h) + ε
) (

σL∗

p (g) + ε
) T−1

P0 [h]
TP0[ f ] (r)

(

(

γP0[ f ]

γP0[h]

) 1
ρh · σL∗

p ( f , h)− ε

)

+
(

ρL∗

p ( f , h) + ε
)

exp[p−1] L
(

Mg (r)
)

+ O(1),

i.e.
log T−1

h Tf ◦g (r)

T−1
P0[h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

O(1)

T−1
P0[h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
)

+

(ρL∗
p ( f ,h)+ε)(σL∗

p (g)+ε)




(

γP0[ f ]
γP0[h]

)
1

ρh
·σL∗

p ( f ,h)−ε





1 +
exp[p−1] L(Mg(r))

T−1
P0[h]

TP0[ f ](r)

+

(

ρL∗

p ( f , h) + ε
)

1 +
T−1

P0[h]
TP0[ f ]

(r)

exp[p−1] L(Mg(r))

.

(11)

If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0 [ f ] (r)
}

then from (11) we get that

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0[h]

TP0 [ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

(

ρL∗

p ( f , h) + ε
) (

σL∗

p (g) + ε
)

(

(

γP0 [ f ]

γP0 [h]

)
1

ρh · σL∗

p ( f , h)− ε

) .

Since ε (> 0) is arbitrary, it follows from above that

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

ρL∗

p ( f , h) · σL∗

p (g)
(

γP0[ f ]

γP0[h]

) 1
ρh · σL∗

p ( f , h)

.

Thus the first part of the theorem follows.

Since ε (> 0) is arbitrary, and if T−1
P0[h]

TP0 [ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then from (11) it

follows that

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ ρL∗

p ( f , h) .

Thus the second part of the theorem is established.
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Theorem 16. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 5. Also let g be an entire function, h satisfy the Property (A), ρL∗

p ( f , h) = ρL∗

p (g),

λL∗

p ( f , h) < ∞, σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0[h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

λL∗

p ( f , h) · σL∗

p (g)
(

γP0 [ f ]

γP0 [h]

) 1
ρh · σL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ λL∗

p ( f , h) .

We omit the proof of the above theorem as it can be carried out in the line of Theorem 15.

Remark 15. In Theorem 16, if we take ρL∗

p ( f , h) = ρL∗

p (g), σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ in-

stead of ρL∗

p ( f , h) = ρL∗

p (g), λL∗

p ( f , h) < ∞, σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ and the other con-

ditions remain the same, then one can easily verify that the conclusion of Theorem 16 remains

valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and σL∗

p ( f , h) replaced by σL∗

p ( f , h) respectively.

Remark 16. In Theorem 16, if we take ρL∗

p ( f , h) = ρL∗

p (g), σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞

instead of ρL∗

p ( f , h) = ρL∗

p (g), λL∗

p ( f , h) < ∞, σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 16 re-

mains valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and σL∗

p (g) replaced by σL∗

p (g) respectively.

Similarly using the concept of the growth indicator τL∗

p ( f , h) and τL∗

p (g) we may state the

subsequent two theorems without their proofs since those can be carried out in view of Lemma

6 and in the line of Theorem 15 and Theorem 16 respectively.

Theorem 17. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 6. Also let g be an entire function, h satisfy the Property (A), ρL∗

p ( f , h)< ∞, λL∗

p ( f , h) =

λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0[h]

TP0 [ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

ρL∗

p ( f , h) · τL∗

p (g)
(

γP0 [ f ]

γP0 [h]

) 1
ρh · τL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ ρL∗

p ( f , h) .

Remark 17. In Theorem 17, if we replace the condition λL∗

p ( f , h) = λL∗

p (g) and τL∗

p (g) < ∞ by

λL∗

p ( f , h) = ρL∗

p (g) and σL∗

p (g) < ∞ and the other conditions remain the same, then one can

easily verify that the conclusion of Theorem 17 remains valid with τL∗

p (g) replaced by σL∗

p (g).
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Remark 18. In Theorem 17, if we take ρL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and σL∗

p ( f , h) > 0

instead of ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 17

remains valid with τL∗

p ( f , h) replaced by σL∗

p ( f , h).

Theorem 18. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 6. Also let g be an entire function, h satisfy the Property (A), λL∗

p ( f , h) = λL∗

p (g) ,

τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0[h]

TP0 [ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

λL∗

p ( f , h) · τL∗

p (g)
(

γP0 [ f ]

γP0 [h]

) 1
ρh · τL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
P0 [h]

TP0[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ λL∗

p ( f , h) .

Remark 19. In Theorem 18, if we take ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and

τL∗

p ( f , h) > 0 instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other con-

ditions remain the same, then one can easily verify that the conclusion of Theorem 18 remains

valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and τL∗

p ( f , h) replaced by τL∗

p ( f , h) respectively.

Remark 20. In Theorem 18, if we take ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and

τL∗

p ( f , h) > 0 instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 18

remains valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and τL∗

p (g) replaced by τL∗

p (g) respectively.

Remark 21. In Theorem 18, if we replace the conditions λL∗

p ( f , h) = λL∗

p (g) and τL∗

p (g) < ∞

by λL∗

p ( f , h) = ρL∗

p (g) and σL∗

p (g) < ∞ and the other conditions remain the same, then one can

easily verify that the conclusion of Theorem 18 remains valid with τL∗

p (g) replaced by σL∗

p (g).

Remark 22. In Theorem 18, if we take ρL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and σL∗

p ( f , h) > 0

instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other conditions remain

the same, then one can easily verify that the conclusion of Theorem 18 remains valid with

τL∗

p ( f , h) replaced by σL∗

p ( f , h).

In the line of Theorem 15, Theorem 16, Theorem 17 and Theorem 18 and in view of Lemma

7 and Lemma 8, one can easily prove the following four theorems and therefore their proofs

are omitted.

Theorem 19. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 7. Also let g be an entire function, h satisfy the Property (A), ρL∗

p ( f , h) = ρL∗

p (g) ,
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σL∗

p (g) < ∞ and σL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

ρL∗

p ( f , h) · σL∗

p (g)
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

) 1
ρh
· σL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ ρL∗

p ( f , h) .

Theorem 20. Let the meromorphic function f and entire function h satisfy the conditions

of Lemma 7. Also let g be an entire function, h satisfy the Property (A), λL∗

p ( f , h) < ∞,

ρL∗

p ( f , h) = ρL∗

p (g), σL∗

p (g) < ∞ and σL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

λL∗

p ( f , h) · σL∗

p (g)
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

)
1

ρh
· σL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ λL∗

p ( f , h) .

Remark 23. In Theorem 20, if we take ρL∗

p ( f , h) = ρL∗

p (g), σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ in-

stead of ρL∗

p ( f , h) = ρL∗

p (g), λL∗

p ( f , h) < ∞, σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ and the other con-

ditions remain the same, then one can easily verify that the conclusion of Theorem 20 remains

valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and σL∗

p ( f , h) replaced by σL∗

p ( f , h) respectively.

Remark 24. In Theorem 20, if we take ρL∗

p ( f , h) = ρL∗

p (g), σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞

instead of ρL∗

p ( f , h) = ρL∗

p (g), λL∗

p ( f , h) < ∞, σL∗

p ( f , h) > 0 and σL∗

p (g) < ∞ and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 20

remains valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and σL∗

p (g) replaced by σL∗

p (g) respectively.

Theorem 21. Let the meromorphic function f and entire function h satisfy the conditions

of Lemma 8. Also let g be an entire function, h satisfy the Property (A), ρL∗

p ( f , h) < ∞,

λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

ρL∗

p ( f , h) · τL∗

p (g)
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

)
1

ρh
· τL∗

p ( f , h)

.
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(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ ρL∗

p ( f , h) .

Remark 25. In Theorem 21, if we replace the condition λL∗

p ( f , h) = λL∗

p (g) and τL∗

p (g) < ∞ by

λL∗

p ( f , h) = ρL∗

p (g) and σL∗

p (g) < ∞ and the other conditions remain the same, then one can

easily verify that the conclusion of Theorem 21 remains valid with τL∗

p (g) replaced by σL∗

p (g).

Remark 26. In Theorem 21, if we take ρL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and σL∗

p ( f , h) > 0

instead of ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 21

remains valid with τL∗

p ( f , h) replaced by σL∗

p ( f , h).

Theorem 22. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 8. Also let g be an entire function, h satisfy the Property (A), λL∗

p ( f , h) = λL∗

p (g) ,

τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0, where p is any positive integer.

(a) If exp[p−1] L
(

Mg (r)
)

= o
{

T−1
P0[h]

TP0[ f ] (r)
}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤

λL∗

p ( f , h) · τL∗

p (g)
(

ΓM[ f ]−(ΓM[ f ]−γM[ f ])Θ(∞; f )

ΓM[h]−(ΓM[h]−γM[h])Θ(∞;h)

) 1
ρh
· τL∗

p ( f , h)

.

(b) If T−1
P0[h]

TP0[ f ] (r) = o
{

exp[p−1] L
(

Mg (r)
)

}

then

lim
r→∞

log T−1
h Tf ◦g (r)

T−1
M[h]

TM[ f ] (r) + exp[p−1] L
(

Mg (r)
) ≤ λL∗

p ( f , h) .

Remark 27. In Theorem 22, if we take ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and

τL∗

p ( f , h) > 0 instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other con-

ditions remain the same, then one can easily verify that the conclusion of Theorem 22 remains

valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and τL∗

p ( f , h) replaced by τL∗

p ( f , h) respectively.

Remark 28. In Theorem 22, if we take ρL∗

p ( f , h) < ∞, λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and

τL∗

p ( f , h) > 0 instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 22

remains valid with λL∗

p ( f , h) replaced by ρL∗

p ( f , h) and τL∗

p (g) replaced by τL∗

p (g) respectively.

Remark 29. In Theorem 22, if we replace the condition λL∗

p ( f , h) = λL∗

p (g) and τL∗

p (g) < ∞ by

λL∗

p ( f , h) = ρL∗

p (g) and σL∗

p (g) < ∞ and the other conditions remain the same, then one can

easily verify that the conclusion of Theorem 22 remains valid with τL∗

p (g) replaced by σL∗

p (g).

Remark 30. In Theorem 22, if we take ρL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and σL∗

p ( f , h) > 0

instead of λL∗

p ( f , h) = λL∗

p (g) , τL∗

p (g) < ∞ and τL∗

p ( f , h) > 0 and the other conditions remain

the same, then one can easily verify that the conclusion of Theorem 22 remains valid with

τL∗

p ( f , h) replaced by σL∗

p ( f , h).
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Theorem 23. Let f be a meromorphic function either of finite order or of non-zero lower order

such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire function

having regular growth and non zero finite order with Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) =

∑
a 6=∞

δ (a; h) = 1. Also let g be an entire function and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, where p is

any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ] (exp rµ)
≥

λL∗

p ( f , h)

ρL∗
p ( f , h)

,

where 0 < µ < ρg ≤ ∞.

Proof. In view of Lemma 10, we obtain for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g (r) ≥ log T−1

h Tf (exp rµ) ,

i.e. log T−1
h Tf ◦g (r) ≥

(

λL∗

p ( f , h) − ε
) [

rµ + exp[p−1] L (exp rµ)
]

.
(12)

Also in view of Lemma 5, and for any arbitrary ε (> 0) , it follows for all sufficiently large

values of r that

log T−1
P0[h]

TP0[ f ] (exp rµ) ≤
(

ρL∗

p (P0 [ f ] , P0 [h]) + ε
) [

rµ + exp[p−1] L (exp rµ)
]

,

i.e. log T−1
P0[h]

TP0[ f ] (exp rµ) ≤
(

ρL∗

p ( f , h) + ε
) [

rµ + exp[p−1] L (exp rµ)
]

.
(13)

Now from (12) and (13) , we get for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ] (exp rµ)
≥

(

λL∗

p ( f , h)− ε
) [

rµ + exp[p−1] L (exp rµ)
]

(

ρL∗
p ( f , h) + ε

)

[

rµ + exp[p−1] L (exp rµ)
]

.

Since ε (> 0) is arbitrary, it follows from above that

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ] (exp rµ)
≥

λL∗

p ( f , h)

ρL∗

p ( f , h)
.

Thus the theorem follows.

Theorem 24. Let f be a meromorphic function, g be an entire function either of finite order or

of non-zero lower order such that Θ (∞; g) = ∑
a 6=∞

δp (a; g) = 1 or δ (∞; g) = ∑
a 6=∞

δ (a; g) = 1

and h be an entire function having regular growth and non zero finite order with Θ (∞; h) =

∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) = ∑
a 6=∞

δ (a; h) = 1. Let 0 < λ f and 0 < λL∗

p (g, h) ≤ ρL∗

p (g, h) < ∞,

where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0 [g] (exp rµ)
≥

λL∗

p (g, h)

ρL∗
p (g, h)

,

where 0 < µ < ρg.
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We omit the proof of the above theorem as it can be carried out in the line of Theorem 23

and with the help of Lemma 11.

In the line of Theorem 23 and Theorem 24 respectively, one can easily prove the following

two theorems and therefore their proofs are omitted.

Theorem 25. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function of regular

growth having non zero finite order with ∑
a∈C∪{∞}

δ1(a; h) = 4. Also let g be an entire function

and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ] (exp rµ)
≥

λL∗

p ( f , h)

ρL∗
p ( f , h)

,

where 0 < µ < ρg ≤ ∞.

Theorem 26. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that ∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcendental

entire function of regular growth having non zero finite order with ∑
a∈C∪{∞}

δ1(a; h) = 4. Also

let 0 < λ f and 0 < λL∗

p (g, h) ≤ ρL∗

p (g, h) < ∞, where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[g] (exp rµ)
≥

λL∗

p (g, h)

ρL∗
p (g, h)

,

where 0 < µ < ρg.

Theorem 27. Let f be a meromorphic function either of finite order or of non-zero lower order

such that Θ (∞; f ) = ∑
a 6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a 6=∞

δ (a; f ) = 1 and h be an entire function

having regular growth and non zero finite order with Θ (∞; h) = ∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) =

∑
a 6=∞

δ (a; h) = 1. Also let g be an entire function and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, where p is

any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ] (exp rµ)
≤

ρL∗

p ( f , h)

λL∗
p ( f , h)

,

where λg < µ < ∞.

Proof. In view of Lemma 12, we obtain for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g (r) < log T−1

h Tf (exp rµ) ,

i.e. log T−1
h Tf ◦g (r) <

(

ρL∗

p ( f , h) + ε
) [

rµ + exp[p−1] L (exp rµ)
]

.
(14)

Also in view of Lemma 5, and for any arbitrary ε (> 0) , it follows for all sufficiently large

values of r that

log T−1
P0[h]

TP0[ f ] (exp rµ) ≥
(

λL∗

p (P0 [ f ] , P0 [h])− ε
) [

rµ + exp[p−1] L (exp rµ)
]

,

i.e. log T−1
P0[h]

TP0[ f ] (exp rµ) ≥
(

λL∗

p ( f , h)− ε
) [

rµ + exp[p−1] L (exp rµ)
]

.
(15)
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Now from (14) and (15) , we get for a sequence of values of r tending to infinity that

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0[ f ] (exp rµ)
<

(

ρL∗

p ( f , h) + ε
) [

rµ + exp[p−1] L (exp rµ)
]

(

λL∗
p ( f , h)− ε

)

[

rµ + exp[p−1] L (exp rµ)
]

.

Since ε (> 0) is arbitrary, it follows from above that

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0 [h]

TP0[ f ] (exp rµ)
≤

ρL∗

p ( f , h)

λL∗

p ( f , h)
.

Thus the theorem follows.

Now we state the following theorem without its proof as it can be carried out in the line of

the above theorem and with the help of Lemma 13.

Theorem 28. Let f be a meromorphic function and g be an entire function either of finite order

or of non-zero lower order such that Θ (∞; g) = ∑
a 6=∞

δp (a; g) = 1 or δ (∞; g) = ∑
a 6=∞

δ (a; g) = 1

and h be an entire function having regular growth and non zero finite order with Θ (∞; h) =

∑
a 6=∞

δp (a; h) = 1 or δ (∞; h) = ∑
a 6=∞

δ (a; h) = 1. Let 0 < λ f and 0 < λL∗

p (g, h) ≤ ρL∗

p (g, h) < ∞,

where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
P0[h]

TP0 [g] (exp rµ)
≤

ρL∗

p (g, h)

λL∗
p (g, h)

,

where 0 < λg < µ < ∞.

In the line of Theorem 27 and Theorem 28 respectively, one can easily prove the following

two theorems and therefore their proofs are omitted.

Theorem 29. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order with ∑
a∈C∪{∞}

δ1(a; f ) = 4 and h be a transcendental entire function of regular

growth having non zero finite order with ∑
a∈C∪{∞}

δ1(a; h) = 4. Also let g be an entire function

and 0 < λL∗

p ( f , h) ≤ ρL∗

p ( f , h) < ∞, where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[ f ] (exp rµ)
≤

ρL∗

p ( f , h)

λL∗

p ( f , h)
,

where λg < µ < ∞.

Theorem 30. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that ∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcendental

entire function of regular growth having non zero finite order with ∑
a∈C∪{∞}

δ1(a; h) = 4. Also

let 0 < λ f and 0 < λL∗

p (g, h) ≤ ρL∗

p (g, h) < ∞, where p is any positive integer. Then

lim
r→∞

log T−1
h Tf ◦g (r)

log T−1
M[h]

TM[g] (exp rµ)
≤

ρL∗

p (g, h)

λL∗

p (g, h)
,

where 0 < λg < µ < ∞.
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Бiсвас Т. Прогрес у вивченнi аналiзу росту диференцiальних полiномiв i диференцiальних мономiв

в контекстi повiльно зростаючих функцiй // Карпатськi матем. публ. — 2018. — Т.10, №1. — C.

31–57.

Дослiдження аналiзу росту цiлих чи мероморфних функцiй, як правило, проводилися

через їх характеристичну функцiю Неванлiни в порiвняннi з тими експоненцiйними функцi-

ями. Але якщо потрiбно порiвняти темпи зростання будь-якої цiлої чи мероморфної фун-

кцiї вiдносно iншої, то потрiбно використовувати поняття iндикаторiв вiдносного зростання.

Область дослiдження в цiй галузi може бути бiльш значимою через iнтенсивнi застосування

теорiй повiльно зростаючих функцiй, що фактично означає, що L(ar) ∼ L(r) при r → ∞ для

кожної додатньої константи a, тобто lim
r→∞

L(ar)
L(r)

= 1, де L ≡ L (r) — додатня неперервна фун-

кцiя, яка повiльно зростає. Власне, в цiй роботi ми отримали деякi результати, що залежать

вiд властивостей вiдносного зростання композицiй цiлих i мероморфних функцiй, викори-

стовуючи iдею вiдносного pL∗-порядку, вiдносного pL∗-типу, вiдносного pL∗-слабкого типу i

диференцiальних мономiв, диференцiальних полiномiв, породжених одним з коефiцiєнтiв; цi

результати поширюють деякi попереднi результати, де pL∗ є нiчим iншим як слабшим припу-

щенням на L.

Ключовi слова i фрази: цiла функцiя, мероморфна функцiя, вiдносний pL∗ порядок, вiд-

носний pL∗ тип, вiдносний pL∗ слабкий тип, рiст, диференцiальний моном, диференцiальний

полiном, функцiя повiльного росту.


