Эффективность применения линейной и экспоненциальной программ замораживания лейкоцитов до -80°С

А.Н. Худяков¹, Е.П. Сведенцов¹, Т.В. Туманова¹, А.А. Костяев² ¹Институт физиологии Коми НЦ УрО РАН, г. Сыктывкар ²Кировский НИИ гематологии и переливания крови Росмедтехнологий

Efficiency of Applying Linear and Exponential Programs for Leukocyte Freezing Down to -80°C

A.N. KHUDYAKOV¹, E.P. SVEDENTSOV¹, T.V. TUMANOVA¹, A.A. KOSTYAEV² ¹Institute of Physiology of Komi Scientific Center of Ural Division of Russian Academy of Sciences, Syktyvkar, Russia ²Kirov Research Institute of Hematology and Blood Transfusion, Russia

В настоящее время для замораживания клеток крови и костного мозга широко используются линейные программы, тогда как раньше ряд авторов [Гордиенко Е.А. и соавт., 1994; Сведенцов Е.П. и соавт., 1987; Костяев А.А. и соавт., 2003] предложили применять и экспоненциальные. Цель данного исследования – изучение эффективности применения линейной и экспоненциальной программ замораживания лейкоцитов до -80°C.

Объектом исследования служил концентрат лейкоцитов, выделенный из цельной донорской крови при цитаферезе. Использовали оригинальный малотоксичный хладоограждающий раствор (Пат. № 2290808, 2007), содержащий криопротектор смешанного действия гексаметиленбистетраоксиэтилмочевину, криопротектор эндоцеллюлярного действия ДМСО и "реставрирующую" добавку широкого спектра действия. Биообъект смешивали с раствором в соотношении 1:1 и выдерживали при комнатной температуре 20 мин. Замораживание проводили по двум программам: экспоненциальной (серия 1) и линейной (серия 2). В серии 1 контейнер с лейкоцитами погружали в заполненную хладоносителем (96% этиловым спиртом) ванну камеры электроморозильника (объем 4 л) "Криостат". Клеточную взвесь выдерживали при -28°С(температура адаптации) в течение 15-18 мин в зависимости от объема среды и переносили для дальнейшего замораживания и хранения в электроморозильник (-80°С). В серии 2 контейнер с лейкоцитами помещали в программный замораживатель УОП и замораживали биообъект по следующей программе: на 1-м этапе со скоростью 1°С/мин от 22 до – 7°С, на 2-м этапе – -10°С/мин от -7 до -40°С, на 3-м этапе - -20°С/мин от -40 до -80°C. Образцы хранили при -80°C в течение суток в электрическом морозильнике, отогревали в водяной ванне при 38°С в течение 35-50 с при интенсивном покачивании контейнера.

Установлено, что количество клеток, устойчивость их мембран к витальному красителю эозину, содержание лизосомально-катионных белков в нейтрофилах после отогрева в сериях 1 (n=12) и 2 (n=12) достоверно (p<0,05) не отличаются. При оценке морфологического состава лейкоцитов, замороженных по линейной программе, количество гранулоцитов составило $87,5\pm6,55\%$ (от исходного уровня), а при использовании экспоненциальной – достоверно выше (94,5±6,9%), однако фагоцитарная активность нейтрофилов данной серии была ниже (78,13±5,9%), чем в серии с применением линейной программы (88,9±5,41%).

Следовательно, линейная и экспоненциальная программы замораживания лейкоцитов до -80°С с примененным криоконсервантом по эффективности значительно не отличаются, но экспоненциальная программа имеет низкую экономическую стоимость и является более доступной в методическом плане. Nowadays there are widely used the linear programs for blood and bone marrow cell freezing, meanwhile some authors [Gordienko E.A. *et al.*, 1994; Svedentsov E.P. *et al*, 1987; Kostyaev A.A. *et al.*, 2003] previously proposed to use the exponential programs as well. This research aim was to study the efficiency of applying the linear and exponential programs for erythrocyte freezing down to -80° C.

The research object was the leukocyte concentrate, isolated from the whole donor blood under cytapheresis. We used the original low toxic cold-protecting solution (Patent N 2290808, 2007), containing hexamethylene-bis-tetetraoxyethyl-urea cryoprotectant of mixed effect, DMSO cryoprotectant of endocellular effect and a "renewing" additive of wide spectrum. Bioobjects were mixed with solution in 1:1 ratio and exposed at room temperature for 20 min. Freezing was carried-out by two programs: exponential (1st series) and linear (2nd series) ones. In the 1st series the container with leukocytes was immersed into the bath of "Kriostat" electrofreezer chamber (41 volume), filled with coolant (96% ethyl alcohol) bath. Cell suspension was exposed at -28°C (adaptation temperature) within 15-18 min depending on the medium volume and transferred into electrofreezer at -80°C for further freezing and storage. In the 2nd series the container with leukocytes was placed into the UOP programmed freezer and the bioobject was frozen according to the following program: at the 1st step with 1°C/min rate from 22 to -7°C, at the 2nd step with 10°C/min from -7 to -40°C, and with 20°C/min from 40 to -80°C at the 3rd one. Samples were stored at -80°C for 1 day in electric freezer, thawed with water bath at 38°C for 35-50 sec under intensive shaking of container.

The number of cells, their membrane resistance to eosin vital dye, content of lysosome-cation proteins in neutrophils after thawing in 1st (n=12) and 2nd (n=12) series were established as not statistically and significantly differed (p<0.05). When estimating a morphologic composition of leukocytes, frozen by a linear program, the granulocyte number was 87.5±6.55% (of initial level), and with the exponential one it was statistically and significantly higher (94.5±6.9%), but neutrophil phagocyte activity in these series was lower (78.13±5.9%), than in the series with linear program (88.9±5.41%).

Consequently, the linear and exponential programs for leukocyte freezing down to -80° C with cryopreservative do not considerably differ by the efficiency, but the exponential program has low economic value and is more available in methodical aspect.