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SLIMANE A.

SPACES GENERATED BY THE CONE OF SUBLINEAR OPERATORS

This paper deals with a study on classes of non linear operators. Let SL(X, Y) be the set of all

sublinear operators between two Riesz spaces X and Y. It is a convex cone of the space H(X, Y) of

all positively homogeneous operators. In this paper we study some spaces generated by this cone,

therefore we study several properties, which are well known in the theory of Riesz spaces, like order

continuity, order boundedness etc. Finally, we try to generalise the concept of adjoint operator. First,

by using the analytic form of Hahn-Banach theorem, we adapt the notion of adjoint operator to the

category of positively homogeneous operators. Then we apply it to the class of operators generated

by the sublinear operators.

Key words and phrases: Riesz space, Banach lattice, homogeneous operator, sublinear operator,
order continuous operator.

Laboratory of functional analysis and geometry of spaces, University of M’sila, M’sila 28000, Algeria

E-mail: amr.slimane@gmail.com

INTRODUCTION

The theory of Riesz spaces plays an important role in several branches of mathematics,

in particular in the geometry of Banach spaces and the theory of linear operators where the

notion of Banach lattice play a central role. In this work we generalize some vector lattice

properties to the category of sublinear operators i.e., positively homogenous and subadditive.

The set obtained is not a Banach space but a positive convex cone. Hence, this paper deals

with the extension of this set and their properties. The paper is organized as follows.

In Section 1 we recall some basic definitions and properties of Riesz spaces, we also recall

the notion of sublinear operators between a vector space X and a Riesz space Y.

In Section 2 we introduce the spaces spanned by different cones of sublinear operators. In

other hand we present some principal notions concerning the theory of Riesz spaces like order

continuity, order ideal, and we apply these notions on these spaces.

In Section 3 we introduce the adjoint of positively homogeneous operator. We first establish

the following result.

Let u be in L(X, Y). Then the bounded adjoint operator u∗ of u can be extended to a

bounded linear operator ũ∗ belongs to L(H∗(Y), H∗(X)) such that ũ∗ = u∗ on Y∗ and ‖ũ∗‖ =

‖u∗‖ = ‖u‖, where H∗(Y) is the space of all bounded positively homogeneous functionals on

Y, Y∗ is the topological dual space of Y and L(X, Y) is the Banach space of all bounded linear

operators from X into Y. Finally we adapt the existence theorem of bounded adjoint linear

operator to the category of positively homogeneous operators as follows.
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Let X, Y be two Banach spaces and T ∈ H(X, Y). Then, T∗
h ∈ L(H∗(Y), H∗(X)) such that

‖T‖ = ‖T∗
h ‖, where T∗

h denotes the adjoint of T and H(X, Y) is the Banach space of all bounded

positively homogeneous operators from X into Y.

1 PRELIMINARIES

In this section, we introduce some terminology concerning Riesz spaces and Banach lat-

tices. These spaces are well known. For more details, the interested reader can consult, for

example, the references [2, 4–6]. But for our convenience, we include some recalls. We also

introduce the class of positively homogeneous operators.

Let X be a real vector space. Then X is called a Riesz space (or vector lattice) if it is an

ordered vector space with the additional property that the supremum of every nonempty finite

subset of X exists in X. We denote the supremum of the set {x, y} by sup{x, y} or x ∨ y.

Similarly, inf{x, y} or x ∧ y denote the infimum of the set {x, y}.

Let X be a Riesz space. The subset X+ = {x ∈ E : x ≥ 0} is called the positive cone of

X (which is salient, i.e. X+ ∩ (−X+) = {0}) and the elements of X+ are called the positive

elements of X.

Let X be a Riesz space, equipped with a norm. The norm in X is called a Riesz norm if

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖,

where |x| = sup{x,−x}. Denote x+ = sup{x, 0}, x− = sup{−x, 0}. Then obviously we have

x = x+ − x− and |x| = x+ + x−. Note that this implies that for any x ∈ X, the elements x

and |x| have the same norm. A Riesz space X equipped with a Riesz norm, is called a normed

Riesz space. If the norm is complete, X is called a Banach lattice. The convex cone X+ is norm

closed. A complete Banach lattice is a Banach lattice such that every order bounded set in X

has a supremum.

By a Riesz subspace (or a vector sublattice) of a Riesz space X we mean a linear subspace E

of X so that sup{x, y} belongs to E whenever x, y ∈ E. A vector subspace E of a Riesz space X

is said to be an order ideal or simply ideal whenever |x| ≤ |y| and y ∈ E imply x ∈ E.

A non-empty subset D is said to be upwards directed (respectively downwards directed)

if for all x1, x2 ∈ D there is x3 ∈ D such that x1 ∨ x2 ≤ x3 (respectively x1 ∧ x2 ≥ x3), if

sup D = x exists and D upwards directed (respectively inf D = y exists and D downwards

directed) we shall write D ↑ x (respectively D ↓ y).

Definition. Let X be a vector space and Y be a Riesz space. An operator T : X −→ Y is

1- positively homogeneous if for all x in X and λ in R+ we have

T(λx) = λT(x),

2- subadditive if for all x, y in X we have

T(x + y) ≤ T(x) + T(y).

The operator T is sublinear if it is positively homogeneous and subadditive. The operator

T is said to be superlinear if T is positively homogeneous and superadditive (i.e. T(x + y) ≥

T(x) + T(y) for all x, y in X). We have for all x in X

−T(−x) ≤ T(x). (1)
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We denote by H(X, Y) (respectively SL(X, Y)) the real vector space of all positively homo-

geneous (the set of all sublinear) operators from X into Y, equipped with the natural order

inducted by Y, i.e.

T ≤ S if T(x) ≤ S(x), ∀ x ∈ X.

The set SL(X, Y) is a pointed convex cone of H(X, Y) which is not salient.

Let T be in SL(X, Y). We will denote by ∇T the subdifferential of T, which is the set of all

linear operators u : X −→ Y such that u(x) ≤ T(x) for all x in X. We know (see, for example,

[1]), that ∇T is not empty if Y is a complete Banach lattice and T(x) = sup{u(x) : u ∈ ∇T},

moreover, the supremum is attained. If Y is simply a Banach lattice, then ∇T is empty in

general (see [3]).

If X is a Banach space and Y is a Banach lattice, then we will denote by SL(X, Y) the set

of all bounded (= continuous) sublinear operators from X into Y and by L(X, Y) the Banach

space of all bounded linear operators from X into Y. Let T be in SL(X, Y). We have (see [1]),

that T is bounded if and only if u is bounded for all u in ∇T. The set SL(X, Y) (respectively the

space L(X, Y)) is a subset (respectively a subspace) of the space H(X, Y) of all homogeneous

bounded operators from X into Y. The space H(X, Y) is normed by the standard norm

‖T‖ = sup
‖x‖≤1

‖T(x)‖.

2 SPACES SPANNED BY SUBLINEAR OPERATORS

Let X be a vector space and Y be a Riesz space. We denote by

△SL(X, Y) = SL(X, Y)− SL(X, Y)

the subspace of H(X, Y) spanned by SL(X, Y), i.e.

△SL(X, Y) = {T − S : T, S ∈ SL(X, Y)}.

We denote by △SL(X, Y) the subspace of all bounded operators in △SL(X, Y).

Proposition 1. Let X be a vector space and Y be a Riesz space. Then H(X, Y) is a Riesz space.

If in addition X is a Banach space and Y is a Banach lattice, then H(X, Y) is also a Banach

lattice.

Proof. It is sufficent to endow the vector space H(X, Y) with the partial order induced by Y.

It is clear that H(X, Y) is a Riesz space with respect to this order. Suppose now X be a Ba-

nach space and Y be a Banach lattice. Let (Tn)n ⊂ H(X, Y) be a Cauchy sequence, then

lim
n→+∞

‖Tn+p − Tn‖ = 0 implies that lim
n→+∞

‖Tn+p(x)− Tn(x)‖ = 0 for all x in X.

As Y is a Banach space there is T(x) ∈ Y such that lim
n→+∞

Tn(x) = T(x). Since Tn(αx) =

αTn(x) for all α in R+ and all x in X we have T(αx) = lim
n→+∞

Tn(αx) = lim
n→+∞

αTn(x) = αT(x)

for all α in R+ and all x in X. Thus, T is positively homogeneous. The operator T is clearly

bounded and hence H(X, Y) is a Banach space. Let now T, S ∈ H(X, Y) such that |T| ≤ |S|

then ‖T(x)‖ ≤ ‖S(x)‖ for all x in X, so ‖T‖ ≤ ‖S‖ and H(X, Y) is a Banach lattice.
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Proposition 2. Let X be a vector space and Y be a Riesz space. Then

(a) the space △SL(X, Y) is a Riesz subspace of H(X, Y);

(b) if X is a normed space and Y be a normed Riesz space, then △SL(X, Y) is a normed

Riesz space.

Proof. (a) The space △SL(X, Y), which is included in H(X, Y), is partially ordered by the natu-

ral order inducted by Y. Consider T, S in △SL(X, Y). Then, there are T1, T2, S1, S2 in SL(X, Y)

such that

T = T1 − T2, S = S1 − S2.

For all x in X we define T ∨ S by

(T ∨ S)(x) = T(x) ∨ S(x).

Using for x, y, z in X the identity x ∨ y + z = (x + z) ∨ (y + z), we obtain

(T ∨ S)(x) = (T1 − T2)(x) ∨ (S1 − S2)(x)

= (T1 + S2)(x) ∨ (S1 + T2)(x)− (T2 + S2)(x) = T̃(x)− S̃(x)

with T̃, S̃ ∈ SL(X, Y), where

T̃ = (T1 + S2) ∨ (S1 + T2) and S̃ = T2 + S2.

(b) It is clear that △SL(X, Y) is a normed Riesz space with the norm induced by the stan-

dard norm of H(X, Y) on △SL(X, Y), i.e. by the norm ‖T‖△SL(X,Y) = sup
‖x‖≤1

‖T(x)‖.

Proposition 3. Let X be a vector space and Y be a Dedekind complete Riesz space. Then

H(X, Y) is also a Dedekind complete Riesz space.

Proof. Let M ⊂ H(X, Y) be a nonempty subset, which is upper bounded. Then there is

S ∈ H(X, Y) such that for all T ∈ M we have T ≤ S, that is for all T ∈ M and all x ∈ X

we have T(x) ≤ S(x). This implies that for all x ∈ X the set {T(x) : T ∈ M} is upper bounded

by S(x) ∈ Y. Since Y is a Dedekind complete Riesz space, the supremum of {T(x) : T ∈ M}

exists in Y. We can put now R(x) = sup{T(x) : T ∈ M}. It is clear that R is a positively

homogeneous operator.

Remark 1. For all T = P − Q in △SL(X, Y) there is ϕT ∈ SL(X, Y) and ϕT super linear

(i.e. −ϕT sublinear) such that ϕT ≤ T ≤ ϕT and ϕT(−x) = ϕ−T(x) (respectively ϕT(−x) =

ϕ−T(x)) for all x in X. It suffices to define ϕT, ϕT by

ϕT(x) = P(x) + Q(−x), ϕT(x) = −P(−x)− Q(x)

and use the inequality (1).

Definition 1. Let T ∈ △SL(X, Y) be an operator between two Riesz spaces. The operator T

is said to be order bounded if T carries order bounded subsets of X to order bounded subsets

of Y.
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Definition 2. Let T ∈ △SL(X, Y) be an order bounded operator. Then T is said to be

(1) order continuous if for any downwards directed set D in E having infimum the null

element (i.e. D ↓ 0) we have inf(|T(x)|, x ∈ D) = 0 in Y;

(2) σ-order continuous if for all xn ↓ 0 in X we have in Y

inf(|T(xn)|, n ≥ 0) = 0.

We denote by

△SLb(X, Y) = {T ∈ △SL(X, Y), T order bounded},

△SLco(X, Y) = {T ∈ △SL(X, Y), T order continuous}.

It should be clear that all these collections are real vector spaces under the usual pointwise

algebraic operations.

Proposition 4. The set △SLb(X, Y) is a Riesz subspace of △SL(X, Y).

Proof. Consider T1, T2 in △SLb(X, Y), (α, β) in R
2 and α ≤ x ≤ β. Then

|(αT1 + βT2)(x)| ≤ |α||T1(x)|+ |β||T2(x)| ≤ |α|c1 + |β|c2 = c.

This implies that αT1 + βT2 ∈ △SLb(X, Y) and hence T1 ∨ T2 ∈ △SLb(X, Y) because

T1 ∨ T2 = 1
2(T1 + T2 + |T1 − T2|). Consequently, △SLb(X, Y) is a Riesz subspace of the Riesz

space △SL(X, Y).

3 THE ADJOINT OF POSITIVELY HOMOGENEOUS OPERATORS

Definition 3. Let X, Y be two Riesz spaces. Put

△rSL(X, Y) = {T1 − T2 : T1, T2 ∈ (SL(X, Y))+} ⊂ △SL(X, Y).

A sublinear operator T ∈ SL(X, Y) is said to be regular if T ∈ △rSL(X, Y).

We denote by

SLi(X, Y) = {T ∈ SL(X, Y) : T increasing},

△SLi(X, Y) = {T1 − T2 : T1, T2 ∈ SLi(X, Y)}

= SLi(X, Y)− SLi(X, Y),

Li(X, Y) = {T ∈ L(X, Y) : Tincreasing},

△Li(X, Y) = {T1 − T2 : T1, T2 ∈ Li(X, Y)}

= Li(X, Y)− Li(X, Y),

and we put X′
i = △Li(X, R), X′

i,s = △SLi(X, R).

Proposition 5. The spaces △rSL(X, Y),△SLi(X, Y) are Riesz subspaces of △SL(X, Y).
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Proof. The set △rSL(X, Y) is a subspace of △SL(X, Y). Further, if T1, T2 ∈ △rSL(X, Y), then

there is P1, Q1, P2, Q2 ∈ (SL(X, Y))+ such that T1 = P1 − Q1 and T2 = P2 − Q2. We have

T1 ∨ T2 = (P1 + Q2) ∨ (P2 + Q1)− (Q1 + Q2), which is in △rSL(X, Y) because

(P1 + Q2) ∨ (P2 + Q1), (Q1 + Q2) ∈ (SL(X, Y))+ .

The same for △SLi(X, Y).

Proposition 6. The spaces △rSL(X, Y),△SLi(X, Y) are Riesz subspaces of △SL(X, Y).

Proof. The set △rSL(X, Y) is a subspace of △SL(X, Y). Further, if T1, T2 ∈ △rSL(X, Y), then

there is P1, Q1, P2, Q2 ∈ (SL(X, Y))+ such that T1 = P1 − Q1 and T2 = P2 − Q2. We have

T1 ∨ T2 = (P1 + Q2) ∨ (P2 + Q1)− (Q1 + Q2), which is in △rSL(X, Y) because

(P1 + Q2) ∨ (P2 + Q1), (Q1 + Q2) ∈ (SL(X, Y))+ .

The same for △SLi(X, Y).

Remark 2. 1) Any linear operator is a regular sublinear operator. Indeed, if u ∈ L(X, Y), then

u = u+ − u− with u+(x) = 0 ∨ u(x), u−(x) = 0 ∨ (−u(x)), which are positive sublinear

operators.

2) The existence of the regular sublinear operators (not linear) is assured by the fact that if

T ∈ SL(X, Y) such that |T| ∈ SL(X, Y), then T is regular

T = T+ − T− = 2T+ − |T| (2T+, |T| ∈ (SL(X, Y))+).

As example, consider α, β ∈ R
+ such that α > β and T : R −→ R defined by

T(x) =

{
αx, if x ≥ 0,

βx, if x < 0.

Then T is sublinear (T(x) = (αx) ∨ (βx)) and |T| also because

|T|(x) = |T(x)| = (αx) ∨ (−βx).

Lemma 1 ([6, Lemma 21.3]). Let E be an ordered vector space, and let A, B be two subsets of E

such that inf A = x0, inf B = y0. Then

x0 + y0 = inf(A + B) = inf{a + b such that a ∈ A, b ∈ B}.

Proposition 7. Let X, Y be two Riesz spaces. Put

SLo(X, Y) = {T ∈ SLi(X, Y) such that T order continuous},

△SLo(X, Y) = SLo(X, Y)− SLo(X, Y).

Then

(a) the set SLo(X, Y) is a convex cone;

(b) the space △SLo(X, Y) ⊂ △SLco(X, Y) is an order ideal.
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Proof. (a) Let D ↓ 0, and p, q ∈ SLo(X, Y), then (p + q)(D) is upwards directed such that

(p + q)(D) ↓ 0. Indeed, if x1, x2 ∈ D, then there is x3 ∈ D such that x3 ≤ x1 and x3 ≤ x2. This

implies that (p + q)(x3) ∈ (p + q)(D). Thus

(p + q)(x3) ≤ (p + q)(x1) and (p + q)(x3) ≤ (p + q)(x2).

Let h be the infimum of (p + q)(D), then for all x1, x2 ∈ D there is x3 ∈ D such that

h ≤ (p + q)(x3) ≤ p(x1) + q(x2) for all x1, x2 ∈ D.

We have

h ≤ inf{p(x1) + q(x2), x1, x2 ∈ D}

≤ inf{p(x1), x1 ∈ D}+ inf{q(x2), x2 ∈ D }

≤ inf{|p(x1)|, x1 ∈ D}+ inf{|q(x2)|, x2 ∈ D} ≤ 0.

Consequently,

inf{|(p + q)(x)|, x ∈ D} ≤ inf{|p(x)| + |q(x)|, x ∈ D}

≤ inf{p(x) + q(x), x ∈ D} ≤ 0.

It is clear that λp ∈ SLo (X, Y) for all λ ∈ R
+ and all p ∈ SLo(X, Y). Furthermore

inf{|(p ∨ q)(x)|, x ∈ D} = inf{(p ∨ q)(x), x ∈ D}

≤ inf{(p + q)(x), x ∈ D} ≤ 0.

(b) Let T ∈ △SLo(X, Y). Then T = p − q with p, q ∈ SLo(X, Y). Let D ↓ 0. We have

|p − q|(x) ≤ |p(x)| + |q(x)| ≤ p(x) + q(x) for all x ∈ D.

So,

inf{|(p − q)(x)|, x ∈ D} ≤ inf{(p + q)(x), x ∈ D} ≤ 0.

Consequently, T ∈ △SLco(X, Y).

Let now D ↓ 0. Assume that |T| ≤ |S|, S ∈ △SLo(X, Y), then

inf{|T|(x), x ∈ D} ≤ inf{|S|(x), x ∈ D} ≤ 0.

This ends the proof.

In the sequel, we extend the notion of adjoint operator on some spaces defined above. Let

X be a Banach space and Y be a Banach lattice. Put

X′ = L(X, R),

X∗ = L(X, R),

X′
∆
= △SL(X, R),

X∗
∆
= △SL(X, R),

H′(X) = H(X, R),

H∗(X) = H(X, R).

We have X′ ⊂ X′
∆
⊂ H′(X) and X∗ ⊂ X∗

∆
⊂ H∗(X).
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Theorem 1. Let X, Y be two Riesz spaces and u be in L(X, Y). Then there exists an ũ′ in

L(H′(Y), H′(X)) such that ũ′ = u′ on Y′ and ũ′(ϕ) ≤ |ϕ ◦ u| for all ϕ ∈ H′(Y), where u′ is the

adjoint operator of u.

Proof. Let u be in L(X, Y), the adjoint operator of u is defined by

u′ : Y′ −→ X′ ⊂ H′(X)

such that

u′(ϕ) = ϕ ◦ u for all ϕ ∈ Y′.

Let now P ∈ SL(H′(Y), H′(X)) be defined by

P(ϕ) = |ϕ ◦ u|.

We have

u′(ϕ) = ϕ ◦ u ≤ |ϕ ◦ u| = P(ϕ) for all ϕ ∈ Y′.

By the Hahn-Banach theorem (the analytic form), there is ũ′ ∈ L(H′(Y), H′(X)) such that

ũ′ = u′ on Y′ and

ũ′(ϕ) ≤ P(ϕ) ≤ |ϕ ◦ u|

for all ϕ ∈ H′(Y) and this completes the proof.

Theorem 2. Let X, Y be two Banach spaces and u be in L(X, Y). Then there exists an ũ′ in

L(H∗(Y), H∗(X)) such that ũ′ = u∗ on Y∗ and ‖ũ′‖ = ‖u∗‖ = ‖u‖. In this case ũ′ is denoted

by ũ∗.

Proof. Let u be in L(X, Y). By Theorem 1 there is ũ′ in L(H′(Y), H′(X)) such that ũ′ = u∗ on

Y′ and ũ′(ϕ) ≤ |ϕ ◦ u| for all ϕ ∈ H′(Y). On the other hand, because ũ′(ϕ) ≤ |ϕ ◦ u| we obtain

|ũ′(ϕ)| ≤ |ϕ ◦ u| and hence for all ϕ ∈ H∗(Y)

‖ũ′(ϕ)‖ ≤ ‖ϕ ◦ u‖ ≤ ‖u‖‖ϕ‖.

So, ũ′ ∈ L(H∗(Y), H∗(X)). It remains to show that ‖ũ′‖ = ‖u‖. Since ‖ũ′(ϕ)‖ ≤ ‖u‖‖ϕ‖,

we conclude that ‖ũ′‖ ≤ ‖u‖. For the converse inequality, we know that ‖u∗‖ = ‖u‖, hence

‖u‖ = ‖u∗‖ = sup
ϕ∈BY∗

‖u∗(ϕ)‖

= sup
ϕ∈BY∗

‖ũ′(ϕ)‖ (because ũ′
�Y∗ = u∗)

≤ sup
ϕ∈BH∗(Y)

‖ũ′(ϕ)‖ (because BY∗ ⊂ BH∗(Y))

= ‖ũ′‖

and then the theorem is proved.

Now, we extend the notion of adjoint operator to positively homogeneous operators.

Definition 4. Let X, Y be two Riesz spaces and T ∈ H(X, Y). We define the adjoint of T by

T′
h : H′(Y) −→ H′(X)

ϕ 7−→ T′
h(ϕ) = ϕ ◦ T

such that T′
h(ϕ)(x) = ϕ ◦ T(x).
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Proposition 8. Let X, Y be two Banach spaces and T ∈ H(X, Y). Then T′
h ∈ L(H∗(Y), H∗(X))

such that ‖T‖ = ‖T′
h‖. In this case T′

h is denoted by T∗
h .

Proof. Consider T in H(X, Y). We have for all ϕ ∈ H∗(Y)

‖T′
h(ϕ)‖ = ‖ϕ ◦ T‖ ≤ ‖ϕ‖‖T‖.

So, T′
h ∈ L(H∗(Y), H∗(X)). To show that ‖T‖ = ‖T′

h‖, we first consider the mapping

i : x ∈ X 7−→ i(x) ∈ H∗∗(X) such that

i(x) : H∗(X) −→ R,

ϕ 7−→ (i(x), ϕ) = 〈ϕ, x〉.

Then i is such that ‖i(x)‖ = ‖x‖ for all x ∈ X. Indeed,

‖i(x)‖ = sup
ϕ∈BH∗(X)

‖(i(x), ϕ)‖

= sup
ϕ∈BH∗(X)

‖〈ϕ, x〉‖

≤ ‖x‖.

Conversely

‖x‖ = sup
ξ∈BX∗

‖〈ξ, x〉‖ ≤ sup
ϕ∈BH∗(X)

‖〈ϕ, x〉‖ (because BX∗ ⊂ BH∗(X))

≤ sup
ϕ∈BH∗(X)

‖(i(x), ϕ)‖ ≤ ‖i(x)‖.

Finally, we have

‖T′
h‖ = sup

ϕ∈BH∗(Y)

‖T′
h(ϕ)‖ = sup

ϕ∈BH∗(Y)

‖ϕ ◦ T‖

= sup
ϕ∈BH∗(Y)

( sup
x∈BX

‖〈ϕ ◦ T, x〉‖)

= sup
ϕ∈BH∗(Y)

( sup
x∈BX

‖〈ϕ, T(x)〉‖)

= sup
x∈BX

( sup
ϕ∈BH∗(Y)

‖〈ϕ, T(x)〉‖)

= sup
x∈BX

( sup
ϕ∈BH∗(Y)

‖(i(T(x)), ϕ)‖)

= sup
x∈BX

‖i(T(x))‖

= sup
x∈BX

‖T(x)‖ = ‖T‖.

This completes the proof.

Definition 5. Let X, Y be two Riesz spaces. Consider T ∈ △SL(X, Y) with T = P − Q. We

define a linear operator on Y′
i,s denoted T′

i by

T′
i : Y′

i,s −→ X′
∆

,

T1 − T2 7−→ T′
i (T1 − T2) = T1 ◦ P + T2 ◦ Q − (T1 ◦ Q + T2 ◦ P).
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Note that this operator is well defined. Indeed, if S ∈ Y′
i,s such that S = S1 − S2 = S3 − S4,

then

T′
i (S1 − S2) = S1 ◦ P + S2 ◦ Q − (S1 ◦ Q + S2 ◦ P)

= (S1 − S2) ◦ P − (S1 − S2) ◦ Q

= (S3 − S4) ◦ P − (S3 − S4) ◦ Q = T′
i (S3 − S4).

Proposition 9. Let X, Y be two Riesz spaces, then there is T̃′
i in L(H′(Y), H′(X)) such that

T̃′
i = T′

i on Y′
i,s.

Proof. We define a sublinear operator S : H′(Y) −→ H′(X) by

S(ϕ) = |ϕ ◦ P|+ |ϕ ◦ Q|.

For all ϕ = ϕ1 − ϕ2 ∈ Y′
i,s we have

T′
i (ϕ) = T′

i (ϕ1 − ϕ2) = ϕ1 ◦ P + ϕ2 ◦ Q − (ϕ1 ◦ Q + ϕ2 ◦ P) = (ϕ1 − ϕ2) ◦ P − (ϕ1 − ϕ2) ◦ Q

≤ |(ϕ1 − ϕ2) ◦ P|+ |(ϕ1 − ϕ2) ◦ Q| = S(ϕ).

The Hahn-Banach theorem implies that T′
i can be extended to a linear operator

T̃′
i ∈ L(H′(Y), H′(X)) such that T̃′

i (ϕ) ≤ S(ϕ) for all ϕ ∈ H′(Y).

Remark 3. If T ∈ L(X, Y), then we have T̃′ = T∗
h on Y′, where T′

h denote the operator defined

in Definition 4. If T ∈ △SL(X, Y), then we have T̃′
i = T′

h on Y′
i .

Proposition 10. Let X, Y be two Riesz spaces and T be in (SL(X, Y))+ . Then the following

properties are satisfied.

(1) We have |T|′i ≤ |T′
i |.

(2) The restriction of T′
i to SLi(Y, R) verifies |T′

i | = |T|′i .

Proof. (1) Let T ∈ (SL(X, Y))+ and ϕ ∈ Y′
i,s, then there is ϕ1, ϕ2 ∈ SLi(X, Y) such that

ϕ = ϕ1 − ϕ2 and

|T′
i |(ϕ) = |T′(ϕ)| = |ϕ1 ◦ T − ϕ2 ◦ T| ≥ ϕ1 ◦ T − ϕ2 ◦ T

≥ ϕ1 ◦ |T| − ϕ2 ◦ |T| ≥ |T|′i(ϕ).

(2) Let T ∈ (SL(X, Y))+ and ϕ ∈ SLi(Y, R) we have

|T′
i |(ϕ) = |T′(ϕ)| = |ϕ(T)| = ϕ(T) (because ϕ ↑ and T ≥ 0)

= ϕ(|T|) = |T|′i(ϕ)

and this completes the proof.
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У цiй статтi дослiджуються деякi класи нелiнiйних операторiв. Нехай SL(X, Y) — множина

всiх сублiнiйних операторiв мiж двома просторами Рiса X та Y. Це є опуклий конус в про-

сторi H(X, Y) всiх позитивно однорiдних операторiв. У цiй статтi дослiджено деякi простори,

породженi цим конусом, зокрема ми дослiджуємо деякi властивостi, якi добре вiдомi в теорiї

просторiв Рiса, такi як порядкова неперервнiсть, порядкова обмеженiсть та iн. Насамкiнець,

ми пробуємо узагальнити концепцiю спряженого оператора. Спочатку, використовуючи ана-

лiтичну форму теореми Гана-Банаха, ми пристосовуємо поняття спряженого оператора до

категорiї позитивно однорiдних операторiв, а потiм застосовуємо його до класу операторiв,

породжених сублiнiйними операторами.

Ключовi слова i фрази: простiр Рiса, банахова ґратка, однорiдний оператор, сублiнiйний опе-

ратор, порядково неперервний оператор.


