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CLASSIFICATION OF GENERALIZED TERNARY QUADRATIC QUASIGROUP

FUNCTIONAL EQUATIONS OF THE LENGTH THREE

A functional equation is called: generalized if all functional variables are pairwise different;

ternary if all its functional variables are ternary; quadratic if each individual variable has exactly

two appearances; quasigroup if its solutions are studied only on invertible functions. A length of a

functional equation is the number of all its functional variables. A complete classification up to

parastrophically primary equivalence of generalized quadratic quasigroup functional equations of

the length three is given. Solution sets of a full family of representatives of the equivalence are

found.
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INTRODUCTION

We study functional equations which can be considered on an arbitrary set (a carrier) and

therefore they have neither individual nor functional constants. Moreover, we focus our at-

tention only on the solutions which are sequences of invertible functions (i.e., quasigroup

functions) and such equations are called quasigroup equations. We do not pay attention to

dependencies among functional variables. That is why, we consider generalized equations: all

functional variables are pairwise different. The word ‘ternary’ means that every functional

variable takes its value in the set ∆3 of all ternary invertible operations defined on a carrier.

Every ternary invertible operation has three inverses: left, middle and right divisions and

each of them is also invertible, etc. These operations are called parastrophes. Generally speak-

ing, an arbitrary ternary invertible operation has 4! = 24 parastrophes including itself and all

of them are connected by some defining identities. These identities are true not only for all

individual variables but for all functional variables provided they take their value in ∆3. In

other words, they are hyperidentities over the set ∆3, and they are called primary. Renaming

functional and individual variables and applying primary hyperidentities, one can transform

one functional equation into some other equation. This relation between functional equations

is an equivalence and is called a parastrophically primary equivalence. If two functional equa-

tions are parastrophically primarily equivalent, then there is an algorithm which transforms

the solution set of the first equation into the solution set of the second one.
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The problem under consideration is “Describe parastrophically primary equivalence on the set

of all quasigroup functional equations, select all representatives (i.e., a maximal set of non-equivalent

functional equations) and solve all of them”.

This problem is discussed in A. Krapež [3], S. Krstić [15], A. Krapež and D. Živković [4],

A. Ehsani, A. Krapež and Y. Movsisyan [5], F. Sokhatsky [8, 10], F. Sokhatsky and H. Kraini-

chuk [6, 9], R. Koval’ [14], H. Krainichuk [13] etc. for binary quasigroups. On ternary quasi-

groups, the parastrophically primary classification was carried out in the article [11], where

a two-element transversal equivalence of the generalized non-trivial functional equations of

the length one and the seven-element transversal of the equivalence of generalized non-trivial

functional equations of the length two were singled out.

In this article, only quadratic generalized functional equations of the length three on invert-

ible functions (i.e. quasigroup operations) are studied, that is, those equations in which each

individual variable has exactly two appearances. If a quasigroup equation has one appearance

of an individual variable, then it is trivial, i.e. it has solutions only on singletons.

In section ‘Quasigroup solutions’, general solutions of each element from a family of pair-

wise parastrophically primarily non-equivalent generalized quadratic functional equations of

the length three on ternary quasigroups have been found in Theorems 2–5. In the next section

‘Proof of Theorem 1’, a full proof of the classification theorem is given.

1 PRELIMINARIES

1.1 Quasigroup

All operations considered in this article are defined on an arbitrary fixed set Q called a

carrier. A binary operation is a mapping g: Q2 → Q, the set of all operations defined on Q

is denoted by O2. A binary operation g is called invertible, if it is invertible in both monoids

(O2;⊕
1

, e1) and (O2;⊕
2

, e2), where e1(x1, x2) := x1, e2(x1, x2) := x2 and

(g ⊕
1

g1)(x1, x2) := g(g1(x1, x2), x2), (g ⊕
2

g1)(x1, x2) := g(x1, g1(x1, x2)).

The operation g is the main one and its inverses in (O2;⊕
1

, e1) and (O2;⊕
2

, e2) are denoted by ℓg

and rg and are called g’s left and right divisions respectively. If an operation g is invertible, then

the algebra (Q; g, ℓg, rg) is called a binary quasigroup [10]. Usually, infix notations are used for

binary operations. Therefore, an algebra (Q; ◦,
ℓ
◦,

r
◦) is called a quasigroup if the identities

(x
ℓ
◦ y) ◦ y = x, (x ◦ y)

ℓ
◦ y = x, x ◦ (x

r
◦ y) = y, x

r
◦ (x ◦ y) = y

hold.

Similarly, a ternary operation is a mapping f : Q3 → Q, the set of all ternary operations

defined on Q is denoted by O3. A ternary operation f is called invertible if it is invertible in

each of the monoids (O3;⊕
i

, ei), i = 1, 2, 3, where

( f ⊕
1

f1)(x1, x2, x3) := f ( f1(x1, x2, x3), x2, x3),

( f ⊕
2

f1)(x1, x2, x3) := f (x1, f1(x1, x2, x3), x3),

( f ⊕
3

f1)(x1, x2, x3) := f (x1, x2, f1(x1, x2, x3)),

ei(x1, x2, x3) := xi, i = 1, 2, 3.



CLASSIFICATION OF QUADRATIC EQUATIONS 181

The operation f is the main one and its inverses in (O3;⊕
1

, e1), (O3;⊕
2

, e2), (O3;⊕
3

, e3) are de-

noted by (14)f , (24)f , (34)f and they are called f ’s left, middle and right divisions respectively. In

other words, the operation f is invertible if the identities

f ((14)f (x, y, z), y, z) = x, (1)

f (x, (24)f (x, y, z), z) = y, (2)

f (x, y, (34)f (x, y, z)) = z, (3)

(14)f ( f (x, y, z), y, z) = x, (4)

(24)f (x, f (x, y, z), z) = y, (5)

(34)f (x, y, f (x, y, z)) = z (6)

hold. If an operation f is invertible, then the algebra (Q; f , (14)f , (24)f , (34)f ) (in brief, (Q; f )) is

called a ternary quasigroup [10]. It is easy to verify that all divisions of an invertible operation

are also invertible and so are their divisions.

A σ-parastrophe of an invertible operation f is called an operation σf defined by

σf (x1σ, x2σ, x3σ) = x4σ :⇔ f (x1, x2, x3) = x4, σ ∈ S4,

where S4 denotes the group of all bijections of the set {1, 2, 3, 4}. Therefore in general, every

invertible operation has 24 parastrophes. Some of them can coincide. If all parastrophes coin-

cide, the quasigroup is called totally symmetric. Since parastrophes of a quasigroup satisfy the

equalities
σ(τf ) = στf and ιf = f , (7)

then the symmetric group S4 defines an action on the set ∆3 of all ternary invertible operations

defined on the same carrier. In particular, the fact implies that the number of different paras-

trophes of an invertible operation is a factor of 24. More precisely, it is equal to 24/|Ps( f )|,

where Ps( f ) denotes a stabilizer group of f under this action which is called parastrophic sym-

metry group of the operation f . Consequently, a totally symmetric quasigroup is a quasigroup

whose parastrophic symmetry group is S4. If the parastrophic symmetry group of a ternary

quasigroup is trivial, then the quasigroup has 24 different parastrophes and it is called asym-

metric.

An element e of (Q; f ) is called neutral if for all x from Q the equalities

f (x, e, e) = x, f (e, x, e) = x, f (e, e, x) = x

hold. In contrast to the binary case, a neutral element is not necessarily unique in a ternary

quasigroup. A quasigroup is called a loop if it has a neutral element. For example, let (Q;+)

be a group of the exponent two and an operation f be defined by

f (x, y, z) := x + y + z.

It is easy to see that every element of the quasigroup is neutral in the ternary quasigroup

(Q; f ). Such a quasigroup will be called universally neutral. Namely, a ternary quasigroup

(Q; f ) will be called a left, middle, right universally neutral if the respective identity holds:

f (x, y, y) = x, f (y, x, y) = x, f (y, y, x) = x.

It will be called universally neutral if all three identities take place. Note, that the given exam-

ple of the ternary quasigroup is not only universally neutral, but it is totally symmetric. A
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quasigroup which is both universally neutral and totally symmetric is called a Steiner quasi-

group [2, 12]. Thus, every ternary Steiner quasigroup is a loop. Moreover, each of its elements

is neutral.

An invertible operation f is called repetition-free decomposable if there exist two binary in-

vertible operations g, h and bijection σ ∈ S3 such that

f (x1, x2, x3) = g(h(x1σ , x2σ), x3σ).

Theorem 1 from [16] implies the following result.

Corollary 1. If a ternary Steiner quasigroup (Q; f ) is repetition-free decomposable, then there

is a group (Q;+) of the exponent two such that

f (x, y, z) = x + y + z.

1.2 Functional equations

Throughout the article, we will use the notion ‘functional equation’ in the following sense.

Let T1 and T2 are second order terms which have only individual and functional variables. A

formula T1 = T2 is called a functional equation, if it is universally quantified on all individual

variables and has at least one free functional variable. Moreover, we consider only generalized

ternary quadratic functional equations of the length three on quasigroups, where the notion

‘ternary quasigroup equation’ means that all functional variables take their values only in

the set of ternary invertible functions; the word ‘generalized’ means that the variables are

pairwise different; the word ‘quadratic’ means that every individual variable has exactly two

appearances or none; the notion ‘length of a functional equation’ is the number of functional

variables including their repetitions (see [1, 10]).

A subterm of an equation is a subterm of its left or right sides. A subterm of a term T is

called proper if it coincides neither with T nor an individual variable. Let F(t1, t2, t3) be a term,

then the function variable F is called main.

Let T1 = T2 be a ternary functional equation of the length three, (F, Gi, Gj) be the lexi-

cographical sequence of its functional variables, i.e., i < j. A sequence ( f , g, h) of invertible

ternary functions defined on a set Q is called a solution of T1 = T2 if substituting f for F, g for

G1 and h for G2, we obtain a true proposition t1 = t2, i.e., t1 = t2 is an identity. A quasigroup

functional equation is called trivial if it has a solution only on a singleton.

Consequently, in an arbitrary non-trivial quasigroup functional equation, every individual

variable has at least two appearances. In this article, we consider the case when every individ-

ual variable has exactly two appearances, these equations are called quadratic.

Let ∆3 be the set of all invertible ternary functions defined on a carrier Q. The relationships

(1)–(6) and (7) are true for all functions from ∆3. In other words, the following hyperidentities

are true over the set ∆3:

σ(τF) = στF, ιF = F, (14)F(F(x, y, z), y, z) = x;

(24)F(x, F(x, y, z), z) = y; (34)F(x, y, F(x, y, z)) = z,

F(x1, x2, x3) =
σF(x1σ, x2σ, x3σ), σ ∈ S3.















(8)

The hyperidentities are called primary.

Two quasigroup functional equations are called: equivalent over a set Q if they have the same

solution set over the carrier; equivalent if they are equivalent over each set.
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Definition 1 ([8]). Two functional equations are called parastrophically primarily equivalent

if one can be obtained from the other in a finite number of the following steps: 1) replacing

of the equation sides; 2) renaming of the functional variables; 3) renaming of the individual

variables; 4) applying the hyperidentities (8).

A lexicographical renaming of individual variables is renaming all first appearances of these

variables according to their lexicographical order.

Lemma 1. Let υ = ω and υ′ = ω′ be generalized ternary functional equations of the length

three. If they are parastrophically primarily equivalent, then there exists a bijection τ in S3 and

bijections σ1, σ2, σ3 in S4 such that for an arbitrary solution ( f1, f2, f3) of υ = ω the sequence

(σ1f 1τ, σ2f 2τ, σ3f 3τ)

is a solution of the equation υ′ = ω′.

In this case, (τ, σ1, σ2, σ3) is called a defining bijection system of the equations υ = ω and υ′ =

ω′. This lemma implies a sufficient condition for parastrophically primary non-equivalence of

ternary generalized functional equations of the length three. Namely, the following statement

is valid.

Corollary 2. If for every bijection τ in S3 and bijections σ1, σ2, σ3 in S4 there exists a solution

( f1, f2, f3) of υ = ω such that (σ1f 1τ, σ2f 2τ, σ3f 3τ) is not a solution of υ′ = ω′, then the functional

equations υ = ω and υ′ = ω′ are not parastrophically primarily equivalent.

A function f is called a solution of a functional equation if the sequence ( f , f , . . . , f ) is

solution of the equation.

Corollary 3. If a totally symmetric function is a solution of a functional equation but it is not a

solution of another functional equation, then the equations are not parastrophically primarily

equivalent.

2 QUASIGROUP SOLUTIONS

Theorem 1 gives a full classification of generalized quadratic ternary quasigroup functional

equations of the length three up to parastrophically primary equivalence. Also, all quasigroup

solutions of all representatives (9)–(12) of the classification are proved in Theorem 2–5.

Theorem 1. Every generalized quadratic ternary quasigroup functional equation of the length

three is parastrophically primarily equivalent to exactly one of the following equations:

F1(z, x, F2(x, y, y)) = F3(z, u, u), (9)

F1(F2(x, y, y), z, z) = F3(x, u, u), (10)

F1(F2(x, y, z), u, u) = F3(x, y, z), (11)

F1(F2(x, y, z), x, u) = F3(y, z, u). (12)

Lemma 2. Let α, f be the unary and ternary invertible operations respectively. Then the equal-

ity

f (x, y, y) = αx (13)

is equivalent to the existence of a left-universally neutral invertible operation g such that

f (x, y, z) = g(αx, y, z). (14)
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Proof. Define operation g, by

g(x, y, z) := f (α−1x, y, z). (15)

Since f is invertible and g is an isotope of f , the operation g is invertible. Taking into account

(13), we have x = f (α−1x, y, y) = g(x, y, y). Hence, the operation g is left-universally neutral.

Applying (15), we obtain (14).

Conversely, let g be a left-universally neutral invertible operation and let the relationship

(14) holds. Then f (x, y, y) = g(αx, y, y) = αx.

Theorem 2. A triplet ( f1, f2, f3) of ternary invertible operations is a solution of the equation (9)

if and only if there exist left-universally neutral invertible operations h1, h2, h3 and bijections

α, β such that

f1(x, y, z) = h1(αx, y, β−1z), (16)

f2(x, y, z) = h2(βx, y, z), (17)

f3(x, y, z) = h3(αx, y, z). (18)

Proof. Let a triplet ( f1, f2, f3) of ternary invertible operations defined on Q be a solution of the

equation (9), i.e., for all x, y, z, u the identity

f1(z, x, f2(x, y, y)) = f3(z, u, u) (19)

holds. In particular, if u = a ∈ Q, we have

f1(z, x, f2(x, y, y)) = αz, (20)

where αz := f3(z, a, a) is a bijection of Q because α is a left translation of the invertible operation

f3.

Also, from (20) and (19), we get the identity f3(z, u, u) = αz. According to Lemma 2, there

exists a left-universally neutral invertible operation h3 such that (18) holds.

Applying the definition of a parastrophe to the equality (20), we have

f2(x, y, y) = (34)f1(z, x, αz).

If z = a ∈ Q and βx :=(34) f1(a, x, αa), the equality is written as f2(x, y, y) = βx. Note that β is

bijective on Q since it is a translation of an invertible operation (34)f1. By Lemma 2, the latter

relationship implies the existence of a left-universally neutral invertible operation h2 such that

(17) is true.

Replace f2(x, y, y) with βx in (20): f1(z, x, βx) = αz. Let h1(x, y, z) := f1(α
−1x, y, βz), then

(16) holds and h1(x, y, y) = f1(α
−1z, x, βx) = αα−1x = x. Thus the operation h1 is a left-

universally neutral invertible.

Conversely, let the operations h1, h2, h3 be left-universally neutral invertible operations and

operations f1, f2, f3 be defined by (16), (17), (18) for some bijections α, β of a set Q. Then

f1(z, x, f2(x, y, y)) = h1(αz, x, β−1h2(βx, y, y)

= h1(αz, x, β−1βx) = h1(αz, x, x) = αz

= h3(αz, u, u) = f3(z, u, u).

Therefore, the triplet ( f1, f2, f3) is a solution of the equation (9).
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Theorem 3. A triplet of ternary invertible operations ( f1, f2, f3) is a solution of the equation (10)

if and only if there exist left-universally neutral invertible operations g1, g2, g3 and bijections

γ, δ such that

f1(x, y, z) = g1(γx, y, z), (21)

f2(x, y, z) = g2(δx, y, z), (22)

f3(x, y, z) = g3(γδx, y, z). (23)

Proof. Let a triplet ( f1, f2, f3) of ternary invertible operations is a solution of the equation (10),

i.e., the identity

f1( f2(x, y, y), z, z) = f3(x, u, u) (24)

holds. In particular, if y = u = a ∈ Q, we have f1( f2(x, y, y), a, a) = f3(x, a, a). Then

α f2(x, y, y) = βx, where αx := f1(x, a, a) and βx := f3(x, a, a) are bijective since α and β are

translations of the invertible operations f1 and f3 respectively. Therefrom

f2(x, y, y) = α−1βx.

Defining δ := α−1β, we have f2(x, y, y) = δx. According to Lemma 2, there exists a left-

universally neutral invertible operation g2 such that the equality (22) holds.

Let us substitute δx in (24) for f2(x, y, y):

f1(δx, z, z) = f3(x, u, u).

Replace x with δ−1x in the equality: f1(x, z, z) = f3(δ
−1x, u, u) for all x, z, u. In particular, when

u = a ∈ Q, we have f1(x, z, z) = γx, where γx := f3(δ
−1x, a, a) is a bijection of the carrier Q,

because γ is the left translation of the invertible operation f3. Therefore, the relationship (21)

holds for some left-universally neutral operation g1. Applying (21) and (22) to (24), we have

γδx = f3(x, u, u).

According to Lemma 2, there exists a left-universally neutral invertible operation g3 such that

the equality (23) holds.

Vise versa, let the relationships (21), (22), (23) be true for some left-universally neutral op-

erations g1, g2, g3 and bijections γ, δ, then

f1( f2(x, y, y), z, z) = g1(γg2(δx, y, y), z, z)

= g1(γδx, z, z) = γδx = g3(γδx, u, u) = f3(x, u, u).

Thus, the triplet ( f1, f2, f3) is a solution of the equation (10).

Theorem 4. A triplet ( f1, f2, f3) of ternary operations defined on a set Q is a quasigroup solu-

tion of the functional equation (11) if and only if the operation f2 is invertible and there exists

a bijection µ and a left-universally neutral operation g such that

f3(x, y, z) = µ f2(x, y, z), f1(x, y, z) = g(µx, y, z). (25)
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Proof. Let a triplet ( f1, f2, f3) of ternary invertible operations be a solution of the equation (11),

i.e., for all x, y, z, u the identity

f1( f2(x, y, z), u, u) = f3(x, y, z) (26)

holds. In particular, when u = a ∈ Q and µx := f1(x, a, a), we have the first identity from (25).

Substituting µ f2 in (26) for f3, we have

f1( f2(x, y, z), u, u) = µ f2(x, y, z).

Replacing f2(x, y, z) with x, we obtain f1(x, u, u) = µx. According to Lemma 2, there exists

a bijection µ and a left-universally neutral operation g such that the second relationship from

(25) holds.

Conversely, let f2 be invertible ternary operation and there exists a bijection µ and a left-

universally neutral operation g such that the relationships (25) hold. Then

f1( f2(x, y, z), u, u) = g(µ f2(x, y, z), u, u) = g( f3(x, y, z), u, u) = f3(x, y, z).

Therefore, the triplet ( f1, f2, f3) is a quasigroup solution of the equation (11).

Theorem 5. A triplet ( f1, f2, f3) of ternary invertible operations defined on set Q is a solution

of the functional equation (12) if and only if there exist binary invertible operations ◦, ∗, ⋄ on

Q such that

f1(y, x, u) = (x ⋄ y) ∗ u,

f2(x, y, z) = x
r
⋄ (y ◦ z), (27)

f3(y, z, u) = (y ◦ z) ∗ u.

Proof. Let a triplet ( f1, f2, f3) of ternary invertible operations is a solution of the equation (12),

i.e., for all x, y, z, u ∈ Q the identity:

f1( f2(x, y, z), x, u) = f3(y, z, u) (28)

holds. In particular, when x = a ∈ Q and

y ◦ z := f2(a, y, z), t ∗ u := f1(t, a, u),

we have (y ◦ z) ∗ u = f3(y, z, u). Hence, we obtain the third relationship from (27). Note that

(◦) and (∗) are invertible operations since they are retracts of ternary invertible operations f2

and f1. Applying the latter equality to (28), we get

f1( f2(x, y, z), x, u) = (y ◦ z) ∗ u. (29)

Replace y with (24)f 2(x, y, z):

f1( f2(x, (24)f 2(x, y, z), z), x, u) = ((24)f 2(x, y, z) ◦ z) ∗ u.

Apply (2):

f1(y, x, u) = ((24)f 2(x, y, z) ◦ z) ∗ u.
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Replacing z with a and denoting x ⋄ y := (24)f 2(x, y, a) ◦ a, we obtain the first relationship from

(27). Then (29) can be written as

(x ⋄ f2(x, y, z)) ∗ u = (y ◦ z) ∗ u.

Since the operation (∗) is invertible, then

x ⋄ f2(x, y, z) = y ◦ z.

Since the operation (⋄) is invertible, we can use the definition of the right division for binary

operations. As a result, we obtain the second equality from (27).

Conversely, let ◦, ∗, ⋄ be invertible binary operations on Q. Then the ternary operations

defined by the relationship (27) are invertible since they are repetition-free superpositions of

binary invertible operations.

f1( f2(x, y, z), x, u) = (x ⋄ f2(x, y, z)) ∗ u

= (x ⋄ (x
r
⋄ (y ◦ z))) ∗ u = (y ◦ z) ∗ u = f3(y, z, u).

Hence, for all x, y, z, u (28) holds. Therefore, the triplet ( f1, f2, f3) is a solution of (12).

3 PROOF OF THEOREM 1

Proof. Let υ = ω be a generalized quadratic ternary quasigroup functional equation of the

length three. Changing its sides if necessary, we obtain an equation which has one of the

following forms:

i) Fi(. . . , Fj(. . .), . . .) = Fk(. . .), ii) Fi(. . . , Fj(. . . , Fk(. . .), . . .), . . .) = t,

iii) Fi(. . . , Fj(. . .), . . . , Fk(. . .), . . .) = t,

where t is an individual variable and (. . . ) denotes some sequence of variables or an empty

sequence.

When the equation has the form ii) we substitute both sides of the equation for t′ in the

term σFi(. . . , t′, . . .). As a result, we obtain

σFi(. . . , Fi(. . . , Fj(. . . , Fk(. . .), . . .), . . .), . . .) = σFi(. . . , t, . . .),

where σFi is a suitable division of Fi, i.e., σ is (14), (24) or (34). Applying the respective primary

identity (1)–(6), we get

Fj(. . . , Fk(. . .) . . .) = σFi(. . . , t, . . .).

Therefore, every functional equation of the form ii) is parastrophically primarily equivalent to

an equation of the form i).

If the functional equation has the form iii), we substitute both sides of the equation for v in

the term τFi(. . . , Fj(. . .), . . . , v, . . .):

τFi(. . . , Fj(. . .), . . . , Fi(. . . , Fj(. . .), . . . , Fk(. . .), . . .), . . .)

= F′
i (. . . , Fj(. . .), . . . , t, . . .),
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where τFi is a suitable division of Fi. Applying one of the primary identities (1)–(6), we have

F′
i (. . . , Fj(. . .), . . . , t, . . .) = Fk(. . .).

Thus, every functional equation is parastrophically primarily equivalent to a functional equa-

tion of the form i).

Let a functional equation have the form i). Applying a suitable transformation to a paras-

trophe, we obtain an equation of the form

Fi(. . . , Fj(. . .), . . .) = Fk(. . .).

Renaming its functional and individual variables in lexicographical order, we obtain

F1(F2(x, t2, t3), t4, t5) = F3(t6, t7, t8), (30)

where ti ∈ {x, y, z, u}. Denote a lexicographical order of individual variables by 4. If t2 <

t3, we replace the subterm F2(x, t2, t3) with the subterm (23)F2(x, t3, t2), mutually rename the

individual variables t2 and t3 and rename (23)F2 by F2. As a result, we obtain the functional

equation of the form (30) in which t2 4 t3.

Analogically, we suppose that t4 4 t5 and t6 4 t7 4 t8. At last, we can put in order the

second appearances of x, t2, t3. Namely, we rename them in a lexicographical order, then we

transform them to the corresponding parastrophe of F2. The same transformation holds for

the pair t4, t5.

Thus, we have proved that every quadratic functional equation is parastrophically primar-

ily equivalent to the equation (30) in which: 1) the first appearances of individual variables

have a lexicographical order; 2) t2 4 t3, t4 4 t5 and t6 4 t7 4 t8; 3) the second appearances of

x, t2, t3 as well as the second appearances of t4, t5 are in the lexicographical order.

Hence, the proper subterm is

1) F2(x, x, y) or 2) F2(x, y, z).

The case F2(x, y, y) is impossible because the second appearances of x and y should be in a

lexicographical order.

Let the proper subterm be F2(x, x, y). If y ∈ {t4, t5}, then t4 is y and t5 is z thus, we have the

equation

F1(F2(x, x, y), y, z) = F3(z, u, u).

Transform F1 and F2 to (13)-parastrophes of F1 and F2 in the equation. We obtain

(13)F1(y, z, (13)F2(y, x, x)) = F3(z, u, u).

Mutually renaming x and y and renaming the functional variables in a lexicographical order,

we obtain the functional equation (9).

If y 6∈ {t4, t5}, then there are two possibilities for the pair (t4, t5): (z, z) and (z, u). Therefore,

we have two equations:

F1(F2(x, x, y), z, z) = F3(y, u, u), (31)

F1(F2(x, x, y), z, u) = F3(y, z, u). (32)
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The equation (31) is parastrophically primarily equivalent to (10) by means of transforming to

(13)-parastrophe of F2, by mutually renaming x and y and replacing (13)F2 with F2.

Apply the hyperidentity (4) to (32):

(14)F1(F3(y, z, u), z, u) = F2(x, x, y),

then apply the hyperidentity (3):

F2(x, x, (34)F3(y, z, u)) = (14)F1(y, z, u).

Transform F2 to (13)-parastrophe of F2 and rename the functional variables in a lexicographical

order:

F1(F2(y, z, u), x, x) = F3(y, z, u).

Renaming the individual variables according to the cycle (yxuz), we obtain the functional

equation (11).

Let the proper subterm be F2(x, y, z). Since the second appearances are ordered, then t4 is

x and t5 is y or u. Consequently, we have two equations: equation (12) and

F1(F2(x, y, z), x, y) = F3(z, u, u).

Apply (1) to the last functional equation:

F3(
(14)F2(x, y, z), u, u) = F1(z, x, y).

To obtain equation (11), transform F1 to (312)-parastrophe of F1 and rename the functional

variables.

It remains to prove that the equations (9)–(12) are pairwise parastrophically primarily non-

equivalent. According to Corollary 2, we can prove that for every pair of these equations and

for every bijection σ1, σ2, σ3, τ of the set {1, 2, 3} there is a solution ( f1, f2, f3) of one equation

such that (σ1f1τ , σ2f2τ , σ3f3τ) is not a solution of the other one. Note that all parastrophes of a

totally symmetric quasigroup and, in particular of a Steiner quasigroup, coincide.

It is easy to verify that an arbitrary Steiner quasigroup is a solution of each of the functional

equations (9), (10), (11). Suppose, a Steiner quasigroup (Q; f ) is a solution of the equation

(12). Theorem 5 implies that f is a repetition-free superposition of two binary quasigroups.

According to the definition, every Steiner quasigroup is a loop. Therefore, by Corollary 1

there is a group (Q;+) of exponent two such that f (x, y, z) = x + y + z. There is no group

of exponent two of the order 10 but Steiner quadruple systems exist (see [7]) thus, there exists

a Steiner quasigroup of the order 10, but it can not be a solution of (12). Hence, according to

Corollary 1, the functional equation (12) is not parastrophically primarily equivalent to any of

the equations (9), (10), (11).

Let ( f1, f2, f3) be an arbitrary triplet of Steiner quasigroup operations defined on the same

carrier Q. These operations can be isomorphic but all of them are pairwise different. It is

easy to see that ( f1, f2, f3) is the solution of both functional equations: (9) and (10). Suppose

( f1τ , f2τ , f3τ) is a solution of the functional equation (11) for some τ ∈ S3, i.e., the identity

f1τ( f2τ(x, y, z), u, u) = f3τ(x, y, z)
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holds. Since f1τ is a Steiner quasigroup operation, then f2τ = f3τ . There is a contradiction to

the assumption. Thus, the triplet ( f1τ , f2τ , f3τ) is not a solution of (11) for all τ ∈ S3. Therefore,

the functional equation (11) is parastrophically primarily equivalent to neither (9) nor (10).

Hence, it remains to prove the parastrophically primary non-equivalence of the equations

(9) and (10).

To avoid repetition, we will prove the following assertion.

Assertion. Let (Q; ·, e) be an arbitrary non-commutative group, ρ is its non-identical automor-

phism and

f (x, y, z) := ρx · y · z−1. (33)

If for a bijection σ ∈ S4 there exists a bijection ν such that for all x, y, z

σf (x, y, z) = νx, (34)

then ν = ρ or ν = ρ−1.

To prove Assertion, consider the following notations:

t1σ := x, t2σ := y, t3σ := y, t4σ := νx.

Then (34) can be written as σf (t1σ, t2σ, t3σ) = t4σ. According to the definition of σ-parastrophe,

the equality is equivalent to f (t1, t2, t3) = t4. Using (33), we obtain ρt1 · t2 · t−1
3 = t4, i.e.

ρt1 · t2 = t4 · t3. (35)

We will analyze the relationship taking into account that two of the terms t1, t2, t3, t4 coincide

with y.

If t1 = y, then (35) with y = e implies one of the following equalities: νx · x = e or x = νx.

Consequently, νe = e. That is why, (35) with x = e implies ρy · y = e or ρy = y. Since (·) is not

commutative and ρ is a non-identical automorphism of (·), then neither ρy = y−1 nor ρy = y

is true.

If t1 = x, t2 = νx, then (35) with x = e implies νe = y2. Therefrom when y = e we have

νe = e, therefore y2 = e. But the group of exponent two is commutative. As a result we have a

contradiction to the assumption.

If t1 = x and t2 = y, then (35) with y = e implies ρx = νx that is ν = ρ.

Finally, let t1 = νx, then (35) with y = e implies one of the equalities ρνx · x = e or ρνx = x.

The first equality follows from (35) when t2 = x. Therefore, y2 = e and consequently, the group

is commutative. As a result we have a contradiction to the assumption. The second equality

implies ν = ρ−1.

Thus, Assertion has been proved.

We provide a proof of parastrophically primary non-equivalence of (9) and (10) by con-

tradiction. Suppose (9) and (10) are parastrophically primarily equivalent. Denote the corre-

sponding defining bijection sequence by (τ, σ1, σ2, σ3).

Let (Q; ·, e) be an arbitrary non-commutative group and γ, δ, γδ be different non-identical

automorphisms of (Q; ·, e). Then, according to Theorem 3, the triplet ( f1, f2, f3) of operations

defined by

f1(x, y, z) := γx · y · z−1, f2(x, y, z) := δx · y · z−1, (36)

f3(x, y, z) := γδx · y · z−1
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is a solution of the equation (10). Lemma 1 implies that the triplet

(σ1f 1τ, σ2f 2τ, σ3f 3τ)

is a solution of the equation (9). By Theorem 2 there exist left-universally neutral operations

h1, h2, h3 and bijections α, β such that

σ1 f 1τ(x, y, z) = h1(αx, y, β−1z),
σ2 f 2τ(x, y, z) = h2(βx, y, z),
σ3 f 3τ(x, y, z) = h3(αx, y, z).

(37)

If y = z, the second and the third equations are

σ2 f 2τ(x, y, y) = βx, σ3 f 3τ(x, y, y) = αx.

Applying Assertion to these equalities, we have α, β ∈ {γ, γ−1, δ, δ−1, γδ, δ−1γ−1}. Replace z

with βz in the first equality of (37): σ1f 1τ(x, y, βz) = h1(αx, y, z). If y = z, then

σ1f 1τ(x, y, βy) = αx. (38)

Introduce the notations: t1σ1
:= x, t2σ1

:= y, t3σ1
:= βy, t4σ1

:= αx. Thus, (38) can be written

as σ1f 1τ(t1σ1
, t2σ1

, t3σ1
) = t4σ1

. Using the definition of a parastrophe, we have f1τ(t1, t2, t3) =

t4. But f1τ is one of the operations f1, f2, f3, that is why we can apply the relationship (36):

θt1 · t2 · t−1
3 = t4, i.e.,

θt1 · t2 = t4 · t3,

where θ ∈ {γ, δ, γδ}.

If x has an appearance in θt1, then we put x = 0. As a result, we obtain one of the equalities

y = βy or 0 = y · βy. The first equality is impossible, since the automorphisms γ, δ, γδ are not

identical. The second identity is impossible because the group is not commutative. If x has no

appearance in θt1, then we put y = 0 and obtain the same contradictions.

Thus, our assumption is not true, therefore, the equations (9) and (10) are not parastrophi-

cally primarily equivalent. Theorem 1 has been proved.

4 CONCLUSION

There exist exactly four classes of generalized quadratic functional equations of the length

three on invertible functions (i.e. quasigroup operations) concerning the parastrophically pri-

mary equivalence, (9)–(12) are their representatives whose solution sets are found in Theo-

rems 2–5.
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Сохацький Ф.М., Тарасевич А.В. Класифiкацiя узагальнених тернарних квадратичних функцiйних

рiвнянь довжини три // Карпатськi матем. публ. — 2019. — Т.11, №1. — C. 179–192.

Функцiйне рiвняння називається: узагальненим, якщо всi функцiйнi змiннi попарно рiзнi;

тернарним, якщо всi його функцiйнi змiннi є тернарними; квадратичним, якщо кожна пре-

дметна змiнна має точно двi появи; квазiгруповим, якщо його розв’язки вивчають лише на обо-

ротних функцiях. Довжиною функцiйного рiвняння є кiлькiсть всiх його функцiйних змiн-

них. Здiйснено повну класифiкацiю з точнiстю до парастрофно-первинної рiвносильностi уза-

гальнених квадратичних квазiгрупових функцiйних рiвнянь довжини три. Знайдено множини

розв’язкiв повного набору представникiв.

Ключовi слова i фрази: тернарна квазiгрупа, квадратичне рiвняння, довжина функцiйного

рiвняння, парастрофно-первинна рiвносильнiсть.


