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STOROZH O.G.

ON AN APPROACH TO THE CONSTRUCTION OF THE FRIEDRICHS AND

NEUMANN-KREIN EXTENSIONS OF NONNEGATIVE LINEAR RELATIONS

Let L0 be a closed linear nonnegative (probably, positively defined) relation ("multivalued op-

erator") in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary

triples) and corresponding Weyl functions and Kochubei-Strauss characteristic ones, the Friedrichs

(hard) and Neumann-Krein (soft) extensions of L0 are constructed.

It should be noted that every nonnegative linear relation L0 in a Hilbert space H has two extremal

nonnegative selfadjoint extensions: the Friedrichs extension LF and the Neumann-Krein extension

LK, satisfying the following property:

(∀ε > 0)(LF + ε1)−1 ≤ (L̃ + ε1)−1 ≤ (LK + ε1)−1

in the set of all nonnegative selfadjoint subspace extensions L̃ of L0.

The boundary triple approach to the extension theory was initiated by F. S. Rofe-Beketov,

M. L. and V. I. Gorbachuk, A. N. Kochubei, V. A. Mikhailets, V. O. Dercach, M. N. Malamud,

Yu. M. Arlinskii and other mathematicians.

In addition, it is showed that the construction of the mentioned extensions may be realized in a

more simple way under the assumption that initial relation is a positively defined one.
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INTRODUCTION

Beginning with the work by R. Arens [2], the efforts of many authors were directed at

the studying of linear relations (multivalued operators), in particular, at the investigations

concerning the extension theory of the linear relations in Hilbert space (see, e.g., [4, 5, 8, 9]). A

number of problems arising in the mentioned theory have been solved in terms of the so called

boundary value spaces (boundary triples) and corresponding Weyl functions (see Definitions

1, 2 and [3, 6, 7, 10, 11]).

Let ⊕ and ⊖ be the symbols of orthogonal sum and orthogonal complement, respectively.

Explain that under (closed) linear relation in H, where H is a fixed complex Hilbert space

equipped with the inner product (·|·) and norm ‖·‖ , we understand a (closed) linear manifold

in H2 de f
= H ⊕ H and that in the theory of linear relations every linear operator is identified

with its graph. Each such relation T has the inverse T−1 de f
=

{
(y′, y) ∈ H2 | (y, y′) ∈ T

}
and

the adjoint T∗ = H2 ⊖ JT
(
= J(H2 ⊖ T)

)
, where ∀ h1, h2 ∈ H J (h1, h2)

de f
= (−ih2, ih1). This

УДК 513.88
2010 Mathematics Subject Classification: 47A06, 47A56, 47B25.

c© Storozh O.G., 2018



388 STOROZH O.G.

circumstance (the inverse and adjoint existence) makes the theory of linear relations extremely

useful in the study of various problems.

Remind that a linear relation S in H is said to be nonnegative (in symbols S ≥ 0) if for all

(y, y′) ∈ S (y′|y) ≥ 0, positively defined (in symbols S ≫ 0) if, in addition,

inf S
de f
= inf

{(
u′|u

)
|
(
u, u′

)
∈ S, ‖u‖ = 1

}
> 0,

and selfadjoint if S = S∗.

In this paper the role of initial object is played by a closed linear nonnegative relation L0 in

H. It is known [5] that there exist selfadjoint extensions (probably, subspace ones) LF and LK

of L0 satisfying the following property:

selfadjoint extension L1 of L0 is nonnegative iff for any ε > 0

∀y ∈ H
(
(LF + ε1H)

−1 y|y
)
≤

(
(L1 + ε1H)

−1 y|y
)
≤

(
(LK + ε1H)

−1 y|y
)

. (1)

In the case when L0 is a densely defined operator, this fact was proved by M. Krein [14].

The extensions LF and LK are called the Friedrichs and Neumann-Krein extensions of L0,

respectively. If L0 is a positively defined, the first of the inequalities (1) holds under ε = 0, too.

The aim of this article is to construct the mentioned extensions in the terms of boundary

value spaces and corresponding Weyl functions. We widely use the results exposed in [1, 3, 6,

7, 16, 19], but our approach is different from ones of these papers. In particular, we (as in our

previous articles [17] and [18]) deal with Cayley transforms U(λ) of Weyl functions (Strauss-

Kochubei characteristic functions in the sence of [13] and [20]). But the papers are mentioned

above devoted to the investigation of U(λ) under Imλ 6= 0, while we are interested to consider

the behaviour of U(λ) in the case when λ ∈ R, first of all in the situations as λ → −0 and

λ → −∞.

1 NOTATIONS AND PRELIMINARY RESULTS

Through this paper we use the following notations:

D(T), R(T), ker T are, respectively, the domain, range, and kernel of a (linear) relation (in

partial, operator) T;

D(T) = {y ∈ H| (∃ y′ ∈ H) : (y, y′) ∈ T} ; R(T) = {y′ ∈ H| (∃ y ∈ H) : (y, y′) ∈ T} ;

ker T = {y ∈ H| (y, 0) ∈ T} ;

if λ ∈ C then T − λ = {(y, y′ − λy) | (y, y′) ∈ T} , and so

ker(T − λ) = {y ∈ H| (y, 0) ∈ T − λ} (= {y ∈ H| (y, λy) ∈ T});
∧

ker(T − λ) = {(y, λy : y ∈ ker(T − λ)} ;

ρ(T) = {λ ∈ C| ker(T − λ) = {0}, R(T − λ) = H} (the resolvent set of T);

1X is the identity in X.

If X, Y are Hilbert spaces then (·|·)X is the symbol of scalar product in X, B(X, Y) is the set

of linear bounded operators A : X → Y such that D(A) = X; B(X)
de f
= B(X, X).

If Ai : X → Yi (i = 1, 2) are linear operators then the notation A = A1 ⊕ A2 means that

Ax =

(
A1x

A2x

)
for every x ∈ X. Let s − lim denotes the strong limit.

Under L0 we understand the linear relation described in the Introduction, and L
de f
= L∗

0 .
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Definition 1. Let H be a Hilbert space and Γ1, Γ2 ∈ B (L,H). The triple (H, Γ1, Γ2) is called

the boundary value space (BVS) for the linear relation L0 if

R(Γ1 ⊕ Γ2) = H⊕H, ker(Γ1 ⊕ Γ2) = L0

and for any ŷ = (y, y′) , ẑ = (z, z′) ∈ L we have

(
y′|z

)
−

(
y|z′

)
= (Γ1ŷ|Γ2ẑ)H − (Γ2ŷ|Γ1ẑ)H.

Through the paper we suppose that (the selfadjoint) relation L2
de f
= ker Γ2 is nonnegative,

and so ∀λ < inf L2 the following operators are correctly defined:

Lλ= (L2− λ)−1∈B(H), L̂λ=

(
Lλ

1H + λLλ

)
∈ B

(
H, H2

)
, L̃λ = (Lλ, 1H+λLλ)∈ B

(
H2, H

)
,

i.e. ∀y ∈ H L̂λy =

(
Lλy

y + λLλy

)
, ∀ŷ = (y, y′) ∈ H2 L̃λŷ = Lλy + (y′ + λLλy′)

(it is easy to see that R(L̂λ) = L2 and L̂∗
λ = L̃λ). Put

Zλ =
(
Γ1L̂λ

)∗
, Ẑλ =

(
Zλ

λZλ

)
.

Definition 2. A B(H)-valued function

M(λ) = Γ1Ẑλ (λ < inf L2)

is called the Weyl function of the relation L0 corresponding to its boundary value space

(H, Γ1, Γ2) .

Note that M(λ) = M(λ)∗.

Remark 1. The notion of BVS had been introduced at first in [12] under the assumption that L0

is a densely defined symmetric operator having equal defect numbers. In [16] this notion was

extended onto the case of nondensely defined Hermitian operators. The conception of Weyl

function corresponding to a given BVS was appeared in [6] and had found its development in

many papers (see, for example, [7, 10, 11] and references therein). It is easy to see that Defini-

tion 2 is equivalent to suitable defintions from the mentioned articles. It becomes clear after

analyzing the results of the monograph [15] (see also [17] and [18]).

Theorem 1. For arbitrary λ, µ ∈ (−∞, inf L2) M(λ)− M(µ)= (λ − µ)Z∗
λZµ

(
= (λ − µ) Z∗

µZλ

)
,

in particular, µ < λ implies M(λ)− M(µ) ≫ 0. Hence for any z < inf L2 there exist

s − lim
λ→−0

(M(λ)− M(z))−1 de f
= R0 (≥ 0) ,

s − lim
λ→−∞

(M(λ)− M(z))−1 de f
= R−∞ (≤ 0) .

Theorem 2. Let LA = ker(A1Γ1 + A2Γ2), where A1, A2 ∈ B(H) and

Aλ
de f
= A1M(λ) + A2 (λ < inf L2) .

If A−1
λ ∈ B (H) , then λ ∈ ρ (LA) and

(LA − λ)−1 = (L2 − λ)−1 − Zλ A−1
λ A1Z∗

λ. (2)
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Theorem 3. The linear relation L1 is a selfadjoint extension of L0 iff there exists a unitary

operator K ∈ B(H) such that L1 = ker [(K − 1H) Γ1 + i (K + 1H) Γ2] .

Put

L(λ) = L0

·
+

∧
ker (L − λ) (λ < inf L2) . (3)

Theorem 4. L(λ) = ker (Γ1 − M(λ)Γ2) .

Theorem 5. Suppose that z < inf L2, λ < inf L2 and z 6= λ. Then L(λ) is a selfadjoint relation

and z ∈ ρ(L(λ)). Moreover,

(LF − z)−1 = s − lim
λ→−∞

(
L(λ) − z

)−1
, (LK − z)−1 = s − lim

λ→−0

(
L(λ) − z

)−1
.

Remark 2. The results mentioned in Theorems 1–5 above are well known or are immediate

consequences of such ones (see, e. g., [1, 3, 5, 7, 9, 16]).

2 MAIN RESULTS

Let λ and z be as above. Before formulating the main results let us introduce the following

(defined on ρ(L2)) operator-functions by setting

R(λ) = (M(λ)− M(z))−1 , Ω±(λ) = (M(λ)± i) R(λ),

U(λ) = (M(λ)−i) (M(λ) + i)−1 .
(4)

It is easily to check by calculation that

U(λ) = Ω−(λ)Ω
−1
+ (λ), (5)

Ω±(λ) = 1H + (M(z)± i) R(λ), (6)

Ω
−1
± (λ) = 1H − (M(z)± i) (M(λ)± i)−1 . (7)

Lemma 1.

L(λ) = {ŷ ∈ L | (U(λ)− 1H) Γ1ŷ + i (U(λ) + 1H) Γ2ŷ = 0} . (8)

Proof. It is clear that (4) yields

(U(λ)− 1H) M(λ) = −i (U(λ) + 1H) . (9)

Let us denote (temporarily) the relation from the right side of (8) by L[λ]. Taking into ac-

count (9) we obtain the following:

ŷ ∈ L(λ) ⇒ Γ1ŷ − M(λ)Γ2 ŷ = 0 ⇒ (U(λ)− 1H) Γ1ŷ + i (U(λ) + 1H) Γ2ŷ = 0 ⇒ y ∈ L[λ].

Thus L(λ) ⊂ L[λ]. But L(λ), L[λ] are selfadjoint relations (see Theorem 3), therefore

L(λ) = L[λ].

Lemma 2. Let B and R be selfadjoint operators from B(H) and

Ω±
de f
= 1H + BR ± iR.

Then Ω
−1
± ∈ B(H).
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Proof. One can readily check by calculations that
(

B − i − Ω−

−(B + i) Ω+

)(
Ω

∗
− Ω

∗
+

B + i B − i

)
=

(
Ω

∗
− Ω

∗
+

B + i B − i

)(
B − i − Ω−

−(B + i) Ω+

)
=−2i1H⊕H,

in particular

Ω
∗
−Ω− = Ω

∗
+Ω+, (10)

Ω
∗
− (B − i)− Ω

∗
+ (B + i) = −2i1H, (11)

(B − i) Ω
∗
+ = Ω− (B − i) , (B + i) Ω

∗
− = Ω+ (B + i) . (12)

It follows from (10) that ‖Ω−h‖ = ‖Ω+h‖ for each h ∈ H. This yields that there exists an

isometry K : R(Ω−) → R(Ω+) such that Ω+ = KΩ−, consequently there exist K+, K− ∈

∈ B(H), satisfying the equalities Ω
∗
− = Ω

∗
+K+, Ω

∗
+ = Ω

∗
−K−. Thus R (Ω∗

−) = R (Ω∗
+) . Taking

into account (11) we see that R (Ω∗
−) + R (Ω∗

+) = H, therefore

R (Ω∗
−) = R (Ω∗

+) = H. (13)

The equalities (13) imply

ker Ω+ = ker Ω− = {0} . (14)

In view of (12) and (14) we obtain ker Ω
∗
− = ker Ω

∗
+ = {0} . To complete the proof it is sufficient

to apply (13).

Proposition 1. There exist the unitary operators U−∞, U0 ∈ B(H) defined as follows:

U−∞ = s − lim
λ→−∞

U(λ), U0 = s − lim
λ→−0

U(λ). (15)

Moreover,

U−∞ = (1H + (M(z)− i)R−∞)) (1H + (M(z) + i)R−∞))−1 , (16)

U0 = (1H + (M(z)− i)R0)) (1H + (M(z) + i)R0))
−1 , (17)

where R−∞ and R0 are as in the Theorem 1.

Proof. It follows from Theorem 1, from (6) and from Lemma 2, applied to the operators

1H + BR ± iR with B = M(z), R = R−∞, that s − lim
λ→−∞

Ω±(λ) = 1H + (M(z)± i) R−∞

and the operators in the right side of the latter equality are invertible in B(H). Further, in view

of (7) we obtain
∥∥∥Ω

−1
+ (λ)

∥∥∥ ≤ 1 + ‖M(z) + i‖ ·
∥∥∥(M(λ) + i)−1

∥∥∥ .

On the other hand, using the elementary properties of the resolvent of a selfadjoint operator

we conclude that for each λ < inf L2

∥∥∥(M(λ) + i)−1
∥∥∥ ≤ 1. Thus the family

{
Ω

−1
+ (λ)| − ∞ < λ < inf L2

}

is uniformly bounded in B(H), therefore

s − lim
λ→−∞

Ω
−1
+ (λ)

(
= s − lim

λ→−∞

Ω+(λ)

)−1

= (1H + (M(z) + i) R−∞)
−1.

Whence using (5) we conclude that there exists the first limit in (15) and the equality (16)

holds. Similar arguments show that there exists the second limit in (15) and the equality (17)

holds.

Finally, taking into account (15) and the invertibility in B(H) of the operators in right sides

of (16)–(17), we conclude that the unitarity of U(λ) under λ < inf L2 yields the unitarity of

U−∞ and U0.
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Theorem 6.

LF = {ŷ ∈ L | (U−∞ − 1H) Γ1ŷ + i (U−∞ + 1H) Γ2ŷ = 0} , (18)

LK = {ŷ ∈ L | (U0 − 1H) Γ1ŷ + i (U0 + 1H) Γ2ŷ = 0} , (19)

where U−∞ and U0 are defined according to (15).

Proof. Applying (2) under A1 = 1H, A2 = −M(λ) and Theorem 4 we obtain

(
L(λ) − z

)−1
= (L2 − z)−1 − Zz (M(z)− M(λ))−1 Z∗

λ (λ, z < inf L2, z 6= λ)

(recall that L(λ) is defined by (3)). The latter equality together Theorem 1 and Theorem 5

implies

(LF − z)−1 = (L2 − z)−1 + ZzR−∞Z∗
z , (LK − z)−1 = (L2 − z)−1 + ZzR0Z∗

z . (20)

On the other hand, Theorem 3 shows that there exists an unitary operator K ∈ B(H) such that

L1 = ker [(K − 1H) Γ1 + i (K + 1H) Γ2] .

Applying Theorem 2 under A1 = (K − 1H) , A2 = i (K + 1H) we conclude that

(LF − z)−1 = (L2 − z)−1 − Zz [(K − 1H) M(z) + i (K + 1H)]
−1 (K − 1H) Z∗

z . (21)

Comparing (20) and (21) we see that

[(K − 1H) M(z) + i (K + 1H)]
−1 (K − 1H) + R−∞ = 0,

i. e. (multiplying this identity from left by the expression contained in square brackets)

K [1H + M(z)R−∞ + iR−∞] = 1H + M(z)R−∞ − iR−∞.

Whence using (16) we obtain K = U−∞. The relation (18) is proved. The proof of relation (19)

is analogous.

The construction of Friedrichs and Neumann-Krein extensions of L0 may be realized in a

more simple way in the case when L2 (and hence L0) is a positively defined relation. Before

considering this case note that the Theorem 5 implies

L0 ≫ 0 ⇒ L−1
F = s − lim

λ→−∞

(
L(λ)

)−1
. (22)

Further, put

B
de f
= s − lim

λ→−∞

(M(λ)− M(0))−1 . (23)

It follows from the Theorem 1 that the limit in (23) exists. Moreover, B ∈ B(H) and B ≤ 0.

Theorem 7. Assume that L2 ≫ 0 and put

γ1ŷ = Γ1ŷ − M(0)Γ2ŷ, (24)

γ2ŷ = Γ2ŷ − Bγ1ŷ ≡ −BΓ1ŷ + (1H + BM(0)) Γ2ŷ, (25)

where ŷ runs through L and B is defined according to (23). Then
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i) (H, γ1, γ2) is a BVS for L0;

ii) LF = ker γ2 ≡ {ŷ ∈ L | γ2ŷ = 0};

iii) LK = ker γ1 ≡ {ŷ ∈ L | γ1ŷ = 0} .

Proof. Since LK = L0

·
+

∧
ker L (see [5] and [3, Prop. 3.2.1]) the statement iii) is an immediate

consequence of (3) and Theorem 4 under λ = 0. Further, thinking as in the proof of Theorem

6 we obtain (
L(λ)

)−1
= L−1

2 + Z0 (M(λ)− M(0))−1 Z∗
0 (λ < 0),

L̃−1 = L−1
2 + Z0 [−BM(0) + (1H + BM(0))]−1 BZ∗

0 = L−1
2 + Z0BZ∗

0 ,

where L̃ = ker γ2. So, item ii) follows from (22) and (23).

Furthermore, (24), (25) may be written in the following form:

(
γ1

γ2

)
=

(
1H − M(0)

−B 1H + BM(0)

)(
Γ1

Γ2

)
. (26)

It is clear that the matrix operator in the right side of (26) is invertible in B (H ⊕ H) and

(
Γ1

Γ2

)
=

(
1H + M(0)B M(0)

B 1H

)(
γ1

γ2

)
.

Moreover, the equality

(
1H − M(0)

−B 1H + BM(0)

)(
0 1H
−1H 0

)(
1H − B

−M(0) 1H + BM(0)

)
=

(
0 1H
−1H 0

)

implies that for any ŷ, ẑ ∈ L (Γ1ŷ|Γ2ẑ)H − (Γ2ŷ|Γ1ẑ)H = (γ1ŷ|γ2ẑ)H − (γ2ŷ|γ1ẑ)H. Hence

(see [15] for the details) (H, γ1, γ2) is a boundary value space for L0.
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Сторож О.Г. Про один пiдхiд до побудови розширень Фрiдрiхса та Неймана-Крейна невiд’ємного лi-

нiйного вiдношення // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 387–394.

Нехай L0 — замкнене лiнiйне невiд’ємне (можливо, додатно визначене) вiдношення (“ба-

гатозначний оператор”) у комплексному гiльбертовому просторi H. У термiнах так званих

просторiв граничних значень (граничних трiйок) i вiповiдних функцiй Вейля та характеристи-

чних функцiй Кочубея-Штрауса побудовано розширення Фрiдрiхса (жорстке розширення) та

Неймана-Крейна (м’яке розширення) вiдношення L0.

Зазначимо, що кожне невiд’ємне лiнiйне вiдношення L0 у гiльбертовому просторi H має

два екстремальнi невiд’ємнi самоспряженi розширення: розширення Фрiдрiхса LF та розши-

рення Неймана-Крейна LK , якi володiють такою властивiстю:

(∀ε > 0)(LF + ε1)−1 ≤ (L̃ + ε1)−1 ≤ (LK + ε1)−1

на множинi всiх невiд’ємних самоспряжених розширень-вiдношень L̃ вiдношення L0.

Розвивається пiдхiд, заснований на поняттi граничної трiйки. Цей пiдхiд був започатко-

ваний Ф. С. Рофе-Бекетовим, М. Л. Горбачуком та В. I. Горбачук, А. Н. Кочубеєм,

В. А. Михайлецем, В. О. Деркачем, М. Н. Маламудом, Ю. М. Арлiнським та iншими мате-

матиками.

Показано, що побудова згаданих розширень може бути реалiзованою простiшим шляхом

у випадку, коли вiдношення L0 є додатно визначеним.

Ключовi слова i фрази: гiльбертiв простiр, вiдношення, оператор, розширення, простiр гра-

ничних значень.


