К вопросу поиска новых эффективных криозашитных растворов

А.Н. Худяков¹, О.О. Зайцева¹, Т.В. Полежаева¹, Д.С. Лаптев¹,

О.Н. Соломина¹, А.А. Костяев², С.В. Утёмов², Ф.С. Шерстнёв²

¹ФГБУН "Институт физиологии Коми научного центра УрО РАН", г. Сыктывкар, Россия

²ФГБУН "Кировский научно-исследовательский институт гематологии

и переливания крови ФМБА России", г. Киров

To the Question of Searching New Effective Cryoprotective Solutions

A.N. Khudyakov¹, O.O. Zaitseva¹, T.V. Polezhayeva¹, D.S. Laptev¹,

O.N. SOLOMINA¹, A.A. KOSTYAEV², S.V. UTEMOV², F.S. SHERSTNEV²

¹Institute of Physiology, Komi Science Center, The Urals Branch, the Russian Academy of Sciences, Syktyvkar

²Kirov Research Institute of Hematology and Blood Transfusion of FMBA of Russia, Kirov, Russia

Целью данной работы явилось изучение возможности применения консервантов различной природы для сохранения клеток при температуре –80°С.

Объектом исследования были лейкоцитные концентраты (ЛК) крови здоровых доноров-добровольцев в объеме 17±2 мл. При замораживании клеток использовали 2 варианта криоконсерванта. Основой первого являлось производное мочевины (ГМБТОЭМ). Дополнительно он содержал протектор ДМСО и реставрирующую добавку на основе янтарной кислоты. В основу второго криоконсерванта входил природный нетоксичный пектин, выделенный из payвольфии змеиной (Rauwolfia serpen-tine L.), а также глицерин. Консервант смешивали с ЛК в соотношении 1:1, время экспозиции составляло 20 мин. Замораживание проводили в пластикатных контейнерах по нелинейной программе до -80°С, хранили в течение 1 суток с последующим отогревом в водяной ванне при 38°С. Состояние лейкоцитов оценивали по общепринятым лабораторным методикам (общее количество лейкоцитов, эозинорезистентность, количество гранулоцитов, фагоцитарная активность нейтрофилов, содержание лизосомально-катионных белков).

При использовании первого раствора (n = 10) общее количество лейкоцитов сохраняется на уровне $95,9 \pm 3,9\%$ (от исходного значения), гранулоцитов – $94,5 \pm 6,9\%$, из них $78,1 \pm 5,9\%$ способны после отогрева образовывать фагосомы, $90,9 \pm 7,1\%$ лейкоцитов остаются устойчивыми к витальному красителю эозину, содержание в нейтрофилах лизосомально-катионных белков составляло $93,8 \pm 9,4\%$.

Применение второго раствора (n = 10) позволило сохранить 83,7 ± 6,7% лейкоцитов, из которых 78,8 ± 9,2% были устойчивы к эозину, 64,9 ± 9,3% проявили способность к фагоцитозу, а содержание в нейтрофилах лизосомально-катионных белков составляло 93,4 ± 4,7%.

Исследования показали возможность применения как искусственно синтезированных, так и природных криофилактиков для сохранения клеток при температуре –80°С. Учитывая возрастающий интерес к изучению растительных пектинов в связи их иммуномодулирующим действием, использование данного класса соединений, в том числе в качестве криопротекторов, является в настоящее время перспективным направлением.

Авторы выражают благодарность РФФИ за оказанную финансовую поддержку (грант № 12-04-32207). The research aim was to study the possibility of using the preservatives of different nature to store cells at -80° C.

The study involved the leukocyte concentrates (LC) of blood from healthy volunteer donors in the amount of $17 \pm$ 2 ml. When freezing the cells there were used 2 variants of cryopreservative. The base of the first one was urea derivative, hexamethylene bis-tetra oxyethyl urea. Additionally it contained DMSO protectant and restoring additive based on succinate. The base of the second cryopreservative was non-toxic natural pectin isolated from Rauwolfia serpentine L., and glycerol. Preservatives were mixed with LC in 1:1 ratio, the exposure time was 20 min. Freezing was performed in plastic containers according to non-linear program down to -80°C and kept for 1 day, and after that thawed in a water bath at 38°C. The state of leukocytes was assessed by standard laboratory methods (total number of leukocytes, eosin resistance, number of granulocytes, phagocytic activity of neutrophils, content of lysosomal-cationic proteins).

When using the first solution (n = 10) the total number of white blood cells was $95.9 \pm 3.9\%$ (of initial value), there were $94.5 \pm 6.9\%$ granulocytes preserved, among them $78.1 \pm$ 5.9% were able of forming phagosomes after thawing, $90.9 \pm$ 7.1% of white blood cells remained resistant to a vital dye eosin, and the content in neutrophils of lysosomal-cationic protein was $93.8 \pm 9.4\%$.

The application of the second solution (n = 10) allowed to preserve $83.7 \pm 6.7\%$ of white blood cells, among which $78.8 \pm 9.2\%$ were resistant to eosin, $64.9 \pm 9.3\%$ showed the ability of phagocytosis, and the content in neutrophils of lysosomal-cationic proteins was $93.4 \pm 4.7\%$.

The studies have shown the possibility of using both artificial and natural cryoprorectants to preserve cells at -80° C. Considering the growing interest for the study of plant pectins because of their immune modulating effects, the use of these substances as cryoprotectants is presently a promising direction.

The authors aknowledge the Russian Foundation of Basic Research for the financial support (Grant N_{2} 12-04-32207).

