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INTERCONNECTION BETWEEN WICK MULTIPLICATION AND INTEGRATION ON

SPACES OF NONREGULAR GENERALIZED FUNCTIONS IN THE LÉVY WHITE

NOISE ANALYSIS

We deal with spaces of nonregular generalized functions in the Lévy white noise analysis, which

are constructed using Lytvynov’s generalization of a chaotic representation property. Our aim is to

describe a relationship between Wick multiplication and integration on these spaces. More exactly,

we show that when employing the Wick multiplication, it is possible to take a time-independent

multiplier out of the sign of an extended stochastic integral; establish an analog of this result for

a Pettis integral (a weak integral); and prove a theorem about a representation of the extended

stochastic integral via the Pettis integral from the Wick product of the original integrand by a Lévy

white noise. As examples of an application of our results, we consider some stochastic equations

with Wick type nonlinearities.
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INTRODUCTION

A theory of test and generalized functions depending on infinitely many variables (i.e.,

with arguments belonging to infinite-dimensional spaces) is highly sought in many areas of

modern physics and mathematics. One of successful approaches to building of such a theory

consists in introduction of spaces of the above-mentioned functions in such a way that the

dual pairing between test and generalized functions is generated by integration with respect

to some probability measure on a dual nuclear space. First it was the Gaussian measure, the

corresponding theory is called the Gaussian white noise analysis (e.g., [2,16,26–28]), then it were

realized numerous generalizations. In particular, important results can be obtained if one uses

the Lévy white noise measure (e.g., [6,7,29]), the corresponding theory is called the Lévy white

noise analysis.

A very important role in the Gaussian analysis belongs to a so-called chaotic representation

property (CRP). This property consists, roughly speaking, in the following: any square inte-

grable random variable can be decomposed in a series of repeated Itô’s stochastic integrals

from nonrandom functions (see, e.g., [30] for a detailed presentation). Using CRP, one can

construct various spaces of test and generalized functions, introduce stochastic integrals and

derivatives on these spaces, etc. In the Lévy analysis there is no CRP (more exactly, the only
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Lévy processes with CRP are Wiener and Poisson processes) [35]; but there are different gener-

alizations of this property: Itô’s generalization [18], Nualart-Schoutens’ generalization [31, 32],

Lytvynov’s generalization [29], Oksendal’s generalization [6, 7], etc. The interconnections be-

tween these generalizations are described in, e.g., [1, 6, 7, 21, 29, 34, 36]. Now, depending on

problems under consideration, one can select a most suitable generalization of CRP, construct

corresponding spaces of test and generalized functions, and introduce necessary operators and

operations on these spaces.

In the present paper we deal with one of the most useful and challenging generalizations of

CRP in the Lévy white noise analysis, which is proposed by E. W. Lytvynov [29] (see also [5]).

The idea of this generalization is to decompose random variables, square integrable with re-

spect to the Lévy white noise measure, in series of special orthogonal functions, by analogy

with decompositions of random variables, square integrable with respect to the Gaussian mea-

sure, by Hermite polynomials (remind that the last decompositions are equivalent to the de-

compositions by repeated Itô’s stochastic integrals). Like using CRP in the Gaussian analysis,

one can use Lytvynov’s generalization of CRP in order to construct and study spaces of regular

and nonregular test and generalized functions [19], various operators and operations on these

spaces, etc. In particular, the extended stochastic integral and the Hida stochastic derivative

on the spaces of regular test and generalized functions are introduced and studied in [10, 19],

operators of stochastic differentiation—in [8,9,13], some elements of a Wick calculus and its re-

lationship with operators of stochastic differentiation— in [11]. As for the spaces of nonregular

test and generalized functions—the corresponding results are presented in [19, 22–24].

As is well known, in the Gaussian white noise analysis, in the same way as in various ver-

sions of a non-Gaussian analysis, a natural multiplication on spaces of generalized functions

is a so-called Wick multiplication. In particular, in many cases, using the Wick multiplication,

one can take a time-independent multiplier out of the sign of an extended stochastic integral.

Moreover, such a result holds true for a Pettis integral (a weak integral). Also, the extended

stochastic integral can be presented as a Pettis integral (or a formal Pettis integral—depending

on the concrete situation) from the Wick product of the original integrand by the derivative (in

the sense of generalized functions) of the integrator. On the above-mentioned spaces of regu-

lar generalized functions in the Lévy analysis such results were obtained in [12]. The aim of

the present paper is to transfer the results of [12] to the spaces of nonregular generalized func-

tions, which are constructed using Lytvynov’s generalization of CRP. In a sense, this paper is

a continuation of the paper [22].

The paper is organized in the following manner. In the first section we introduce a Lévy

process L and construct a probability triplet connected with L, convenient for our considera-

tions; then we describe Lytvynov’s generalization of CRP; construct a nonregular rigging of

the space of square integrable random variables (the positive and negative spaces of this rig-

ging are the spaces of nonregular test and generalized functions respectively); describe the

extended stochastic integral with respect to L on the spaces of nonregular generalized func-

tions; and recall necessary notions of the Wick calculus. In the second section we show that

when employing the Wick multiplication, it is possible to take a time-independent multiplier

out of the sign of the extended stochastic integral and of the Pettis integral; prove a theorem

about a representation of the extended stochastic integral via the Pettis integral; and consider

examples.
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1 PRELIMINARIES

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the real, i.e., bilin-

ear scalar product in a space H; and by 〈〈·, ·〉〉H the dual pairing generated by the scalar product

in a space H. Further, we use a designation pr lim (resp., ind lim) for a projective (resp., induc-

tive) limit of a family of spaces, this designation implies that the limit space is endowed with

the projective (resp., inductive) limit topology (see, e.g., [3] for a detailed description).

1.1 A Lévy process and its probability space

Denote R+ := [0,+∞). Let L = (Lu)u∈R+ be a real-valued locally square integrable Lévy

process (i.e., a continuous in probability random process on R+ with stationary independent

increments and such that L0 = 0, see, e.g., [4] for details) without Gaussian part and drift. As

is well known (e.g., [7]), the characteristic function of L is

E[eiθLu ] = exp
[
u
∫

R

(eiθx − 1 − iθx)ν(dx)
]

, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B de-

notes the Borel σ-algebra; E denotes the expectation. We assume that ν is a Radon measure

whose support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that∫
R

x2eε|x|ν(dx) < ∞, and
∫

R
x2ν(dx) = 1.

Define a measure of the white noise of L. Let D denote the set of all real-valued infinite-

differentiable functions on R+ with compact supports. As is well known, D can be endowed

by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]; see also

Subsection 1.3). Let D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D

denote ω(ϕ) by 〈ω, ϕ〉. It is worth noting that D and D′ are the positive and negative spaces

of a chain

D′ ⊃ L2(R+) ⊃ D, (2)

where L2(R+) is the space of (classes of) real-valued functions on R+, square integrable with

respect to the Lebesgue measure (e.g., [3]), and therefore 〈·, ·〉 is the dual pairing generated by

the scalar product in L2(R+). The notation 〈·, ·〉 will be preserved for dual pairings in tensor

powers of the complexification of chain (2).

Definition 1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-

algebra, with the Fourier transform
∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x)duν(dx)
]

, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner-Minlos theorem (e.g., [17]), see [29]. Below we

assume that the σ-algebra C(D′) is completed with respect to µ.

Denote by (L2) := L2(D′, C(D′), µ) the space of (classes of) complex-valued functions on

D′, square integrable with respect to µ (in what follows, this notation will be used very often).

Let f ∈ L2(R+) and a sequence (ϕk ∈ D)k∈N converge to f in L2(R+) as k → ∞ (remind

that D is a dense set in L2(R+)). One can show [6, 7, 21, 29] that 〈◦, f 〉 := (L2)−lim
k→∞

〈◦, ϕk〉 is a

well-defined element of (L2).
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Denote by 1A the indicator of a set A, and put 1[0,0) ≡ 0. It follows from (1) and (3)

that
(
〈◦, 1[0,u)〉

)
u∈R+

can be identified with a Lévy process on the probability space (triplet)

(D′, C(D′), µ), see, e.g., [6, 7]. So, for each u ∈ R+ we have Lu = 〈◦, 1[0,u)〉 ∈ (L2).

Note that the derivative in the sense of generalized functions of a Lévy process (a Lévy

white noise) is L̇·(ω) = 〈ω, δ·〉 ≡ ω(·), where δ is the Dirac delta-function. Therefore L̇ is

a generalized random process (in the sense of [14]) with trajectories from D′, and µ is the

measure of L̇ in the classical sense of this notion [15].

Remark 1. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy mea-

sure ν is a point mass at 1. This measure does not satisfy the assumptions accepted above (its

support does not contain an infinite number of points); nevertheless, all results of the present

paper have natural analogs in the Poissonian analysis. The reader can find more information

about peculiarities of the Poissonian case in [21], Subsection 1.2.

1.2 Lytvynov’s generalization of CRP

Denote by ⊗̂ the symmetric tensor multiplication, by a subscript C—complexifications of

spaces. Set Z+ := N ∪ {0}. Denote by P the set of complex-valued polynomials on D′ that

consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, f (n) ∈ D⊗̂n
C

, N f ∈ Z+, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0
C

:= C. The measure µ

of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and

properties of the measure ν, see also [29]), therefore P is a dense set in (L2) [33]. Denote by

Pn, n ∈ Z+, the set of polynomials of power smaller than or equal to n, by Pn the closure of

Pn in (L2). Let for n ∈ N Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)); put P0 := P0.

It is clear that

(L2) =
∞
⊕

n=0
Pn. (4)

Let f (n) ∈ D⊗̂n
C

, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection of a monomial

〈◦⊗n, f (n)〉 onto Pn. Let us define real (bilinear) scalar products (·, ·)ext on D⊗̂n
C

, n ∈ Z+, by

setting for f (n), g(n) ∈ D⊗̂n
C

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω). (5)

The proof of the well-posedness of this definition coincides up to obvious modifications with

the proof of the corresponding statement in [29].

Denote by | · |ext the norms corresponding to scalar products (5), i.e., | · |ext :=
√
(·, ·)ext.

Let H
(n)
ext , n ∈ Z+, be the completions of D⊗̂n

C
with respect to these norms. For F(n) ∈ H

(n)
ext

define a Wick monomial : 〈◦⊗n, F(n)〉 :
def
= (L2)−lim

k→∞
: 〈◦⊗n, f

(n)
k 〉 :, where D⊗̂n

C
∋ f

(n)
k → F(n) as

k → ∞ in H
(n)
ext . The well-posedness of this definition can be proved by the method of "mixed

sequences". It is easy to show that : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉

(cf. [29]).

Since, as is easy to see, for each n ∈ Z+ the set {: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n
C

} is dense in Pn,

the next statement from (4) follows.
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Theorem 1 (Lytvynov’s generalization of CRP, cf. [29]). A random variable F ∈ (L2) if and

only if there exists a unique sequence of kernels F(n) ∈ H
(n)
ext , n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (6)

(the series converges in (L2)) and

‖F‖2
(L2) =

∫

D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

Remark 2. In this paper we do not use directly an explicit formula for the scalar products

(·, ·)ext, and therefore we prefer not to write it down. But for the interested reader we note

that such a formula is calculated in [29]; in another record form (more convenient for some

calculations) it is given in, e.g., [9, 11, 13]. Also we note that for each n ∈ N the space H
(n)
ext is

the symmetric subspace of the space of (classes of) complex-valued functions on R
n
+, square

integrable with respect to a certain Radon measure.

Denote H := L2(R+), then HC = L2(R+)C (in what follows, this notation will be used very

often). It follows from the explicit formula for (·, ·)ext that H
(1)
ext = HC, and for n ∈ N\{1} one

can identify H⊗̂n
C

with the proper subspace of H
(n)
ext that consists of "vanishing on diagonals"

elements (roughly speaking, such that F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n}: k 6= j,

but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n

C
, this explains why we use the

subscript "ext" in our designations.

1.3 A nonregular rigging of (L2)

Let T be the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an infinite differentiable

function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Denote by Hτ the real Sobolev space on

R+ of order τ1 weighted by the function τ2, i.e., Hτ is the completion of D with respect to the

norm generated by the scalar product

(ϕ, ψ)Hτ
=

∫

R+

(
ϕ(u)ψ(u) +

τ1

∑
k=1

ϕ[k](u)ψ[k](u)
)

τ2(u)du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ respectively. It is well known

(e.g., [3]) that D = pr lim
τ∈T

Hτ (moreover, one can show that for any n ∈ N D⊗̂n = pr lim
τ∈T

H⊗̂n
τ ),

and for each τ ∈ T Hτ is densely and continuously embedded into H ≡ L2(R+). Therefore

one can consider a chain

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,

where H−τ, τ ∈ T, are the spaces dual of Hτ with respect to H. Note that by the Schwartz

theorem [3] D′ = ind lim
τ∈T

H−τ (it is convenient for us to consider D′ as a topological space

with the inductive limit topology). By analogy with [20] one can easily show that the measure

µ of a Lévy white noise is concentrated on H−τ̃ with some τ̃ ∈ T, i.e., µ(H−τ̃) = 1. Excepting

from T the indexes τ such that µ is not concentrated on H−τ, we will assume, in what follows,

that for each τ ∈ T µ(H−τ) = 1.
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Denote the norms in Hτ,C and its symmetric tensor powers by | · |τ , i.e., for f (n) ∈ H⊗̂n
τ,C,

n ∈ Z+, | f (n)|τ =

√
( f (n) , f (n))

H⊗̂n
τ,C

(note that H⊗̂0
τ,C := C and | f (0) |τ = | f (0) |).

It follows from results of [19] that one can modify T again (it is necessary to remove from T

some "bad" indexes) in order to obtain the following statement.

Proposition 1. For each τ ∈ T and each n ∈ Z+ the space H⊗̂n
τ,C is densely and continuously

embedded into the space H
(n)
ext , and there exists c(τ) > 0 such that for all f (n) ∈ H⊗̂n

τ,C | f (n) |2ext ≤

n!c(τ)n| f (n) |2τ.

Accept on default q ∈ Z+ and τ ∈ T. Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈

D⊗̂n
C

, N f ∈ Z+
}
⊂ (L2). Define real (bilinear) scalar products (·, ·)τ,q on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)τ,q :=

min(N f ,Ng)

∑
n=0

(n!)22qn( f (n), g(n))
H⊗̂n

τ,C
. (7)

The well-posedness of this definition is proved in [22].

Let ‖ · ‖τ,q be the norms corresponding to scalar products (7), i.e., ‖ · ‖τ,q :=
√
(·, ·)τ,q. De-

note by (Hτ)q the completions of PW with respect to these norms, and set (Hτ) := pr lim
q→∞

(Hτ)q,

(D) := pr lim
τ∈T,q→∞

(Hτ)q. As is easy to see, f ∈ (Hτ)q if and only if f can be uniquely presented

in the form

f =
∞

∑
n=0

: 〈◦⊗n, f (n)〉 :, f (n) ∈ H⊗̂n
τ,C (8)

(the series converges in (Hτ)q), with

‖ f‖2
τ,q := ‖ f‖2

(Hτ )q
=

∞

∑
n=0

(n!)22qn| f (n)|2τ < ∞ (9)

(since for each n ∈ Z+ H⊗̂n
τ,C ⊆ H

(n)
ext , for f (n) ∈ H⊗̂n

τ,C : 〈◦⊗n, f (n)〉 : is a well defined Wick

monomial, see Subsection 1.2). Further, f ∈ (Hτ) ( f ∈ (D)) if and only if f can be uniquely

presented in form (8) and norm (9) is finite for each q ∈ Z+ (for each τ ∈ T and each q ∈ Z+).

Proposition 2 ([19,22]). For each τ ∈ T there exists q0(τ) ∈ Z+ such that for each q ∈ Nq0(τ) :=

{q0(τ), q0(τ) + 1, . . .} the space (Hτ)q is densely and continuously embedded into (L2).

In view of this proposition one can consider a chain

(D′) ⊃ (H−τ) ⊃ (H−τ)−q ⊃ (L2) ⊃ (Hτ)q ⊃ (Hτ) ⊃ (D), τ ∈ T, q ∈ Nq0(τ), (10)

where (H−τ)−q, (H−τ) = ind lim
q′→∞

(H−τ)−q′ and (D′) = ind lim
τ̃∈T,q′→∞

(H−τ̃)−q′ are the spaces dual

of (Hτ)q, (Hτ) and (D) with respect to (L2).
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Definition 2. Chain (10) is called a nonregular rigging of the space (L2). The positive spaces

of this rigging (Hτ)q, (Hτ) and (D) are called (Kondratiev-type) spaces of nonregular test

functions. The negative spaces of this rigging (H−τ)−q, (H−τ) and (D′) are called (Kondratiev-

type) spaces of nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces (H−τ)−q. Let us consider chains

D′
C

(m)
⊃ H

(m)
−τ,C ⊃ H

(m)
ext ⊃ H⊗̂m

τ,C ⊃ D⊗̂m
C

, (11)

m ∈ N, where H
(m)
−τ,C and D′

C

(m) = ind lim
τ̃∈T

H
(m)
−τ̃,C are the spaces dual of H⊗̂m

τ,C and D⊗̂m
C

with

respect to H
(m)
ext . Set D⊗̂0

C
= H⊗̂0

τ,C = H
(0)
ext = H

(0)
−τ,C = D′

C

(0) := C. In what follows, we denote

by 〈·, ·〉ext the real (bilinear) dual pairings between elements of negative and positive spaces

from chains (11), these pairings are generated by the scalar products in H
(m)
ext .

The next statement follows from the definition of the spaces (H−τ)−q and the general du-

ality theory (cf. [19, 20]).

Proposition 3. There exists a system of generalized functions

{
: 〈◦⊗m, F

(m)
ext 〉 : ∈ (H−τ)−q | F

(m)
ext ∈ H

(m)
−τ,C, m ∈ Z+

}

such that

1) for F
(m)
ext ∈ H

(m)
ext ⊂ H

(m)
−τ,C : 〈◦⊗m, F

(m)
ext 〉 : is a Wick monomial that is defined in Subsec-

tion 1.2;

2) any generalized function F ∈ (H−τ)−q can be uniquely presented as a series

F =
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext 〉 :, F

(m)
ext ∈ H

(m)
−τ,C, (12)

that converges in (H−τ)−q, i.e.,

‖F‖2
−τ,−q := ‖F‖2

(H−τ)−q
=

∞

∑
m=0

2−qm|F
(m)
ext |

2

H
(m)
−τ,C

< ∞; (13)

and, vice versa, any series (12) with finite norm (13) is a generalized function from

(H−τ)−q (i.e., such a series converges in (H−τ)−q);

3) the dual pairing between F ∈ (H−τ)−q and f ∈ (Hτ)q that is generated by the scalar

product in (L2), has the form

〈〈F, f 〉〉(L2 ) =
∞

∑
m=0

m!〈F
(m)
ext , f (m)〉ext, (14)

where F
(m)
ext ∈ H

(m)
−τ,C and f (m) ∈ H⊗̂m

τ,C are the kernels from decompositions (12) and (8)

for F and f respectively.

It is clear that F ∈ (H−τ) (F ∈ (D′)) if and only if F can be uniquely presented in form (12)

and norm (13) is finite for some q ∈ Nq0(τ) (for some τ ∈ T and some q ∈ Nq0(τ)).
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1.4 An extended stochastic integral on spaces of nonregular generalized functions

Decomposition (6) for elements of (L2) defines an isometric isomorphism (a generalized

Wiener-Itô-Sigal isomorphism)

I : (L2) →
∞
⊕

n=0
n!H

(n)
ext ,

where
∞
⊕

n=0
n!H

(n)
ext is a weighted extended symmetric Fock space: for F ∈ (L2) of form (6)

IF = (F(0), F(1), . . .) ∈
∞
⊕

n=0
n!H

(n)
ext . Denote by 1 : HC → HC the identity operator. The opera-

tor I ⊗ 1 : (L2)⊗HC →
( ∞
⊕

n=0
n!H

(n)
ext

)
⊗HC

∼=
∞
⊕

n=0
n!(H

(n)
ext ⊗HC) is, obviously, an isometric

isomorphism between the spaces (L2) ⊗ HC and
∞
⊕

n=0
n!(H

(n)
ext ⊗ HC). It is clear that for ar-

bitrary m ∈ Z+ and F
(m)
· ∈ H

(m)
ext ⊗ HC a vector (0, . . . , 0︸ ︷︷ ︸

m

, F
(m)
· , 0, . . .) belongs to the space

∞
⊕

n=0
n!(H

(n)
ext ⊗HC). Set

: 〈◦⊗m, F
(m)
· 〉 :

de f
= (I ⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸

m

, F
(m)
· , 0, . . .) ∈ (L2)⊗HC. (15)

By the construction elements : 〈◦⊗n, F
(n)
· 〉 :, F

(n)
· ∈ H

(n)
ext ⊗ HC, n ∈ Z+, form an orthogo-

nal basis in the space (L2) ⊗ HC in the sense that F ∈ (L2) ⊗ HC if and only if F can be

uniquely presented as F ≡ F(·) = ∑
∞
n=0 : 〈◦⊗n, F

(n)
· 〉 : (the series converges in (L2)⊗HC), with

‖F‖2
(L2)⊗HC

= ∑
∞
n=0 n!|F

(n)
· |2

H
(n)
ext⊗HC

< ∞.

Since, obviously, the restrictions of the generalized Wiener-Itô-Sigal isomorphism I to the

spaces (Hτ)q are isometric isomorphisms between (Hτ)q and weighted symmetric Fock spaces
∞
⊕

n=0
(n!)22qnH⊗̂n

τ,C (cf. [25]), for arbitrary n ∈ Z+ and f
(n)
· ∈ H⊗̂n

τ,C ⊗HC ⊂ H
(n)
ext ⊗HC we have

: 〈◦⊗n, f
(n)
· 〉 : ∈ (Hτ)q ⊗HC. Moreover, elements : 〈◦⊗n, f

(n)
· 〉 :, f

(n)
· ∈ H⊗̂n

τ,C ⊗ HC, n ∈ Z+,

form orthogonal bases in the spaces (Hτ)q ⊗ HC: f ∈ (Hτ)q ⊗ HC if and only if f can be

uniquely presented as f ≡ f (·) = ∑
∞
n=0 : 〈◦⊗n, f

(n)
· 〉 : (the series converges in (Hτ)q ⊗ HC),

with ‖ f‖2
(Hτ )q⊗HC

= ∑
∞
n=0(n!)22qn| f

(n)
· |2

H⊗̂n
τ,C⊗HC

< ∞.

Further, as in the case of spaces (H−τ)−q, it follows from the general duality theory that

there exists a system of orthogonal in each (H−τ)−q ⊗HC generalized functions

{
: 〈◦⊗m, F

(m)
ext,·〉 : ∈ (H−τ)−q ⊗HC | F

(m)
ext,· ∈ H

(m)
−τ,C ⊗HC, m ∈ Z+

}
(16)

such that for F
(m)
ext,· ∈ H

(m)
ext ⊗HC ⊂ H

(m)
−τ,C ⊗HC : 〈◦⊗m, F

(m)
ext,·〉 : is given by (15); any generalized

function F ∈ (H−τ)−q ⊗ HC can be uniquely presented as a convergent in (H−τ)−q ⊗ HC

series

F ≡ F(·) =
∞

∑
m=0

: 〈◦⊗m, F
(m)
ext,·〉 :, F

(m)
ext,· ∈ H

(m)
−τ,C ⊗HC, (17)

with

‖F‖2
(H−τ)−q⊗HC

=
∞

∑
m=0

2−qm|F
(m)
ext,·|

2

H
(m)
−τ,C⊗HC

< ∞; (18)
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and, vice versa, any series (17) with finite norm (18) is a generalized function from (H−τ)−q ⊗

HC (i.e., such a series converges in (H−τ)−q ⊗HC). So, system (16) is an orthogonal basis in

each space (H−τ)−q ⊗HC. Moreover, it is clear that F ∈ (H−τ)⊗HC := ind lim
q→∞

(H−τ)−q ⊗HC

(F ∈ (D′)⊗HC := ind lim
τ∈T,q→∞

(H−τ)−q ⊗HC) if and only if F can be uniquely presented in form

(17) and norm (18) is finite for some q ∈ Nq0(τ) (for some τ ∈ T and some q ∈ Nq0(τ)).

Now our aim is to describe the construction of an extended stochastic integral with respect

to a Lévy process L, that is based on decomposition (17). We need a small preparation.

Consider a family of chains

D′
C

⊗̂m
⊃ H⊗̂m

−τ,C ⊃ H⊗̂m
C

⊃ H⊗̂m
τ,C ⊃ D⊗̂m

C
, (19)

m ∈ N (as is well known (cf. [3]), H⊗̂m
−τ,C and D′

C

⊗̂m = ind lim
τ̃∈T

H⊗̂m
−τ̃,C are the spaces dual of

H⊗̂m
τ,C and D⊗̂m

C
respectively). Set D⊗̂0

C
= H⊗̂0

τ,C = H⊗̂0
C

= H⊗̂0
−τ,C = D′

C

⊗̂0 := C. Since the spaces

of test functions in chains (19) and (11) coincide, there exists a family of natural isomorphisms

Um : D′
C

(m)
→ D′

C

⊗̂m
, m ∈ Z+,

such that for all F
(m)
ext ∈ D′

C

(m) and f (m) ∈ D⊗̂m
C

〈F
(m)
ext , f (m)〉ext = 〈UmF

(m)
ext , f (m)〉. (20)

It is easy to see that the restrictions of Um to the spaces H
(m)
−τ,C are isometric isomorphisms

between the spaces H
(m)
−τ,C and H⊗̂m

−τ,C.

Remark 3. Since H
(1)
ext = HC, in the case m = 1 chains (19) and (11) coincide. Thus U1 = 1 is

the identity operator on D′
C

(1) = D′
C

. In the case m = 0 U0 is, obviously, the identity operator

on C.

Definition 3. Let ∆ ∈ B(R+) and F ∈ (H−τ)−q ⊗ HC. We define an extended stochastic

integral with respect to a Lévy process
∫

∆
F(u)d̂Lu ∈ (H−τ)−q by setting

∫

∆
F(u)d̂Lu :=

∞

∑
m=0

: 〈◦⊗m+1, F̂
(m)
ext,∆〉 :, (21)

where

F̂
(m)
ext,∆ := U−1

m+1{Pr[(Um ⊗ 1)F
(m)
ext,·1∆(·)]} ∈ H

(m+1)
−τ,C , (22)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m ∈ Z+

from H⊗̂m
−τ,C ⊗HC ⊂ H⊗̂m

−τ,C ⊗H−τ,C to H⊗̂m+1
−τ,C ), F

(m)
ext,· ∈ H

(m)
−τ,C ⊗HC, m ∈ Z+, are the kernels

from decomposition (17) for F.

Since

|F̂
(m)
ext,∆|H(m+1)

−τ,C

= |Pr[(Um ⊗ 1)F
(m)
ext,·1∆(·)]|H⊗̂m+1

−τ,C
≤ |(Um ⊗ 1)F

(m)
ext,·|H⊗̂m

−τ,C⊗HC

= |F
(m)
ext,·|H(m)

−τ,C⊗HC
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and therefore by (21), (13) and (18)

∥∥∥
∫

∆
F(u)d̂Lu

∥∥∥
2

−τ,−q
=

∞

∑
m=0

2−q(m+1)|F̂
(m)
ext,∆|

2

H
(m+1)
−τ,C

≤ 2−q
∞

∑
m=0

2−qm|F
(m)
ext,·|

2

H
(m)
−τ,C⊗HC

= 2−q‖F‖2
(H−τ)−q⊗HC

,

this definition is well-posed and, moreover, the extended stochastic integral
∫

∆
◦(u)d̂Lu : (H−τ)−q ⊗HC → (H−τ)−q (23)

is a linear continuous operator.

As appears from the above, an extended stochastic integral can be defined by (21), (22) as

a linear continuous operator acting from (H−τ)⊗HC to (H−τ), or from (D′)⊗HC to (D′).

Exactly the integral ∫

∆
◦(u)d̂Lu : (H−τ)⊗HC → (H−τ) (24)

will be the object of our considerations in the forthcoming section.

Remark 4. As easily appears from results of [19, 21], stochastic integral (23) and its extension

(24) are generalizations of the extended Skorohod stochastic integral on (L2)⊗HC [21]. The

last integral, in turn, is an extension of the Itô stochastic integral.

Also we note that, in contrast to the regular case [9,12,13,19], integrals (23) and (24) cannot

be naturally restricted to the spaces of nonregular test functions, see [23] for details.

Remark 5. It follows from the definition of the extended stochastic integral that for each ∆ ∈

B(R+) ∫

∆
◦(u)d̂Lu =

∫

R+

◦(u)1∆(u)d̂Lu. (25)

One can use this representation for an important generalization. Let a function F : R+ →

(H−τ) be such that F 6∈ (H−τ)⊗HC, but for some Θ ∈ B(R+) we have F(·)1Θ(·) ∈ (H−τ)⊗

HC. It is clear that for any measurable ∆ ⊆ Θ we have now F(·)1∆(·) ∈ (H−τ)⊗HC, therefore

one can define
∫

∆
F(u)d̂Lu ∈ (H−τ) by formula (25).

Finally we note that the operator, adjoint to the extended stochastic integral, is called the

Hida stochastic derivative. This derivative is closely connected with so-called operators of sto-

chastic differentiation on spaces of nonregular test functions [24]. All the mentioned operators

play an important role in the Lévy white noise analysis.

1.5 Elements of a Wick calculus

Let F ∈ (H−τ). We define an S-transform (SF)(λ), λ ∈ DC, as a formal series

(SF)(λ) :=
∞

∑
m=0

〈F
(m)
ext , λ⊗m〉ext ≡ F

(0)
ext +

∞

∑
m=1

〈F
(m)
ext , λ⊗m〉ext, (26)

where F
(m)
ext ∈ H

(m)
−τ,C are the kernels from decomposition (12) for F. In particular, (SF)(0) =

F
(0)
ext , S1 ≡ 1.

Note that each term in series (26) is well-defined, but the series can diverge. However, the

last is not an obstruction in order to construct the Wick calculus.
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Definition 4. For F, G ∈ (H−τ) and a holomorphic at (SF)(0) function h : C → C we define a

Wick product F♦G and a Wick version of h h♦(F) by setting formally

F♦G := S−1(SF · SG), h♦(F) := S−1h(SF).

It is obvious that the Wick multiplication ♦ is commutative, associative and distributive

over a field C.

Note that a function h can be decomposed in a Taylor series

h(u) =
∞

∑
m=0

hm

(
u − (SF)(0)

)m
. (27)

Using this decomposition, it is easy to calculate that h♦(F) = ∑
∞
m=0 hm

(
F − (SF)(0)

)♦m
, where

F♦m := F♦ · · ·♦F︸ ︷︷ ︸
m times

= S−1[(SF)m], F♦0 := 1.

"Coordinate formulas" for the Wick product and for the Wick versions of holomorphic

functions (i.e., representations of F♦G, F1♦ · · ·♦Fn, n ∈ N, and h♦(F) via kernels from de-

compositions (12) for F, G, F1, . . . , Fn, and coefficients from decomposition (27) for h) are given

in [22]. Using these formulas, one can prove the following statement.

Theorem 2 ([22]). 1) Let F1, . . . , Fn ∈ (H−τ), n ∈ N. Then F1♦ · · ·♦Fn ∈ (H−τ). Moreover,

the Wick multiplication is continuous in the sense that

‖F1♦ · · ·♦Fn‖−τ,−q ≤
√

max
m∈Z+

[2−m(m + 1)n−1]‖F1‖−τ,−(q−1) · · · ‖Fn‖−τ,−(q−1),

where q ∈ N is such that F1, . . . , Fn ∈ (H−τ)−(q−1).

2) Let F ∈ (H−τ) and a function h : C → C be holomorphic at (SF)(0). Then h♦(F) ∈

(H−τ).

Finally, we will write out a “coordinate formula” for F♦G, F, G ∈ (H−τ), which will be

necessary in the next section. We need a small preparation: it is necessary to introduce an

analog of the symmetric tensor multiplication on the spaces H
(m)
−τ,C, m ∈ Z+.

For F
(n)
ext ∈ H

(n)
−τ,C and G

(m)
ext ∈ H

(m)
−τ,C, n, m ∈ Z+, set

F
(n)
ext ⋄ G

(m)
ext := U−1

n+m{Pr[(UnF
(n)
ext )⊗ (UmG

(m)
ext )]} ≡ U−1

n+m{(UnF
(n)
ext )⊗̂(UmG

(m)
ext )} ∈ H

(n+m)
−τ,C .

(28)

It follows from properties of operators Um (see Subsection 1.4) and of the symmetric tensor

multiplication that the multiplication ⋄ is commutative, associative and distributive over a

field C. One can show [22] that |F
(n)
ext ⋄G

(m)
ext |H(n+m)

−τ,C

≤ |F
(n)
ext |H(n)

−τ,C

|G
(m)
ext |H(m)

−τ,C

, and for any λ ∈ DC

〈F
(n)
ext , λ⊗n〉ext〈G

(m)
ext , λ⊗m〉ext = 〈F

(n)
ext ⋄ G

(m)
ext , λ⊗n+m〉ext.

Proposition 4 ([22]). For F, G ∈ (H−τ)

F♦G =
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

F
(k)
ext ⋄ G

(m−k)
ext 〉 : , (29)

where F
(k)
ext ∈ H

(k)
−τ,C, G

(m−k)
ext ∈ H

(m−k)
−τ,C , are the kernels from decompositions (12) for F and G

respectively. In particular, for F
(n)
ext ∈ H

(n)
−τ,C and G

(m)
ext ∈ H

(m)
−τ,C

: 〈◦⊗n, F
(n)
ext 〉 :♦: 〈◦⊗m, G

(m)
ext 〉 : = : 〈◦⊗n+m, F

(n)
ext ⋄ G

(m)
ext 〉 :. (30)
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Remark 6. It is relevant to note that the multiplication ⋄ is an extension of an analog of the

symmetric tensor multiplication on the spaces H
(m)
ext , m ∈ Z+ [22, 24]. Using this fact, one

can show that the Wick products and the Wick versions of holomorphic functions, introduced

on the spaces of regular and nonregular generalized functions (see [11] and [22] respectively),

coincide on the intersections of the mentioned spaces. The interested reader can find a detailed

information in [22].

2 MAIN RESULTS AND EXAMPLES

2.1 The Wick multiplication under the sign of an integral

As is known, some properties of an extended stochastic integral differ from habitual prop-

erties of the Lebesgue integral. In particular, for F ∈ (H−τ) and H(1) ∈ HC

∫

R+

(F ⊗ H(1))(u)d̂Lu ≡
∫

R+

F · H(1)(u)d̂Lu 6= F ·
∫

R+

H(1)(u)d̂Lu,

generally speaking, although F does not depend on u. Moreover, in general, the pointwise

product F ·
∫

R+
H(1)(u)d̂Lu is undefined. Note that these facts are not directly related with

pecularities of the Lévy analysis, and hold true even in the classical Gaussian analysis.

But if one uses the Wick multiplication instead of the pointwise multiplication, it becomes

possible to take a time-independent multiplier out of the sign of the extended stochastic inte-

gral, as in the Lebesgue integration theory (again, this statement holds true in the Gaussian

analysis, in the same way as in the Lévy analysis on the spaces of regular generalized func-

tions [12]). In this subsection we’ll explain this in detail.

We begin with a preparation. Let F
(n)
ext ∈ H

(n)
−τ,C, G

(m)
ext,· ∈ H

(m)
−τ,C ⊗HC, n, m ∈ Z+. Using the

notation of the previous section, define

F
(n)
ext ⋄G

(m)
ext,· := (U−1

n+m ⊗ 1){(Pr ⊗ 1)[(Un F
(n)
ext )⊗ ((Um ⊗ 1)G

(m)
ext,·)]} ∈ H

(n+m)
−τ,C ⊗HC. (31)

Remark 7. Let n, m ∈ Z+, F
(n)
ext ∈ H

(n)
−τ,C, G

(m)
ext ∈ H

(m)
−τ,C and H(1) ∈ HC. By (31) and (28)

F
(n)
ext ⋄(G

(m)
ext ⊗ H(1)) = (F

(n)
ext ⋄ G

(m)
ext )⊗ H(1) (32)

(cf. [24]).

It is easy to estimate the norm of F
(n)
ext ⋄G

(m)
ext,· in the space H

(n+m)
−τ,C ⊗ HC: since operators

Um : H
(m)
−τ,C → H⊗̂m

−τ,C, m ∈ Z+, are isometric isomorphisms (see Subsection 1.4), by (31) we

obtain

|F
(n)
ext ⋄G

(m)
ext,·|H(n+m)

−τ,C ⊗HC

= |(Pr ⊗ 1)[(Un F
(n)
ext )⊗ ((Um ⊗ 1)G

(m)
ext,·)]|H⊗̂n+m

−τ,C ⊗HC

≤ |UnF
(n)
ext |H⊗̂n

−τ,C
|(Um ⊗ 1)G

(m)
ext,·|H⊗̂m

−τ,C⊗HC

= |F
(n)
ext |H(n)

−τ,C

|G
(m)
ext,·|H(m)

−τ,C⊗HC

.

(33)

Definition 5. Let F ∈ (H−τ) and G ∈ (H−τ)⊗HC . We define a Wick product F♦G ∈ (H−τ)⊗

HC, setting

F♦G ≡ (F♦G)(·) :=
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

F
(k)
ext ⋄G

(m−k)
ext,· 〉 : , (34)
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where F
(k)
ext ∈ H

(k)
−τ,C and G

(m−k)
ext,· ∈ H

(m−k)
−τ,C ⊗HC are the kernels from decompositions (12) and

(17) for F and G respectively (cf. (29)).

Using estimate (33) one can prove by analogy with [22] that this definition is well-posed,

and the Wick multiplication ♦ is continuous in the sense that for any q ∈ N such that F ∈

(H−τ)−(q−1) and G ∈ (H−τ)−(q−1) ⊗HC,

‖F♦G‖(H−τ)−q⊗HC
≤ ‖F‖(H−τ)−(q−1)

‖G‖(H−τ)−(q−1)⊗HC
.

Remark 8. Let F, G ∈ (H−τ) and H(1) ∈ HC. Using (34), (32) and (29), one can easily show

that

F♦(G ⊗ H(1)) = (F♦G)⊗ H(1). (35)

Theorem 3. Let ∆ ∈ B(R+), F ∈ (H−τ) and G ∈ (H−τ)⊗HC. Then
∫

∆
F♦G(u)d̂Lu ≡

∫

∆
(F♦G)(u)d̂Lu = F♦

∫

∆
G(u)d̂Lu ∈ (H−τ). (36)

Remark 9. It is possible to interpret G as a function acting from R+ to (H−τ) and, taking

into account the construction of the Wick multiplications ♦ and ♦, rewrite equality (36) in a

classical form
∫

∆
F♦G(u)d̂Lu = F♦

∫
∆

G(u)d̂Lu.

Proof. It is sufficient to consider the case ∆ = R+ only: if ∆ 6= R+, it is necessary to substitute

G(·)1∆(·) instead of G.

Let at first F = : 〈◦⊗n, F
(n)
ext 〉 :, G(·) = : 〈◦⊗m, G

(m)
ext,·〉 :, F

(n)
ext ∈ H

(n)
−τ,C, G

(m)
ext,· ∈ H

(m)
−τ,C ⊗HC,

n, m ∈ Z+. By (34) we have (F♦G)(·) = : 〈◦⊗n+m, F
(n)
ext ⋄G

(m)
ext,·〉 :, hence

∫
R+

(F♦G)(u)d̂Lu =

: 〈◦⊗n+m+1,
̂

F
(n)
ext ⋄G

(m)
ext,R+

〉 : (see (21), (22)). On the other hand, by (21)
∫

R+

G(u)d̂Lu = : 〈◦⊗m+1, Ĝ
(m)
ext,R+

〉 : ,

therefore F♦
∫

R+
G(u)d̂Lu = : 〈◦⊗n+m+1, F

(n)
ext ⋄ Ĝ

(m)
ext,R+

〉 : (see (30)). So, we have to prove that

̂
F
(n)
ext ⋄G

(m)
ext,R+

= F
(n)
ext ⋄ Ĝ

(m)
ext,R+

(37)

in H
(n+m+1)
−τ,C .

Using (22) and (31) we obtain

̂
F
(n)
ext ⋄G

(m)
ext,R+

= U−1
n+m+1{Pr[(Un+m ⊗ 1)(F

(n)
ext ⋄G

(m)
ext,·)]}

= U−1
n+m+1

{
Pr

[
(Un+m ⊗ 1)(U−1

n+m ⊗ 1){(Pr ⊗ 1)[(Un F
(n)
ext )⊗ ((Um ⊗ 1)G

(m)
ext,·)]}

]}

= U−1
n+m+1{Pr[(UnF

(n)
ext )⊗ ((Um ⊗ 1)G

(m)
ext,·)]},

whereas by (28) and (22)

F
(n)
ext ⋄ Ĝ

(m)
ext,R+

= U−1
n+m+1{Pr[(UnF

(n)
ext )⊗ (Um+1Ĝ

(m)
ext,R+

)]}

= U−1
n+m+1

{
Pr

[
(UnF

(n)
ext )⊗ (Um+1U−1

m+1{Pr[(Um ⊗ 1)G
(m)
ext,·]})

]}

= U−1
n+m+1{Pr[(UnF

(n)
ext )⊗ ((Um ⊗ 1)G

(m)
ext,·)]}.

Therefore equality (37) is true, hence in our special case the theorem is proved. In the general

case the statement follows from the just obtained result, continuity of the Wick multiplications

♦ and ♦, and continuity of operator of stochastic integration (24).
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Now let us obtain an analog of property (36) for a so-called Pettis integral (i.e., for a weak

integral) on the spaces of nonregular generalized functions. Denote by ρ the Lebesgue measure

on R+ and consider ∆ ∈ B(R+) such that ρ(∆) < ∞. For any G ∈ (H−τ)⊗HC define the

Pettis integral
∫

∆
G(u)du ∈ (H−τ) as a unique element of (H−τ) such that for each f ∈ (Hτ)

〈〈
∫

∆
G(u)du, f 〉〉(L2 ) = 〈〈G(·), f ⊗ 1∆(·)〉〉(L2)⊗HC

. (38)

Since by the generalized Cauchy-Bunyakovsky inequality for each q ∈ Nq0(τ) (see Proposi-

tion 2)

|〈〈G(·), f ⊗ 1∆(·)〉〉(L2)⊗HC
| ≤ ‖G‖(H−τ)−q⊗HC

‖ f‖(Hτ )q

√
ρ(∆),

this definition is well-posed and the Pettis integral

∫

∆
◦(u)du : (H−τ)⊗HC → (H−τ) (39)

is a linear continuous operator.

Let G ∈ (H−τ), H(1) ∈ HC. Then

∫

∆
(G ⊗ H(1))(u)du ≡

∫

∆
G · H(1)(u)du = G ·

∫

∆
H(1)(u)du. (40)

In fact, for each f ∈ (Hτ) by (38) we have

〈〈
∫

∆
G · H(1)(u)du, f 〉〉(L2 ) = 〈〈G ⊗ H(1)(·), f ⊗ 1∆(·)〉〉(L2)⊗HC

= 〈〈G, f 〉〉(L2 )

∫

∆
H(1)(u)du = 〈〈G ·

∫

∆
H(1)(u)du, f 〉〉(L2 ).

Let now F, G ∈ (H−τ) and H(1) ∈ HC. Using (35) and (40) we obtain

∫

∆
F♦

(
(G ⊗ H(1))(u)

)
du ≡

∫

∆

(
F♦(G ⊗ H(1))

)
(u)du =

∫

∆

(
(F♦G)⊗ H(1)

)
(u)du

≡
∫

∆
(F♦G) · H(1)(u)du = (F♦G) ·

∫

∆
H(1)(u)du

= F♦
(
G ·

∫

∆
H(1)(u)du

)
= F♦

∫

∆
G · H(1)(u)du

≡ F♦
∫

∆
(G ⊗ H(1))(u)du.

From here, by virtue of continuity of the Wick multiplications♦ and ♦, and continuity of Pettis

integral (39), we obtain the following statement (cf. Theorem 3).

Theorem 4. Let ∆ ∈ B(R+) be such that ρ(∆) < ∞, F ∈ (H−τ) and G ∈ (H−τ)⊗HC. Then

∫

∆
F♦G(u)du ≡

∫

∆
(F♦G)(u)du = F♦

∫

∆
G(u)du ∈ (H−τ). (41)
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Remark 10. As in the case of the extended stochastic integral, now one can interpret G as

a function acting from R+ to (H−τ), and rewrite equality (41) in a form
∫

∆
F♦G(u)du =

F♦
∫

∆
G(u)du.

2.2 A representation of the extended stochastic integral via the Pettis integral

It is well known that in the Gaussian analysis the extended stochastic integral on spaces of

generalized functions can be presented as a Pettis integral:

∫

∆
F(u)d̂Wu =

∫

∆
F(u)♦Ẇudu, ∆ ∈ B(R+). (42)

Here W is a Wiener process, Ẇ is a Gaussian white noise. Depending on the spaces under

consideration, equality (42) can be formal or can have a rigorous sense. In any case this equality

is very useful for applications, in particular, for studying stochastic equations with Wick type

nonlinearities.

Remark 11. In a sense, equality (42) is an analog of a formula for replacement of a measure in

the Lebesgue integration theory. In particular, Ẇ is an analog of a Radon-Nikodym derivative.

In the Lévy analysis representation (42) for the extended stochastic integral holds true up

to obvious modifications: it is necessary to substitute a Lévy process and a Lévy white noise

instead of a Wiener process and a Gaussian white noise respectively. Now on the spaces of

regular generalized functions the analog of (42) is a formal equality [12]; in the nonregular case

the corresponding analog is a rigorous equality. Let us explain this in detail.

As we saw in Subsection 1.1, a Lévy white noise can be presented in a form L̇u = 〈◦, δu〉,

u ∈ R+. As is well known (e.g., [3]), for each u the Dirac delta-function δu ∈ H−τ, therefore

L̇u = 〈◦, δu〉 = : 〈◦, δu〉 : ∈ (H−τ). Let F ∈ (H−τ)⊗HC. In this subsection it will be convenient

to interpret F as a function acting from R+ to (H−τ), so, for ρ-almost all u ∈ R+ the Wick

product F(u)♦L̇u is a well-defined element of (H−τ) (remind that ρ is the Lebesgue measure

on R+). For arbitrary ∆ ∈ B(R+) let us define the Pettis integral
∫

∆
F(u)♦L̇udu as a unique

element of (H−τ) such that for each f ∈ (Hτ)

〈〈
∫

∆
F(u)♦L̇udu, f 〉〉(L2) =

∫

∆
〈〈F(u)♦L̇u , f 〉〉(L2)du (43)

(cf. (38)). Since it is possible now that ρ(∆) = ∞, we cannot use the reasoning from Subsec-

tion 2.1 and have to prove the correctness of this definition (simultaneously we’ll obtain an

analog of (42)). It is sufficient to consider the case ∆ = R+: if ∆ 6= R+, one has to substitute

F(·)1∆(·) instead of F. By (29), (28) and Remark 3 for ρ-almost all u ∈ R+

F(u)♦L̇u = F(u)♦: 〈◦, δu〉 : =
∞

∑
m=0

: 〈◦⊗m+1, F
(m)
ext,u ⋄ δu〉 :

=
∞

∑
m=0

: 〈◦⊗m+1, U−1
m+1{Pr[(UmF

(m)
ext,u)⊗ δu]}〉 :,
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therefore by (8), (14) and (20) we obtain
∫

R+

〈〈F(u)♦L̇u , f 〉〉(L2)du

=
∫

R+

〈〈
∞

∑
m=0

: 〈◦⊗m+1, U−1
m+1{Pr[(UmF

(m)
ext,u)⊗ δu]}〉 :,

∞

∑
n=0

: 〈◦⊗n, f (n)〉 :〉〉(L2)du

=
∫

R+

∞

∑
m=0

(m + 1)!〈U−1
m+1{Pr[(UmF

(m)
ext,u)⊗ δu]}, f (m+1)〉extdu

=
∫

R+

∞

∑
m=0

(m + 1)!〈(Um F
(m)
ext,u)⊗ δu, f (m+1)〉du

=
∫

R+

∞

∑
m=0

(m + 1)!〈UmF
(m)
ext,u, f (m+1)(·1, . . . ·m, u)〉du

=
∞

∑
m=0

(m + 1)!
∫

R+

〈UmF
(m)
ext,u, f (m+1)(·1, . . . ·m, u)〉du

=
∞

∑
m=0

(m + 1)!〈(Um ⊗ 1)F
(m)
ext,·, f (m+1)〉.

(44)

Note that the penultimate equality in (44) is valid because, as is easy to verify,

∫

R+

∞

∑
m=0

(m + 1)!|〈Um F
(m)
ext,u, f (m+1)(·1, . . . ·m, u)〉|du < ∞.

On the other hand, by (21), (22), (8), (14) and (20) we obtain

〈〈
∫

R+

F(u)d̂Lu, f 〉〉(L2)

= 〈〈
∞

∑
m=0

: 〈◦⊗m+1, U−1
m+1{Pr[(Um ⊗ 1)F

(m)
ext,·]}〉 :,

∞

∑
n=0

: 〈◦⊗n, f (n)〉 :〉〉(L2)

=
∞

∑
m=0

(m + 1)!〈U−1
m+1{Pr[(Um ⊗ 1)F

(m)
ext,·]}, f (m+1)〉ext

=
∞

∑
m=0

(m + 1)!〈(Um ⊗ 1)F
(m)
ext,·, f (m+1)〉.

(45)

Comparing (44) and (45) we conclude that for all f ∈ (Hτ) and ∆ ∈ B(R+)
∫

∆
〈〈F(u)♦L̇u , f 〉〉(L2)du =

∫

R+

〈〈
(

F(u)1∆(u)
)
♦L̇u, f 〉〉(L2)du

= 〈〈
∫

R+

F(u)1∆(u)d̂Lu, f 〉〉(L2) = 〈〈
∫

∆
F(u)d̂Lu, f 〉〉(L2),

therefore by (43)
∫

∆
F(u)♦L̇udu is a well-defined element of (H−τ) and, moreover, we have the

following statement.

Theorem 5. For arbitrary ∆ ∈ B(R+) and F ∈ (H−τ)⊗HC

∫

∆
F(u)d̂Lu =

∫

∆
F(u)♦L̇udu. (46)
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Remark 12. The extended stochastic integral can be defined by formulas (21), (22) with ∆ =

R+ as a linear continuous operator acting from (H−τ) ⊗H−τ,C to (H−τ), cf. [23] (now it is

impossible to define the integral by a set ∆ 6= R+ because a multiplication of an element of

H
(m)
−τ,C ⊗H−τ,C or (H−τ) ⊗H−τ,C by 1∆ is undefined, cf. (22), (25)). It is easy to show that

formulas (36) and (46) (with ∆ = R+) hold true for this integral.

Finally we note that all results of Subsections 2.1 and 2.2 hold true for integrands and mea-

surable sets ∆, satisfying the assumptions of Remark 5.

2.3 Examples

In order to illustrate possible applications of our results, we consider some stochastic equa-

tions with Wick type nonlinearities.

Example 1. (a linear equation) Let us consider an integral stochastic equation

Xt = X0 +
∫ t

0
F♦Xudu +

∫ t

0
G♦Xud̂Lu, (47)

where X0, F, G ∈ (H−τ) (we use here the classical notation
∫ t

0 ≡
∫
[0,t)). Applying to this equa-

tion the S-transform with regard to (41), (36) and (46), and solving the obtained nonstochastic

equation, we get

SXt = SX0 · exp
{

SFt + SG
∫ t

0
λ(u)du

}
.

Applying to this equality the inverse S-transform, we obtain the solution of (47)

Xt = X0♦ exp♦
{

Ft + G♦Lt

}
∈ (H−τ).

Example 2. (a Verhulst type equation) Consider an integral stochastic equation

Xt = X0 + r
∫ t

0
Xu♦(N − Xu)du + v

∫ t

0
Xu♦(N − Xu)d̂Lu, (48)

where X0 ∈ (H−τ), N, r, v ∈ R, N > 0, r > 0, (SX0)(0) > 0. Here for ρ-almost all u ∈ R+

we interpret Xu as a generalized function, it follows from the solution of (48) (see below) that

Xu ∈ (H−τ) and all integrals in (48) are well defined. As in the previous example, applying

to (48) the S-transform with regard to (46), solving the obtained equation, and applying the

inverse S-transform, we get the solution

Xt = N
[
1 + (NX

♦(−1)
0 − 1)♦ exp♦

{
− N(rt + vLt)

}]♦(−1)
∈ (H−τ),

where Y♦(−1) := S−1
(

1
SY

)
.

Remark 13. It is very easy to show that all results of this paper hold true (up to obvious

modifications) if we consider the spaces (D′) and (D′)⊗HC instead of the spaces (H−τ) and

(H−τ)⊗HC respectively.
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[34] Solé J.L., Utzet F., Vives J. Chaos expansions and Malliavin calculus for Lévy processes. In: Stoch. Anal. and
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Качановський М.О., Качановська Т.О. Взаємозв’язок мiж вiкiвським множенням та iнтегрува-

нням на просторах нерегулярних узагальнених функцiй в аналiзi бiлого шуму Левi // Карпатськi

матем. публ. — 2019. — Т.11, №1. — C. 70–88.

Ми маємо справу з просторами нерегулярних узагальнених функцiй в аналiзi бiлого шу-

му Левi, якi побудованi з використанням литвинiвського узагальнення властивостi хаотичного

розкладу. Наша мета — описати взаємовiдносини мiж вiкiвським множенням та iнтегруван-

ням на цих просторах. Точнiше, ми показуємо, що, використовуючи вiкiвське множення, мо-

жна виносити незалежний вiд часу множник за знак розширеного стохастичного iнтегралу;

встановлюємо аналог цього результату для iнтегралу Петтiса (слабкого iнтегралу); та доводи-

мо теорему про представлення розширеного стохастичного iнтегралу через iнтеграл Петтiса

вiд вiкiвського добутку вихiдної пiдiнтегральної функцiї на бiлий шум Левi. Як приклади за-

стосування наших результатiв ми розглядаємо деякi стохастичнi рiвняння з нелiнiйностями

вiкiвського типу.

Ключовi слова i фрази: Процес Левi, розширений стохастичний iнтеграл, iнтеграл Петтiса,

вiкiвський добуток.


