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ON CENTRAL AUTOMORPHISMS OF CROSSED MODULES

A crossed module (T, G,d) consist of a group homomorphism d : T — G together with an ac-
tion (g,t) — 8t of G on T satisfying 9(8t) = ga(t)g~ ' and °®)t = sts~1, forallg € Gand s, t € T.
The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial ho-
motopy theory. Crossed modules and its applications play very important roles in category theory,
homotopy theory, homology and cohomology of groups, algebra, K-theory etc. In this paper, we
define Adeny-Yen crossed module map and central automorphisms of crossed modules. If C* is the
set of all central automorphisms of crossed module (T, G, 9) fixing Z(T, G, d) element-wise, then
we give a necessary and sufficient condition such that C* = I,,(T, G,0). In this case, we prove
Autc(T,G,0) = Hom((T,G,9),Z(T,G,d)). Moreover, when Autc(T,G,9) = Z(1,,(T,G,09))), we
obtain some results in this respect.
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1 INTRODUCTION

The term crossed module was introduced by J. H. C. Whitehead in his work on combina-
torial homotopy theory [9]. So many mathematicians and many areas of mathematics have
used crossed modules such as homotopy theory, homology and cohomology of groups, alge-
bra, K-theory etc. Actor crossed module of algebroid was defined by Alp in [3]. Actions and
automorphisms of crossed modules were studied by K. Norrie [2,8]. Tensor product modulo
q of two crossed modules defined by Conduché and Rodriguez-Fernandez [4]. Concepts of
g-commutator and of g-center of a crossed module, g4 being a nonnegative integer, were de-
fined by J.L. Doncel Juurez and A.R. Crondjeanl.-Valcarcel [6]. Adney and Yen in [1] obtained
several sufficient conditions for a non-abelian p-group and introduced a special map. By using
Adney-Yen map, in this paper, we introduce the concept of Adney-Yen crossed module map
and central automorphisms of a crossed module and obtain some results in this respect.

2 CENTRAL AUTOMORPHISMS OF A CROSSED MODULE

We recall some basic definitions and properties of the category of crossed modules. A
crossed module (T, G, d) consists of a group homomorphism d : T — G called the boundary
map, together with an action (g,#) — &t of G on T satisfying (1) 9($t) = ¢d(t)g~! and (2)
)t = sts~ ! for allg € Gands, t € T.
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The group automorphism AutN of a group N comes equipped with the canonical homo-
morphism T : N — Aut(N) which has image InnN, the group of inner automorphism of
N. The inner automorphism 7 is one of the standard examples of a crossed module. Other
standard examples of crossed modules are: the inclusion of a normal subgroup N — G; a
G-module M with the zero homomorphism M — G; any epimorphism E — G with cen-
tral kernel. We note at once certain consequences of the definition of a crossed module:
(1) the kernel kerd lies in Z(T), the center of T; (2) the image d(T) is a normal subgroup of G;
(3) the action of G on T induces a natural (G/9d(T))-module structure on Z(T); and kerd is a
submodule of Z(T).

We say that (S, H,d') is a sub-crossed module of the crossed module (T, G, 9) if

- Sisasubgroup of T, and H is a subgroup of G;

- 9 is the restriction of 9 to S;

- the action of H on S is included by the action of G on T.
A sub-crossed module (S, H,0) of (T, G, d) is normal if

- H is a normal subgroup of G;

-8 ecSforallge G,s€S;

- M=l e Sforallh e H,t € T.

In this case we consider the triple (T/S,G/H, d), where d : T/S — G/H is induced by 9, and
the new action is given by 87 (tS) = (&t)S. This is the quotient crossed module of (T, G,d)
by (S,H,d). A crossed module morphism («, ¢) : (T,G,0) — (T’,G,d’) is a commutative
diagram of homomorphisms of groups

T— % 7

y P
/

G 7 G

such that for all x € G and t € T; we have a(*t) =?() a(t). We say that (&, ¢) is an isomor-
phism if « and ¢ are both isomorphisms. We denote the group of automorphisms of (T, G, 9)
by Aut(T,G,9d). The kernel of the crossed module morphism (&, ¢) is the normal sub-crossed
module (kera, kerg,d) of (T, G,0), denoted by ker(x, ¢). The image im(ff,”) of («, ¢) is the
sub-crossed module (imff,im’,d") of (T/,G’,d"). For a crossed module (T, G,d), denote by
Der(G, T) the set of all derivations from G to T, i.e., all maps x : G — T such that for all
x,y € G, x(xy) = x(x)*x(y). Each such derivation x defines endomorphisms ¢ = (0y) and
6(= 6y) of G, T respectively, given by o(x)) = dx(x)x and 0(t) = x9(t)t, where cd(t) = 90(t),
Ox(x) = xo(x) and 6(*t) = “(¥g(t). We define a multiplication in Der(G, T) by the for-
mula x1 0 xo = x, where x(x) = x102(x)x2(x) (= 01 x2(x)x1(x)). This turns Der(G, T) into
a semigroup with identity element the derivation which maps each element of G into iden-
tity element of T. Moreover, if x = x1 © X2, then ¢ = 070,. The whitehead group D(G,T) is
defined to be the group of units of Der(G, T), and the elements of D(G, T') are called regular
derivations.
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Proposition 1. The following statements are equivalent: (1) x € D(G,T); (2) ¢ € Aut(G),;
(3) 0 € Aut(T).

The map A : D(G,T) — Aut(T, G,0) defined by A(X) = (c,6) is a homomorphisms of
groups and there is an action of Aut(T, G,d) on D(G, T) given by (*?x = ax¢~! which makes
(D(G,T),Aut(T,G,0),A) a crossed module. This crossed module is called the actor crossed
module A(T, G, d) of the crossed module (T, G, 0d). There is a morphism of crossed modules
(n,v) : (T,G,0) — A(T,G,0) defined as follows. If t € T, then 1; : G — T defined by
nt(x) = t*t~1is a derivation and the map t — #; defines a homomorphism 5 : T — D(G, T)
of groups. Let v : G — A(T, G, 9) be the homomorphism y — («y, ¢y), where &, (t) = ¥t and
@y(x) =yxy lfort € Tandy,x € G.

Definition 1. Let (T, G,d) be a crossed module. The center of (T, G,9d) is the crossed mod-
ule kernel Z(T,G,9) of (,7). Thus, Z(T,G,9) is the crossed module (T®, Stg(T) N Z(G),d),
where T® denotes the fixed point subgroup of T, thatis, T® = {t € T| *t =t forall x € G}.
Stg(T) is the stabilizer in G of T, that is, Stg(T) = {x € G| *t =t forallt € T} and Z(T) is
the center of G. Note that TC is central in T.

Definition 2. Let (T, G, 0) be a crossed module. n-center of (T, G,9), Z"(T,G) for n a nonneg-
ative integer is the crossed module <(TG)”, Z"(G) N Stg(T), a), where

(TSY' = {t € T|t" =1 and 8t =t forall g € G},

ZMG) ={g€Z(G) |g" =1},
Stg(T) ={g€G|8t=t forall t € T}.

The n-center of (T,G,0) is a normal crossed submodule and is called the n-central crossed
submodule of (T, G,0).

Let (T, G,0) be a crossed module, (T’,G’,9) be a normal sub-crossed module of it, and
(v, ¢) € Aut(T,G,9). Then (a, ¢) induces a (&, ¢) in Aut (T/T',G/G’,0) such thatd : T/T" —
G/G,o(tT") =a(t)T'.

Definition 3. Let (T,G,0) be a crossed module, Z(T,G) be the center of it and (a,¢) €
Aut(T,G,9). If (&, ¢), induced by («, ) in Aut (T/TC,G/Stc(T) N Z(G),d), is identity, then
(a, @) is called central automorphism of crossed module (T, G, 9).

Theorem 1. If (T, G, d) has trivial n-center, then its actor A(T, G,d) also has trivial n-center.

Proof. Let us assume that Z"(T,G,d) = 1 so that (T¢)" = 1 and Z"(G) N Stg(T) = 1. Now
the n-center of A(T, G, 9) is the crossed module

A(T,G,3) = (D(G, T), Aut(T, G,3),A), Z"(A(T, G,3))
= ((n(, T)Aut(T'Gﬁ))" 2" (At(T, G,8)) O Stau(r,c.0)(D(G, T), A)

Aut(T,G,9)\" (@) _
So, assume that x € (D(G,T) . Then, for all (&, ¢) € Aut(T,G,9), x = x and

X" = 1. In particular, this is true for all (xy, ¢,), where y € G. But (, ¢,), = Hy(y)-1 © X- SO

—1x

(4 @y) = x implies that My = lforally € G. Then, we have x(y) " “x(y) = 1, for all
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x,y € G. Now, since (TC)" = 1, x is the trivial derivation, it follows that (D(G, T) <"‘y"Py>> )
Now, suppose that («,0) € Z"(Aut(T,G,9)) N Stauyt,c,0)(D(G, T)). Then (we)x = x for all
xD(G,T). In particular, <""9">17t = 1, for all t € T, that is Hat)y = 1, which implies that
t~la(t) € (TC)* = 1, forallt € T. Thus a = 17, the identity automorphism of T. Now
we have (a, ¢) € Z"(Aut(T,G,0)). Hence, for all y € G, («, ¢)(ay, ¢y) = (ay, ¢y)(a, ¢) and
(x, )" = 1 implying that 9@, = @, ¢ forally € G. So we obtain ¢(xyx~!) = ye(x)y~! for all
x,y € G. Since ¢ is an automorphism of G, it follows that y~'¢(y) € Z(G), forally € G. Now,
since (&, @) is a crossed module morphism, it follows that a(¥t) = ?Wa(t). But a” = 17 so
that ¥t = @(y)tforally € Gandt € T. Thus, y 'o(y) € Z"(G) N Stg(T) = 1so that ¢" = 1.
Therefore (a", ¢") = (17, 1¢), and this completes the proof. O

A non-abelian group that has no non-trivial abelian direct factor is said to be purely non-
abelian [1].
By using Adney-Yen map [1], we introduce the following definition.

Definition 4. An Adney-Yen crossed module map is an onto map
(91, ¢2) from Autc(T,G,0) to Hom((T, G,9),Z(T,G,9))

such that (@1, 92) (&, 0) = (@1, $2) (a,0) and (@1, $2) (a,9) 1S the crossed module homomorphism
of (T,G,9d) into Z(T,G,d) = (TC,Stc(T ) Z(G),9). Furthermore, such that (@1, ¢2) (40, =
(91 (w0) P2(0,0)), Where @150 = T = TC, @10 (t) = t'a(t) and @349y 1 G — Ste(T) N
2(G), @20,0)(8) = 810(8)-

Theorem 2. For purely non-abelian groups T and G an Adeny-Yen crossed module map is
one-to-one correspondence of Autc(T, G,0) onto Hom((T, G,9),Z(T,G,9)).

Proof. The crossed module map (&, 60) — (@1, ¢1)(4,9) is @ one-to-one crossed module map of
Autc(T, G, 9) into the Hom((T, G,9), Z(T, G, 9)).

Conversely, if (f1, f2) € Hom((T,G,9),Z(T,G,0)), then (p1, ¢2)y, 5,y (t) = tfi(t), for all
t € T and (@1, 92)(f,,5,)(8) = gf2(g), for all g € G, defines an endomorphism of (T, G, d).
The endomorphism (@1, 92) ¢, r,) is an automorphism if and only if f1(t) # t~land f,(g) #
g lforevery g € G, g # landt € T, t # 1. Butif T and G are direct product with an
abelian factor, then there exists (f1, f2) € Hom((T,G,9),Z(T,G,9)) such that (f1, 2)(t,g) =
(t,g)~1, forsome ¢ € G, g # landt € T, t # 1. So, suppose that there exists (f;, f») €
Hom((T,G,9),Z(T,G,d)) such that fi(t) = t ! forsomet € T, t # 1 and f,(g) = ¢! for
some ¢ € G, g # 1. Clearly, t € Z(T), g € Z(G). We assume that the order of t,0(tf) = p; and
0(g) = p2 such that py, p, are primes. If

T/T' =Ty /T xT, /T and G/G' = G,,/G' x G,,,/ G,
where T, /T is the p;-primary component of T/T" and G, /G’ is the P,-primary component
of G/G', then tT' € T,, /T, tT' # T' and gG' € G,,/G', gG' # G’ for is contained in the
kernel (k)f f1 and T’ is contained in the kernel of f,. But if the height of T’ i:1 Ty, /T be p’{l and
t = x;P1 u, where x1 € Ty, and u € T, gG" in G,,/G’ be pok2 and ¢ = xpP2 v, where x, € Gp,
andv € G'. Then, t~1 = £i(t) = fi(xi""'u) = fi(x))P" and g7! = fo(g) = fa(x2F??0) =
o o k
fz(xz)p2k2. Setyy = fi(x1) L y2 = falx) L. Sot =y P, yp € Z(T) N Ty, {y1} NT' = 1and
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g = yngz, y2 € Z(G) NGy, {y2} NG' = 1. By [7], y1 T’ generates a direct factor of T,, /T and
y2G' of Gp,/G' too, say

TPl/T/ = {le/} X Hm/T/ and GPZ/G/ = {y2G/} X HPZ/G/'

Since {y1} NT' =1, T = {y1} x (Hp, Ty ) is a direct decomposition of T, it follows that T has

an abelian direct factor and G too, if the mapping (f1, f2) is not onto. O
Let C* be the set of all central automorphisms of (T, G, 0) fixing Z(T, G, d) element wise.

Theorem 3. If T is a finite p1-group and G is a finite py-group, then C* = I,,,(T, G, 9) if and
only if T, G are abelian or T and G are nilpotent of class 2 and Z(T), Z(G) are cyclic.

Proof. We have
Caute(1,69)(Z(T,G,9)) = Hom (T, G,9)/ Z(T, G,9), Z(T, G,9)) .

Since every element of (f1, f») € C* fixes each element of Z(T,G,9), for (f1, o) € C*, the
map (01 f1,02f2) of (T,G,9)/Z(T,G,9) to Z(T,G,9) defined by 015, : T/T® — TC such that
15, (tTC) = 71 f1(t) and 0o, (8(Stc(T) N Z(G))) = g~ ' f2(g) are well defined. It is obvious to
see that oy : fi = 015, and 02 @ fo — 03y, are injective homo morphisms. Now for each

(h1,hy) € Hom ((T,G,9)/Z(T,G,9),Z(T,G,9)),

the crossed module map (fi, fo) defined by fi(t) = thi(tTC) for all t € T and fo(g) =
ghy(g(Stc(T)NZ(G))) for all g € G is a central automorphism fixing Z(T, G,d) element-wise
and (01,02) (4, f,) = (M1, ha). It follows (01, 02) is a crossed module isomorphism and

C* = Hom ((T, G,3)/Z(T, G,d), Z(T, G,d)) .

Now, suppose first that C* = I,,,((T, G,9)) and T,G are non-abelian. If t € T and g € G, then
the inner automorphism (61, 02) (1 o) induced by t,g is a central automorphism and so [x, ] =
x101(x) € TC forall x € T and [y, g] =y~ '62(y) € Stg(T) NZ(G) forall y € G. This shows
that T and G are nilpotent of class 2. Since T is nilpotent of class 2, exp(T/T¢) = exp(T’) = p5!
for some natural number ¢y, and exp(G/Stc(T) N Z(G)) = exp(G') = p5*. Let T/TC and T
have ranks 1 and s, respectively, and G/Stg(T) N Z(G) and Stg(T) N Z(G) have ranks r and
s, but T and G are nilpotent of class 2, it follows from [5] that T¢ and St (T) N Z(G) are cyclic.
Conversely, if T and G are abelian, then itis clear that C* = I,,,((T, G,9)) = (1,1). Assume that
T and G are nilpotent of class 2 and Z(T) and Z(G) are cyclic. Since T/T¢ and G/Z(G) are
abelian p; and pa-groups of exponent | T’ | and | G’ |, T" and G’ are cyclic, C* = I,,((T, G, 9)),
since T and G are nilpotent of class 2, I,,,((T, G,0)) < C*. Hence, C* = I,,,((T, G, 9)). O

Theorem 4. For any non-abelian groups T and G the restriction of the Adeny-Yen crossed
module map (@1, ¢2) : C* — Hom ((T, G, 9), (Z(T,G,9)) is a crossed module homomorphism.

Proof. Suppose that (x1,6;) and (wp,6,) € C*. On the other hand, we have the following

diagrams

&1 L)

TG




ON CENTRAL AUTOMORPHISMS OF CROSSED MODULES 293

Then, forany t € T, g € G we have ¢y, o) (ar,0,) () = t (a1 0 a2) () = ¢~ (a1 (a2(t)) and

Priay0) © Pllann) () = Pria0n (F a2 (t)) = (¢t aa () Moy (7 an (1))
= () tag (Fag (a2 () = ap (1) oy (an(t)) = ¢ oy (an(8))

Moreover, @1 (4, 0, (ay0,) (8) = & (@10 a2)(g) = ¢ (a1 (a2(g)) and

Priay0)) © Pllantn) (8) = Priagop (8 22(8)) = (8 aa(g)) 'ar (g aa(g))
= (g 1)gm (g (a2(g)) = gaa (g Mg (87 M (w2(g))

=g (g i (a2(g)) = g 'r(a2(g))-

So we have (@1, 92) (u; 0,) (a2,02) = (P, P2) (ay,01) © (P1/ P2) (,6,)- O

Theorem 5. If T and G are purely non-abelian group and Autc(T,G,0) = C*, then
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,09)) .

Proof. Since T and G are purely non-abelian, so by Theorem 2 the Adeny-Yen crossed module
map from Autc(T,G,d) to Hom ((T,G,9d),Z(T,G,0)) is a bijection. But also Autc(T,G,9) =
C*, and thus by Theorem 4, (@1, ¢2) is a crossed module homomorphism. Therefore,
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,9)). O

Theorem 6. Let T and G be purely non-abelian groups such that
Autc(T,G,0) = Z(Iiu(T, G, 9)).

Then
Autc(T,G,0) = Hom ((T,G,9),Z(T,G,0)) .

Proof. Z(1,,(T,G,0)) is a sub-crossed module of I,,,(T,G,0), which fixes Z(T,G,d) point-
wise, so Autc(T, G,9d) = C*. Thus, by Theorem 5 we have the desired conclusion. O

Theorem 7. Let T and G be non-abelian group such that Autc(T, G,0) = Z(Iun(T, G, 9)). Then
either T and G are purely non-abelian or T and G have purely non-abelian subgroups T; and
Gy, with |Z(Ty)| and |Z(Gy)| odd such that T = C, x T}, G = Cp x Gy.

Proof. Suppose that on the contrary T = A x T; and G = B x Gy, where T and G; are purely
non-abelian, A, B are non-trivial abelian and either A # C,or A = C,or B # Cor B =
and |Z(Ty)| and |Z(Gy)| are even. In these case, we claim (T, G, 0) has a central automorphism
that is not inner, on the other hand Autc(T,G,0) # Z(1n(T,G,0)). If A # C, and B # C;
and (@1, ¢2) € Aut(A,B,9) = Autc(A, B, d) is non-trivial, then for any (a,t;) € A x Ty and
(b,g1) € B x Gy maps (a,t1) = (¢1(a),t1) and (b,g1) — (¢2(b), g1) give an automorphism
of (T, G,0) that is central but not inner. If A = C; and B = C; and |Z(A)| and |Z(B)| are
even, take z; € Z(A) and zp € Z(B) with z; and z, or order 2, so maps (1,t1) — (1,£1),
(1,g1) = (1,81), (a,t1) = (a,z1t1) and (b, 1) — (b, z282) define an automorphism of (T, G, 9)
that is central but not inner, since (a,1) — (a,z1) and (b,1) — (b, z2). O
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Corollary 1. Let p1, p2 be primes and T and G be non-abelian p;-group and p,-group respec-
tively such that Autc(T,G,9) = Z(Iun(T,G,9)). Then T and G are purely non-abelian.

Theorem 8. Let py, p2 be primes, and T and G are non-abelian p;-group and p,-group respec-
tively such that Autc(T,G,9) = Z(Iun(T, G, 9)). Then

Autc(T,G,0) = Hom((T,G,9),Z(T,G,0)).
Proof. By Theorem 1, T and G are purely non-abelian and since
Autc(T,G,0) = Z(1iu(T, G,0)))

is subcrossed module of I,,(T, G, d), which fixes Z(T, G,9) point-wise, Autc(T,G,0) = C*.
Now, by Theorem 5 we have Autc(T,G,d) = Hom ((T,G,9),Z(T,G,9)) . O

Corollary 2. Let p;, p2 be primes, and T and G be finite p;-group and py-group respectively
such that Autc(T,G,d) = C*. Then, T and G are purely non-abelian.

Theorem 9. Let py, p2 be primes, and T and G be finite p;-group and p,-group respectively
such that Autc(T,G,d) = C*. Then

Autc(T, G,d) = Hom (T, G,d), Z(T, G,9)) .

Proof. By Corollary 2, T and G are purely non-abelian. Since Autc(T,G,0) = C¥, then by
Theorem 5 we have Autc(T,G,0) = Hom ((T,G,9),Z(T,G,9)) . O
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Aexrani M.A., AasBa3 B. Ilpo yenmpanoui amomopismu nepexpectux mooy.ie // KapmaTchki MaTeM.
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Iepexpecumi moayab (T, G,d) ckaapaeTsest 3 rpymoBoro romoMopdismy d @ T — G 3 ajetro
(g,t) — $t3GHa T, sika 3anoBoabHste d(8t) = ga(t)g i %)t = sts™! ansiBcix g € Gis, t € T.
Tepmir nepexpecHoro moayAas BBeaeHO Ax. X. K. YaitrxeaoM y 110ro poboTi 3 KoMbiHATOpMKM Te-
opii romoTomiit. IlepexpecHi MOAYAI i iX 3aCTOCYBaHHsI BiAIrpaloOTh Ay>Ke BaXKAMBY POAb B Teopil
KaTeropiit, Teopii TOMOTOIII4, TOMOAOTII i KoromMoaorui rpym, aare6pi, K-teopii Tormo. ¥ aaHiit po-
6oTi Bu3HaueHO Bia0OpaxkeHHsT AAeHi-€Ha IIepexXpecHNX MOAYAIB i IIeHTpaAbHI aBTOMOPi3MH Tie-
pexpecHMX MOAYAIB. SIkio C* — MHOXMHA BCiX IIeHTpaAbHMX aBTOMOP(i3MiB IIepexpecHMX MOAY-
aiB (T, G, 9), sxi moroukoso dikcyors Z(T, G,d), To OTpUMaHO HEOOXiAHY 1 AOCTATHIO YMOBM 1106
C* = Iin(T,G,9). Y upomMy Bumaaky aoseaeno Autc(T,G,0) = Hom((T,G,9),Z(T,G,0)). Kpim
toro, sikino Autc(T,G,0) = Z(1,,(T,G,0))), To OTpMMaHi TaKOX IIeBHI pe3yAbTaTH B LIbOMY Ha-
IIPSIMKY.

Kntouosi cnosa i ppasu: mepexpecHMit MOAYAD, IeHTpaAbHII aBTOMOPi3M.
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