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ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE RANDOM

PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an α-

stable random process (with 1 < α < 2) and some processes related to it are investigated. We

consider an α-stable process is killed with some intensity on the hyperplane and a pseudo-process

that is formed from the α-stable process using its perturbation by a fractional derivative operator

with a multiplier like a delta-function on the hyperplane. In each of these cases, the limit distri-

bution of the crossing number of the hyperplane by some discret approximation of the process is

related to the distribution of its local time on this hyperplane. Integral equations for characteristic

functions of these distributions are constructed. Unique bounded solutions of these equations can

be constructed by the method of successive approximations.
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INTRODUCTION

Let (x(t),Mt, Px) denote a standard Markov process on R
d (d ≥ 1). Consider a fixed

hyperplane S = {x ∈ R
d : (x, ν) = r}, in R

d and two open sets

D− = {x ∈ R
d : (x, ν) < r}, D+ = {x ∈ R

d : (x, ν) > r},

where ν ∈ R
d is a given unit vector and r ∈ R is a given constant.

Our goal is to describe a changes number of the sets D− and D+ before a fixed time t > 0

by the trajectories of the process (x(t))t≥0 started at fixed point x ∈ R
d.

Consider for m, n ∈ N the random variable

ξ
(n)
m =

m

∑
k=1

v

(

x

(

k − 1

n

)

, x

(

k

n

))

,

where v(x, y) = 1ID−(x)1ID+(y) + 1ID+(x)1ID−(y).

The variable ξ
(n)
[nt]

equals to the number of crossings of the hyperplane S by the ordered set

of points in R
d: x(0), x(1/n),. . . ,x([nt]/n).

We are going to find out a sequence of normalizing multipliers {cn : n ≥ 1} such that the

limit distribution of the sequence {cnξ
(n)
[nt]

: n ≥ 1} exists and to describe it. It is obvious that

cn → 0, as n → ∞.

The limit theorems of this type were initiated by I. I. Gikhman in connection with some

problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional

Markov chains approaching a diffusion process with smooth local characteristics (see [1, 2]).
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1 SOME AUXILIARY RESULTS

We will use the following corollary of one A. V. Skorokhod’s theorem (see [3, Th. 1]).

Lemma 1. A limit distribution of the sequence of random variables cnξ
(n)
[nt]

exists if and only if

a limit distribution exists for the variables cnη
(n)
[nt]

, where

η
(n)
m =

m

∑
k=1

vn

(

x

(

k

n

))

, vn(x) = Exv

(

x(0), x

(

1

n

))

,

and these limit distributions coincide, if only they exist.

So, we will consider the random variables cnη
(n)
[nt]

.

For any fixed t > 0, x ∈ R
d, n ∈ N we consider the characteristic function

un(t, x, θ) = Ex exp
{

iθcnη
(n)
[nt]

}

, θ ∈ R,

of the random variable cnη
(n)
[nt]

.

The next equation for the function un(t, x, θ)

un(t, x, θ) = 1 + n
∫ [nt]/n

0
dτ

∫

Rd

(

1 − e−iθcnvn(y)
)

un(τ, y, θ)g

(

[nt]− [nτ]

n
, x, y

)

dy (1)

follows from the identity exp {∑
m
k=1 ak} = 1 + ∑

m
k=1 (1 − e−ak) exp

{

∑
m
j=k aj

}

, that holds true

for each set of complex numbers a1, a2, . . . , am and each natural number m. Here the function

(g(t, x, y))t>0,x∈Rd ,y∈Rd denotes the transition probability density of the process (x(t))t≥0.

If the transition probability density of the process (x(t))t≥0 is given by the equality

g(t, x, y) = (2π)−d
∫

Rd
exp{i(λ, y − x)− ct|λ|α} dλ, t > 0, x ∈ R

d, y ∈ R
d,

for fixed parameters c > 0 and α ∈ (1, 2], then the process (x(t))t≥0 is called rotationally

invariant α-stable random process. If α = 2, this process is the Brownian motion. In this case,

our problems have been addressed in many publications (see, for example, [4, 5] and others).

Therefore, we will not consider this case. So, we will further assume that 1 < α < 2, although

most of our results remain correct also for α = 2.

Consider the function f (t, x) =
∫ t

0 dτ
∫

S g(τ, x, y) dσy . It is a W-function for the process

(x(t))t≥0 satisfying the inequality f (t, x) ≤ N α
α−1 t1−1/α. So, there exists a W-functional (lt)t≥0

of the process (x(t))t≥0 such that Exlt = f (t, x) (see [8, Th. 6.6]). This functional is called the

local time on S for the process (x(t))t≥0.

Using the following representation of the functional (lt)t≥0:

lt = lim
h→0+

∫ t

0
dτ

∫

S
g(h, x(τ), y) dσy in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random

value lt, that is v(t, x, θ) = Ex exp{iθlt}, satisfies the following equation

v(t, x, θ) = 1 + iθ
∫ t

0
dτ

∫

S
g(t − τ, x, y)v(τ, y, θ) dσy . (2)
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2 THE MAIN RESULTS

The first statement concerns to the rotationally invariant α-stable random process.

Theorem 1. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt]

for fixed t > 0 and x ∈ R
d has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α). This distribution coincides with the distribution of the multiplied

by κ local time on the hyperplane S of the process (x(t))t≥0.

Next, let a continuous bounded function (r(x))x∈S with non-negative values be given. Con-

sider the function (G(t, x, y))t>0,x∈Rd ,y∈Rd which is a solution of to each one of the following

equations

G(t, x, y) = g(t, x, y)−
∫ t

0
dτ

∫

S
g(t − τ, x, z)G(τ, z, y)r(z) dσz ,

G(t, x, y) = g(t, x, y)−
∫ t

0
dτ

∫

S
G(t − τ, x, z)g(τ, z, y)r(z) dσz .

The function G is the transition probability density of the process (x(t))t≥0 killed on the hy-

perplane S at some stopping time ζ (see [6]). The function (r(x))x∈S is the killing intensity of

the process (x(t))t≥0. It is clear that

Px({ζ > t}) =
∫

Rd
G(t, x, y) dy = 1 −

∫ t

0
dτ

∫

S
G(τ, x, y)r(y) dσy .

Theorem 2. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt]

for fixed t > 0 and x ∈ R
d has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
G(t − τ, x, y)u(τ, y, θ) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α). It is the distribution of the multiplied by κ local time on the

hyperplane S for the process (x(t))t≥0 killed at the stopping time ζ.

And the last, let a continuous bounded function (q(x))x∈S be given. Introduce an operator

Bν determined by its symbol (i|ξ|α−2(ξ, 2cν))ξ∈Rd . Define the function (G(t, x, y))t>0,x∈Rd ,y∈Rd

by the following formula

G(t, x, y) = g(t, x, y) +
∫ t

0
dτ

∫

S
g(t − τ, x, z)Bνg(τ, ·, y)(z)q(z) dσz .

This function is “a transition probability density” of some pseudo-process with a mem-

brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in the

following form: A + q(x)δS(x)Bν, where A is the generator of the process (x(t))t≥0 (that is a

pseudo-differential operator whose symbol is given by the function (−c|ξ|α)ξ∈Rd ).
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Consider the function (u(t, x, θ))t≥0,x∈Rd ,θ∈R
defined by the equality

u(t, x, θ) = lim
n→∞

Êx exp
{

iθn−1+1/αη
(n)
[nt]

}

de f
=

lim
n→∞

∫

Rd
. . .

∫

Rd

[nt]

∏
k=1

exp
{

iθn−1+1/αv̂n(xk)
}

G

(

1

n
, xk−1, xk

)

dxk,

where x0 = x and v̂n(x) = Êxv
(

x(0), x
(

1
n

))

de f
=

∫

Rd v(x, y)G
(

1
n , x, y

)

dy. This function is

“the characteristic function” of the the random variables sequence n−1+1/αξ
(n)
[nt]

limit “distribu-

tion” for fixed t > 0 and x ∈ R
d.

Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary

random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t, x, θ))θ∈R for fixed t > 0 and x ∈ R
d is the unique bounded

solution of the integral equation

u(t, x, θ) = 1 + iκθ

∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ)(1 − q2(y)) dσy ,

where κ = 2c1/α

π Γ(1 − 1/α).

3 PROOF OF THE MAIN RESULTS

The proofs of these results are executed according to the same scheme. Consider the first

result (i.e. it is for the rotationally invariant α-stable random process).

First of all, one can prove two technical lemmas. The first one prompts us that we must

choose cn = n−1+1/α. And the second one allows to pass from equation (1) to some simpler

one.

Lemma 2. Let the real-valued function (ϕ(x))x∈Rd be such that sup
ρ∈R

∫

Sρ
|ϕ(x)| dσ < ∞, where

Sρ = {x ∈ R
d : (x, ν) = ρ}, and there exist the nontangentional limits ϕ(x−) and ϕ(x+) from

the side of D− and D+ in each point x ∈ S.

Then the following relation (with κ = E0|(x(1), ν)| = 2c1/α

π Γ(1 − 1/α))

lim
n→∞

n1/α
∫

Rd
vn(x)ϕ(x) dx = κ

∫

S

ϕ(y−) + ϕ(y+)

2
dσ

holds true. In addition, the inequality
∣

∣n1/α
∫

Rd vn(x)ϕ(x) dx
∣

∣ ≤ κ

2 sup
ρ∈R

∫

Sρ
|ϕ(x)| dσ is fulfilled.

Let a measurable function (ψ(t, x))t≥0,x∈Rd be such that sup
t∈[0,T],x∈Rd

|ψ(t, x)| < ∞ for any

T > 0. Consider its transformation Ψn for n ∈ N given by

Ψn(t, x) = n1/α
∫ t

0
dτ

∫

Rd
vn(y)ψ(τ, y)g(t − τ, x, y) dy, t > 0, x ∈ R

d.
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Lemma 3. For given numbers ε > 0, L > 0, T > 0, there exists a number δ > 0 such that the

inequality |Ψn(t′, x′)− Ψn(t, x)| < ε is held for all t ∈ [0, T], t′ ∈ [0, T], x ∈ R
d, x′ ∈ R

d, n ∈ N

and all measurable functions ψ with the property sup
t∈[0,T],x∈Rd

|ψ(t, x)| ≤ L if only the inequality

|t − t′|+ |x − x′| < δ is fulfilled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the character-

istic function un(t, x, θ) of n−1+1/αη
(n)
[nt]

and solutions of the following equation

u∗
n(t, x, θ) = 1 + iθn1/α

∫ t

0
dτ

∫

Rd
vn(y)u

∗
n(τ, y, θ)g(t − τ, x, y) dy

satisfy the relation limn→∞ sup
x∈Rd

sup
0<t≤T

sup
θ1≤θ≤θ2

|un(t, x, θ)− u∗
n(t, x, θ)| = 0 for any T > 0, θk ∈ R

(k = 1, 2), θ1 < θ2.

As the corollary of Lemma 2 one can say that the characteristic function (u(t, x, θ))θ∈R (t

and x are fixed) of the limit distribution with respect to the measure Px for the sequence of the

random variables n−1+1/αξ
(n)
[nt]

(and n−1+1/αη
(n)
[nt]

also) satisfies the following equation

u(t, x, θ) = 1 + iθκ
∫ t

0
dτ

∫

S
g(t − τ, x, y)u(τ, y, θ) dσy . (3)

A solution of equation (3) can be constructed by the method of successive approxima-

tions, that is we have u(t, x, θ) = ∑
∞
k=0 u(k)(t, x, θ)(iθκ)k , where u(0)(t, x, θ) ≡ 1, u(k)(t, x, θ) =

∫ t
0 dτ

∫

S g(t − τ, x, y)u(k−1)(τ, y, θ) dσy.

This follows from the estimation |u(k)(t, x, θ)| ≤ Ck (Γ(β))k

Γ(1+kβ)
tkβ, getting by the induction,

where C > 0 is some constant, β = 1 − 1/α.

The solution of equation (3) is unique in the class of bounded functions, because the differ-

ence between each two solutions of equation (3) satisfies the following equation

w(t, x, θ) = iθκ
∫ t

0
dτ

∫

S
g(t − τ, x, y)w(τ, y, θ) dσy

and we have inequalities |w(t, x, θ)| ≤ (CθκΓ(β))k

Γ(1+kβ)
tkβ for each k ∈ N.

Comparing equations (3) and (2) we get that the distribution of κlt and the limit distribu-

tion of n−1+1/αξ
(n)
[nt]

(with respect to the measure Px) are equal.
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Осипчук М.М. Про кiлькiсть перетинiв гiперплощини стiйким випадковим процесом // Карпат-

ськi матем. публ. — 2018. — Т.10, №2. — C. 346–351.

Дослiджено числа перетинiв гiперплощини дискретними наближеннями траекторiй α-стiй-

кого випадкового процесу (1 < α < 2) та деяких пов’язаних з ним процесiв. Розглядаються

α-стiйкий випадковий процес з убиванням з даною iнтенсивнiстю на гiперплощинi та псев-

допроцес, утворений з α-стiйкого випадкового процесу збуренням його оператором дробової

похiдної з множником типу дельта-функцiї на гiперплощинi. В кожному з цих випадкiв грани-

чний розподiл кiлькостi перетинiв гiперплощини деякою дискретною апроксимацiєю процесу

пов’язаний з розподiлом його локального часу на цiй гiперплощинi. Побудованi iнтегральнi

рiвняння для характеристичних функцiй цих розподiлiв. Єдинi обмеженi розв’язки цих рiв-

нянь можна одержати методом послiдовних наближень.

Ключовi слова i фрази: α-стабiльний процес, локальний час, псевдо-процес.


