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ON CENTRAL AUTOMORPHISMS OF CROSSED MODULES

A crossed module (T, G, ∂) consist of a group homomorphism ∂ : T → G together with an ac-

tion (g, t) → gt of G on T satisfying ∂( gt) = g∂(t)g−1 and ∂(s)t = sts−1, for all g ∈ G and s, t ∈ T.

The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial ho-

motopy theory. Crossed modules and its applications play very important roles in category theory,

homotopy theory, homology and cohomology of groups, algebra, K-theory etc. In this paper, we

define Adeny-Yen crossed module map and central automorphisms of crossed modules. If C∗ is the

set of all central automorphisms of crossed module (T, G, ∂) fixing Z(T, G, ∂) element-wise, then

we give a necessary and sufficient condition such that C∗ = Inn(T, G, ∂). In this case, we prove

AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)). Moreover, when AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂))), we

obtain some results in this respect.
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1 INTRODUCTION

The term crossed module was introduced by J. H. C. Whitehead in his work on combina-

torial homotopy theory [9]. So many mathematicians and many areas of mathematics have

used crossed modules such as homotopy theory, homology and cohomology of groups, alge-

bra, K-theory etc. Actor crossed module of algebroid was defined by Alp in [3]. Actions and

automorphisms of crossed modules were studied by K. Norrie [2, 8]. Tensor product modulo

q of two crossed modules defined by Conduché and Rodriguez-Fernandez [4]. Concepts of

q-commutator and of q-center of a crossed module, q being a nonnegative integer, were de-

fined by J.L. Doncel Juurez and A.R. Crondjeanl.-Valcarcel [6]. Adney and Yen in [1] obtained

several sufficient conditions for a non-abelian p-group and introduced a special map. By using

Adney-Yen map, in this paper, we introduce the concept of Adney-Yen crossed module map

and central automorphisms of a crossed module and obtain some results in this respect.

2 CENTRAL AUTOMORPHISMS OF A CROSSED MODULE

We recall some basic definitions and properties of the category of crossed modules. A

crossed module (T, G, ∂) consists of a group homomorphism ∂ : T → G called the boundary

map, together with an action (g, t) → gt of G on T satisfying (1) ∂( gt) = g∂(t)g−1 and (2)
∂(s)t = sts−1, for all g ∈ G and s, t ∈ T.
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The group automorphism AutN of a group N comes equipped with the canonical homo-

morphism τ : N → Aut(N) which has image InnN, the group of inner automorphism of

N. The inner automorphism τ is one of the standard examples of a crossed module. Other

standard examples of crossed modules are: the inclusion of a normal subgroup N → G; a

G-module M with the zero homomorphism M → G; any epimorphism E → G with cen-

tral kernel. We note at once certain consequences of the definition of a crossed module:

(1) the kernel ker∂ lies in Z(T), the center of T; (2) the image ∂(T) is a normal subgroup of G;

(3) the action of G on T induces a natural (G/∂(T))-module structure on Z(T); and ker∂ is a

submodule of Z(T).

We say that (S, H, ∂′) is a sub-crossed module of the crossed module (T, G, ∂) if

- S is a subgroup of T, and H is a subgroup of G;

- ∂′ is the restriction of ∂ to S;

- the action of H on S is included by the action of G on T.

A sub-crossed module (S, H, ∂) of (T, G, ∂) is normal if

- H is a normal subgroup of G;

- gs ∈ S for all g ∈ G, s ∈ S;

- htt−1 ∈ S for all h ∈ H, t ∈ T.

In this case we consider the triple (T/S, G/H, ∂̄), where ∂̄ : T/S → G/H is induced by ∂, and

the new action is given by gH(tS) = ( gt)S. This is the quotient crossed module of (T, G, ∂)

by (S, H, ∂). A crossed module morphism 〈α, ϕ〉 : (T, G, ∂) → (T′, G′, ∂′) is a commutative

diagram of homomorphisms of groups

T α
//

∂
��

T′

∂′
��

G ϕ
// G′

such that for all x ∈ G and t ∈ T; we have α( xt) = ϕ(x) α(t). We say that 〈α, ϕ〉 is an isomor-

phism if α and ϕ are both isomorphisms. We denote the group of automorphisms of (T, G, ∂)

by Aut(T, G, ∂). The kernel of the crossed module morphism 〈α, ϕ〉 is the normal sub-crossed

module (kerα, kerϕ, ∂) of (T, G, ∂), denoted by ker〈α, ϕ〉. The image im〈ff, ’〉 of 〈α, ϕ〉 is the

sub-crossed module (imff, im’, ∂′) of (T′, G′, ∂′). For a crossed module (T, G, ∂), denote by

Der(G, T) the set of all derivations from G to T, i.e., all maps χ : G → T such that for all

x, y ∈ G, χ(xy) = χ(x) xχ(y). Each such derivation χ defines endomorphisms σ = (σx) and

θ(= θx) of G, T respectively, given by σ(x)) = ∂χ(x)x and θ(t) = χ∂(t)t, where σ∂(t) = ∂θ(t),

θχ(x) = χ∂(x) and θ( xt) = σ(x)θ(t). We define a multiplication in Der(G, T) by the for-

mula χ1 ◦ χ2 = χ, where χ(x) = χ1σ2(x)χ2(x) (= θ1 χ2(x)χ1(x)). This turns Der(G, T) into

a semigroup with identity element the derivation which maps each element of G into iden-

tity element of T. Moreover, if χ = χ1 ◦ χ2, then σ = σ1σ2. The whitehead group D(G, T) is

defined to be the group of units of Der(G, T), and the elements of D(G, T) are called regular

derivations.
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Proposition 1. The following statements are equivalent: (1) χ ∈ D(G, T); (2) σ ∈ Aut(G);

(3) θ ∈ Aut(T).

The map ∆ : D(G, T) → Aut(T, G, ∂) defined by ∆(X) = 〈σ, θ〉 is a homomorphisms of

groups and there is an action of Aut(T, G, ∂) on D(G, T) given by 〈α,ϕ〉χ = αχϕ−1 which makes

(D(G, T), Aut(T, G, ∂), ∆) a crossed module. This crossed module is called the actor crossed

module A(T, G, ∂) of the crossed module (T, G, ∂). There is a morphism of crossed modules

〈η, γ〉 : (T, G, ∂) → A(T, G, ∂) defined as follows. If t ∈ T, then ηt : G → T defined by

ηt(x) = t xt−1 is a derivation and the map t → ηt defines a homomorphism η : T → D(G, T)

of groups. Let γ : G → A(T, G, ∂) be the homomorphism y → 〈αy, ϕy〉, where αy(t) = yt and

ϕy(x) = yxy−1 for t ∈ T and y, x ∈ G.

Definition 1. Let (T, G, ∂) be a crossed module. The center of (T, G, ∂) is the crossed mod-

ule kernel Z(T, G, ∂) of 〈η, γ〉. Thus, Z(T, G, ∂) is the crossed module (TG, StG(T) ∩ Z(G), ∂),

where TG denotes the fixed point subgroup of T, that is, TG = { t ∈ T | xt = t for all x ∈ G}.

StG(T) is the stabilizer in G of T, that is, StG(T) = { x ∈ G | xt = t for all t ∈ T} and Z(T) is

the center of G. Note that TG is central in T.

Definition 2. Let (T, G, ∂) be a crossed module. n-center of (T, G, ∂), Zn(T, G) for n a nonneg-

ative integer is the crossed module
(

(TG)n, Zn(G) ∩ StG(T), ∂
)

, where

(TG)n = {t ∈ T|tn = 1 and gt = t for all g ∈ G},

Zn(G) = { g ∈ Z(G) | gn = 1},

StG(T) = {g ∈ G | gt = t for all t ∈ T}.

The n-center of (T, G, ∂) is a normal crossed submodule and is called the n-central crossed

submodule of (T, G, ∂).

Let (T, G, ∂) be a crossed module, (T′, G′, ∂) be a normal sub-crossed module of it, and

〈α, ϕ〉 ∈ Aut(T, G, ∂). Then 〈α, ϕ〉 induces a 〈ᾱ, ϕ̄〉 in Aut
(

T/T′, G/G′, ∂̄
)

such that ∂̄ : T/T′ →

G/G′, ∂̄(tT′) = ∂(t)T′ .

Definition 3. Let (T, G, ∂) be a crossed module, Z(T, G) be the center of it and 〈α, ϕ〉 ∈

Aut(T, G, ∂). If 〈ᾱ, ϕ̄〉, induced by 〈α, ϕ〉 in Aut
(

T/TG , G/StG(T) ∩ Z(G), ∂̄
)

, is identity, then

〈α, ϕ〉 is called central automorphism of crossed module (T, G, ∂).

Theorem 1. If (T, G, ∂) has trivial n-center, then its actor A(T, G, ∂) also has trivial n-center.

Proof. Let us assume that Zn(T, G, ∂) = 1 so that (TG)n = 1 and Zn(G) ∩ StG(T) = 1. Now

the n-center of A(T, G, ∂) is the crossed module

A(T, G, ∂) = (D(G, T), Aut(T, G, ∂), ∆) , Zn(A(T, G, ∂))

=
((

D(G, T)Aut(T,G,∂)
)n

, Zn(Aut(T, G, ∂)) ∩ StAut(T,G,∂)(D(G, T), ∆

)

.

So, assume that χ ∈
(

D(G, T)Aut(T,G,∂)
)n

. Then, for all 〈α, ϕ〉 ∈ Aut(T, G, ∂), 〈α,ϕ〉χ = χ and

χn = 1. In particular, this is true for all 〈αy, ϕy〉, where y ∈ G. But 〈αy, ϕy〉χ = ηχ(y)−1 ◦ χ. So
〈αy,ϕy〉χ = χ implies that ηχ(y)−1 = 1 for all y ∈ G. Then, we have χ(y)−1 xχ(y) = 1, for all
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x, y ∈ G. Now, since (TG)n = 1, χ is the trivial derivation, it follows that
(

D(G, T)〈αy ,ϕy〉
)n

= 1.

Now, suppose that 〈α, ∂〉 ∈ Zn(Aut(T, G, ∂)) ∩ StAut(T,G,∂)(D(G, T)). Then 〈α,ϕ〉χ = χ for all

χD(G, T). In particular, 〈α,ϕ〉ηt = ηt, for all t ∈ T, that is ηα(t) = ηt, which implies that

t−1α(t) ∈ (TG)n = 1, for all t ∈ T. Thus α = 1T, the identity automorphism of T. Now

we have 〈α, ϕ〉 ∈ Zn(Aut(T, G, ∂)). Hence, for all y ∈ G, 〈α, ϕ〉〈αy, ϕy〉 = 〈αy, ϕy〉〈α, ϕ〉 and

〈α, ϕ〉n = 1 implying that ϕϕy = ϕy ϕ for all y ∈ G. So we obtain ϕ(xyx−1) = yϕ(x)y−1 for all

x, y ∈ G. Since ϕ is an automorphism of G, it follows that y−1 ϕ(y) ∈ Z(G), for all y ∈ G. Now,

since 〈α, ϕ〉 is a crossed module morphism, it follows that α( yt) = ϕ(y)α(t). But αn = 1T so

that yt = ϕ(y)t for all y ∈ G and t ∈ T. Thus, y−1ϕ(y) ∈ Zn(G) ∩ StG(T) = 1 so that ϕn = 1G.

Therefore 〈αn, ϕn〉 = 〈1T , 1G〉, and this completes the proof.

A non-abelian group that has no non-trivial abelian direct factor is said to be purely non-

abelian [1].

By using Adney-Yen map [1], we introduce the following definition.

Definition 4. An Adney-Yen crossed module map is an onto map

〈ϕ1, ϕ2〉 from AutC(T, G, ∂) to Hom((T, G, ∂), Z(T, G, ∂))

such that 〈ϕ1, ϕ2〉〈α, θ〉 = 〈ϕ1, ϕ2〉〈α,θ〉 and 〈ϕ1, ϕ2〉〈α,θ〉 is the crossed module homomorphism

of (T, G, ∂) into Z(T, G, ∂) = (TG, StG(T) ∩ Z(G), ∂). Furthermore, such that 〈ϕ1, ϕ2〉〈α,θ〉 =

〈ϕ1 〈α,θ〉, ϕ2 〈α,θ〉〉, where ϕ1 〈α,θ〉 : T → TG, ϕ1 〈α,θ〉(t) = t−1α(t) and ϕ2 〈α,θ〉 : G → StG(T) ∩

Z(G), ϕ2 〈α,θ〉(g) = g−1θ(g).

Theorem 2. For purely non-abelian groups T and G an Adeny-Yen crossed module map is

one-to-one correspondence of AutC(T, G, ∂) onto Hom((T, G, ∂), Z(T, G, ∂)).

Proof. The crossed module map 〈α, θ〉 → 〈ϕ1, ϕ1〉〈α,θ〉 is a one-to-one crossed module map of

AutC(T, G, ∂) into the Hom((T, G, ∂), Z(T, G, ∂)).

Conversely, if 〈 f1, f2〉 ∈ Hom((T, G, ∂), Z(T, G, ∂)), then 〈ϕ1, ϕ2〉〈 f1, f2〉(t) = t f1(t), for all

t ∈ T and 〈ϕ1, ϕ2〉〈 f1, f2〉(g) = g f2(g), for all g ∈ G, defines an endomorphism of (T, G, ∂).

The endomorphism 〈ϕ1, ϕ2〉〈 f1, f2〉 is an automorphism if and only if f1(t) 6= t−1 and f2(g) 6=

g−1 for every g ∈ G, g 6= 1 and t ∈ T, t 6= 1. But if T and G are direct product with an

abelian factor, then there exists 〈 f1, f2〉 ∈ Hom((T, G, ∂), Z(T, G, ∂)) such that 〈 f1, f2〉〈t, g〉 =

〈t, g〉−1, for some g ∈ G, g 6= 1 and t ∈ T, t 6= 1. So, suppose that there exists 〈 f1, f2〉 ∈

Hom((T, G, ∂), Z(T, G, ∂)) such that f1(t) = t−1 for some t ∈ T, t 6= 1 and f2(g) = g−1 for

some g ∈ G, g 6= 1. Clearly, t ∈ Z(T), g ∈ Z(G). We assume that the order of t,o(t) = p1 and

o(g) = p2 such that p1, p2 are primes. If

T/T′ = Tp1 /T′ × T′
p1

/T′ and G/G′ = Gp2 /G′ × G′
p2

/G′,

where Tp1 /T′ is the p1-primary component of T/T′ and Gp2 /G′ is the P2-primary component

of G/G′, then tT′ ∈ Tp1 /T′, tT′ 6= T′ and gG′ ∈ Gp2 /G′, gG′ 6= G′ for is contained in the

kernel of f1 and T′ is contained in the kernel of f2. But if the height of tT′ in Tp1 /T′ be pk1
1 and

t = x1
p

k1
1 u, where x1 ∈ Tp1 and u ∈ T′, gG′ in Gp2 /G′ be p2

k2 and g = x2
p

k2
2 v, where x2 ∈ Gp2

and v ∈ G′. Then, t−1 = f1(t) = f1(x1
p1

k1 u) = f1(x1)
p1

k1 and g−1 = f2(g) = f2(x2
p2

k2 v) =

f2(x2)
p2

k2 . Set y1 = f1(x1)
−1, y2 = f2(x2)

−1. So t = y1
p

k1
1 , y1 ∈ Z(T) ∩ Tp1 , {y1} ∩ T′ = 1 and
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g = y2
p

k2
2 , y2 ∈ Z(G) ∩ Gp2 ,{y2} ∩ G′ = 1. By [7], y1T′ generates a direct factor of Tp1 /T′ and

y2G′ of Gp2 /G′ too, say

Tp1 /T′ =
{

y1T′
}

× Hp1/T′ and Gp2 /G′ =
{

y2G′
}

× Hp2/G′.

Since {y1} ∩ T′ = 1, T = {y1} × (Hp1 Tp′1
) is a direct decomposition of T, it follows that T has

an abelian direct factor and G too, if the mapping 〈 f1, f2〉 is not onto.

Let C∗ be the set of all central automorphisms of (T, G, ∂) fixing Z(T, G, ∂) element wise.

Theorem 3. If T is a finite p1-group and G is a finite p2-group, then C∗ = Inn(T, G, ∂) if and

only if T, G are abelian or T and G are nilpotent of class 2 and Z(T), Z(G) are cyclic.

Proof. We have

CAutC(T,G,∂)(Z(T, G, ∂)) ∼= Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) .

Since every element of 〈 f1, f2〉 ∈ C∗ fixes each element of Z(T, G, ∂), for 〈 f1, f2〉 ∈ C∗, the

map 〈σ1 f1, σ2 f2〉 of (T, G, ∂)/Z(T, G, ∂) to Z(T, G, ∂) defined by σ1 f1
: T/TG → TG such that

σ1 f1
(tTG) = t−1 f1(t) and σ2 f2

(g(StG(T) ∩ Z(G))) = g−1 f2(g) are well defined. It is obvious to

see that σ1 : f1 → σ1 f1
and σ2 : f2 → σ2 f2

are injective homo morphisms. Now for each

〈h1, h2〉 ∈ Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) ,

the crossed module map 〈 f1, f2〉 defined by f1(t) = th1(tT
G) for all t ∈ T and f2(g) =

gh2(g(StG(T) ∩ Z(G))) for all g ∈ G is a central automorphism fixing Z(T, G, ∂) element-wise

and 〈σ1, σ2〉〈 f1, f2〉 = 〈h1, h2〉. It follows 〈σ1, σ2〉 is a crossed module isomorphism and

C∗ ∼= Hom ((T, G, ∂)/Z(T, G, ∂), Z(T, G, ∂)) .

Now, suppose first that C∗ ∼= Inn((T, G, ∂)) and T,G are non-abelian. If t ∈ T and g ∈ G, then

the inner automorphism 〈θ1, θ2〉〈t,g〉 induced by t,g is a central automorphism and so [x, t] =

x−1θ1t(x) ∈ TG for all x ∈ T and [y, g] = y−1θ2g(y) ∈ StG(T) ∩ Z(G) for all y ∈ G. This shows

that T and G are nilpotent of class 2. Since T is nilpotent of class 2, exp(T/TG) = exp(T′) = pc1
1

for some natural number c1, and exp(G/StG(T) ∩ Z(G)) = exp(G′) = pc2
2 . Let T/TG and TG

have ranks r1 and s1, respectively, and G/StG(T) ∩ Z(G) and StG(T) ∩ Z(G) have ranks r2 and

s2, but T and G are nilpotent of class 2, it follows from [5] that TG and StG(T) ∩ Z(G) are cyclic.

Conversely, if T and G are abelian, then it is clear that C∗ ∼= Inn((T, G, ∂)) = 〈1, 1〉. Assume that

T and G are nilpotent of class 2 and Z(T) and Z(G) are cyclic. Since T/TG and G/Z(G) are

abelian p1 and p2-groups of exponent | T′ | and | G′ |, T′ and G′ are cyclic, C∗ ∼= Inn((T, G, ∂)),

since T and G are nilpotent of class 2, Inn((T, G, ∂)) ≤ C∗. Hence, C∗ ∼= Inn((T, G, ∂)).

Theorem 4. For any non-abelian groups T and G the restriction of the Adeny-Yen crossed

module map 〈ϕ1, ϕ2〉 : C∗ → Hom ((T, G, ∂), (Z(T, G, ∂)) is a crossed module homomorphism.

Proof. Suppose that 〈α1, θ1〉 and 〈α2, θ2〉 ∈ C∗. On the other hand, we have the following

diagrams

T
α1

//

∂
��

TG

∂
��

G
θ1

// StG(T) ∩ Z(G)

T
α2

//

∂
��

TG

∂
��

G
θ2

// StG(T) ∩ Z(G)
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Then, for any t ∈ T, g ∈ G we have ϕ1〈α1,θ1〉〈α2,θ2〉(t) = t−1(α1 ◦ α2)(t) = t−1(α1(α2(t)) and

ϕ1〈α1,θ1〉
◦ ϕ1〈α2,θ2〉(t) = ϕ1〈α1,θ1〉

(t−1α2(t)) = (t−1α2(t))
−1α1(t

−1α2(t))

= α2(t
−1)tα1(t

−1)α1(α2(t)) = α2(t
−1)t−1α1(α2(t)) = t−1α1(α2(t))

Moreover, ϕ1〈α1,θ1〉〈α2,θ2〉(g) = g−1(α1 ◦ α2)(g) = g−1(α1(α2(g)) and

ϕ1〈α1,θ1〉
◦ ϕ1〈α2,θ2〉(g) = ϕ1〈α1,θ1〉

(g−1α2(g)) = (g−1α2(g))−1α1(g−1α2(g))

= α2(g−1)gα1(g−1)α1(α2(g)) = gα2(g−1)α1(g−1)α1(α2(g))

= g−1α1(g−1)α1(α2(g)) = g−1α1(α2(g)).

So we have 〈ϕ1, ϕ2〉〈α1,θ1〉〈α2,θ2〉 = 〈ϕ1, ϕ2〉〈α1,θ1〉
◦ 〈ϕ1, ϕ2〉〈α2,θ2〉.

Theorem 5. If T and G are purely non-abelian group and AutC(T, G, ∂) = C∗, then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. Since T and G are purely non-abelian, so by Theorem 2 the Adeny-Yen crossed module

map from AutC(T, G, ∂) to Hom ((T, G, ∂), Z(T, G, ∂)) is a bijection. But also AutC(T, G, ∂) =

C∗, and thus by Theorem 4, 〈ϕ1, ϕ2〉 is a crossed module homomorphism. Therefore,

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)).

Theorem 6. Let T and G be purely non-abelian groups such that

AutC(T, G, ∂) = Z(Inn(T, G, ∂)).

Then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. Z(Inn(T, G, ∂)) is a sub-crossed module of Inn(T, G, ∂), which fixes Z(T, G, ∂) point-

wise, so AutC(T, G, ∂) = C∗. Thus, by Theorem 5 we have the desired conclusion.

Theorem 7. Let T and G be non-abelian group such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then

either T and G are purely non-abelian or T and G have purely non-abelian subgroups T1 and

G1, with |Z(T1)| and |Z(G1)| odd such that T = C2 × T1, G = C2 × G1.

Proof. Suppose that on the contrary T = A × T1 and G = B × G1, where T1 and G1 are purely

non-abelian, A, B are non-trivial abelian and either A 6= C2 or A = C2 or B 6= C2 or B = C2

and |Z(T1)| and |Z(G1)| are even. In these case, we claim (T, G, ∂) has a central automorphism

that is not inner, on the other hand AutC(T, G, ∂) 6= Z(Inn(T, G, ∂)). If A 6= C2 and B 6= C2

and (ϕ1, ϕ2) ∈ Aut(A, B, ∂) = AutC(A, B, ∂) is non-trivial, then for any (a, t1) ∈ A × T1 and

(b, g1) ∈ B × G1 maps (a, t1) → (ϕ1(a), t1) and (b, g1) → (ϕ2(b), g1) give an automorphism

of (T, G, ∂) that is central but not inner. If A = C2 and B = C2 and |Z(A)| and |Z(B)| are

even, take z1 ∈ Z(A) and z2 ∈ Z(B) with z1 and z2 or order 2, so maps (1, t1) → (1, t1),

(1, g1) → (1, g1), (a, t1) → (a, z1t1) and (b, g1) → (b, z2g2) define an automorphism of (T, G, ∂)

that is central but not inner, since (a, 1) → (a, z1) and (b, 1) → (b, z2).
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Corollary 1. Let p1, p2 be primes and T and G be non-abelian p1-group and p2-group respec-

tively such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then T and G are purely non-abelian.

Theorem 8. Let p1, p2 be primes, and T and G are non-abelian p1-group and p2-group respec-

tively such that AutC(T, G, ∂) = Z(Inn(T, G, ∂)). Then

AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)).

Proof. By Theorem 1, T and G are purely non-abelian and since

AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂)))

is subcrossed module of Inn(T, G, ∂), which fixes Z(T, G, ∂) point-wise, AutC(T, G, ∂) = C∗.

Now, by Theorem 5 we have AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Corollary 2. Let p1, p2 be primes, and T and G be finite p1-group and p2-group respectively

such that AutC(T, G, ∂) = C∗. Then, T and G are purely non-abelian.

Theorem 9. Let p1, p2 be primes, and T and G be finite p1-group and p2-group respectively

such that AutC(T, G, ∂) = C∗. Then

AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .

Proof. By Corollary 2, T and G are purely non-abelian. Since AutC(T, G, ∂) = C∗, then by

Theorem 5 we have AutC(T, G, ∂) ∼= Hom ((T, G, ∂), Z(T, G, ∂)) .
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Дехганi М.А., Давваз Б. Про центральнi атоморфiзми перехресних модулiв // Карпатськi матем.

публ. — 2018. — Т.10, №2. — C. 288–295.

Перехресний модуль (T, G, ∂) складається з групового гомоморфiзму ∂ : T → G з дiєю

(g, t) → gt з G на T, яка задовольняє ∂( gt) = g∂(t)g−1 i ∂(s)t = sts−1 для всiх g ∈ G i s, t ∈ T.

Термiн перехресного модуля введено Дж. Х. К. Уайтхедом у його роботi з комбiнаторики те-

орiї гомотопiй. Перехреснi модулi i їх застосування вiдiграють дуже важливу роль в теорiї

категорiй, теорiї гомотопiй, гомологiї i когомологиї груп, алгебрi, K-теорiї тощо. У данiй ро-

ботi визначено вiдображення Aденi-Єна перехресних модулiв i центральнi автоморфiзми пе-

рехресних модулiв. Якщо C∗ — множина всiх центральних автоморфiзмiв перехресних моду-

лiв (T, G, ∂), якi поточково фiксують Z(T, G, ∂), то отримано необхiдну i достатню умови щоб

C∗ = Inn(T, G, ∂). У цьому випадку доведено AutC(T, G, ∂) ∼= Hom((T, G, ∂), Z(T, G, ∂)). Крiм

того, якщо AutC(T, G, ∂) ∼= Z(Inn(T, G, ∂))), то отриманi також певнi результати в цьому на-

прямку.

Ключовi слова i фрази: перехресний модуль, центральний автоморфiзм.


