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USING BINARY SAMPLING

Thor Buchma
Lviv Polytechnic National University, 12, Bandera St., Lviv, 79013, Ukraine

The article analyzes the measurement error of the phase shift between the har-
monic signals using binary sampling. We consider four methods of determining the
phase shift. Mathematical models of errors caused by inequality signal amplitudes
have been designed. Their graphical dependence has been presented. The method
that provides the smallest additive error has been determined. The structural circuit
of the device that implements the mentioned method has been shown.

Key words: measuring phase shift, errors, harmonic signals, low frequency,
binary sampling, inequality of the amplitudes, threshold sensitivity.

INTRODUCTION. The cyber-physical systems become more common [1]. An
important role belongs to eddy current measurement and computational tools of the
first level [2, 10, 11]. These tools of cyber-physical system are based on measuring the
level of the quadrature component of the secondary magnetic field consolidated to the
primary magnetic field or small phase shift between the primary magnetic field intensity
and the total intensity (primary and secondary) harmonic low frequency magnetic fields
[2]. When measuring small phase shifts in low frequency cyber-physical system, the
preference is given to algorithmic sum-difference methods based on the use of digital
measurement and computational tools and the ability to provide a low threshold [10].

ANALYSIS OF THE PROBLEM. Measuring a small phase shift between the
harmonic signals in the range of low frequencies and infra-low frequencies requires
using methods to reduce the influence of additive flicker noise. One of the most
effective methods for reducing the influence of low-frequency flicker noise is the use

of the periodic comparison method, in which the angular frequency comparison Q
of signal is much higher than the comparable circular frequency of signals @ [3-5].
This method of comparison, particularly when measuring the phase shift is called a
binary sampling [6].

Here we would like to note that the mentioned method would reduce the flicker
noise effect only if the flicker noise, acting on comparable signals, are correlated.
The correlation of the flicker noise occurs, particularly in cases of including sensors
in four arms measuring bridge or semi measuring bridge [7].

So, sum-difference methods for measuring the phase shift with binary sample
can be assigned to the most sensitive ones, because under certain conditions they al-
low to reduce the influence of the flicker noise which other sum-difference methods
do not provide. Therefore, in range of infra-low frequencies where the flicker noise
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has a significant impact on measurement accuracy, the use of binary sampling can
reduce the threshold.

FORMULATION OF THE PROBLEM. However, in scientific works there is
no theoretical analysis of errors related with the use of binary sampling. In particular,
the method of binary sampling, as other sum-difference methods, requires the equal-
ity of amplitudes of compared signals [6], which is hard to provide.

Therefore, the goal of this article is the theoretical analysis of the measurement
errors of the phase shift caused by the inequality of comparable signals amplitude
when using binary sampling.

PRESENTING MAIN MATERIAL. Deducing of basic dependencies to
determine the phase shift

Let us consider the harmonic signals with unequal amplitudes and initial phases

u, =U, sinot
and
u, =U,sin(ot+¢,) ,
where U, and U, - are respectively the amplitudes of the first and the second signals;

o - is the circular frequency of signals; ¢, - is the phase shift between the signals.

After binary sampling of these signals with the circular frequency Q > by using
the automatic switch with two inputs and one output, controlled by voltage

uy (t) = Uysignsin(Qt + @)
where ¢ - is the initial phase of a switching signal.

On the output of the switch we get the amplitude-modulated signal

1+

w (t)=U2+U1'{

u,-U, . .
-sign sin(Qt + X
U, 0, gnsin( (p)}
(1)
(‘02" [1+signsin(Qt + @] }

X sin{o)t +

shown in Fig. 1.
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u, (1) =U, sin(cor + @, )=U(1+AU )sin(cor +¢9x)
Fig.1. Binary-sampled signal at the output of the switch

It is accepted that the switch is ideal, i.e. its transmission coefficient is equal to
one. This means that the resistance of the opened and closed switch inputs is respec-
tively equal to zero and infinity.

Based on the Fig. 1, switch output signal can be presented by another expression

1 .
Uy, (1) =E\/U12 +U32 +2U,U, cos o, sin{mt+ (pz" +

—U, sin P +U, sin P
+arctg ++
U, cos <P2X +U, cos s

1 .
+E\/U12 +U2 -2U,U, cos @, sin{mt—

U, sing L
—arct = sign sin(Qt +
gUl_UchS(Px} gnsin(Qt +¢)

Accepting that U, =U and U, = U+ AU = U(l +%) =U(1+8U), after a simple

transformation, the last expression can be written in the following way

9
e

U 2@ 2 . () oU
Uy (t)=—,/4cos” =2 (1+8U) + (8U)” sin{wt + —= + arct
vk (0 2\/ 2( )+ (8U)” sin{ 5 g[2+8U
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JFE\/4sm2 Px (148U) +(8U)? sinfot+ x4 E
2 2 2
—arct [ g (n P )]}51 n sin(Qt + @) 2)
g 2 5U g (Y

Now let us consider the expression (2), assuming that the amplitudes of the input
signals are equal, i.e. 3U=0. Then from (2) we get

+ O

+ g)sign sin(Qt + @) 3)

Now, based on the expression (3), we find the dependence, which can determine
the phase shift (o between the switch input signals.

Deducing of the first dependence
For the first dependence we select the first summand of (3) using a low-pass filter
and by measuring its amplitude U, we are able to write

U o = Ky U cos (P2x

mol

where K, — 1s the low-pass filter transmission coefficient.

From here we get the first expression, in which, when U
determine the phase shift.

and Ky, We can

mol

U
¢, = 2arccos —! 4)
FNCHU

Deducing of the second dependence
For deducing the second dependence, we select the second summand of (3) using a
high-pass filter. Multiplying it to the function sign sin(Qt + ¢), we get the harmonic signal

KFVCH _)
with the amplitude

U me2 K FVCH

where K ;¢ - 1s the high-pass filter transmission coefficient.

Now, by measuring the amplitude, based on the last expression, we can determine
the phase shift by the formula

U
¢, = 2arcsin—"2 (5)

FVCH
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The expressions (4) and (5) only partially coincide with the expressions obtained
n [10], because there is filters influence.
Deducing of the third dependence
The third dependence is obtained from the ratio of the first and second summand
amplitudes of (3), i.e.
U

mol _ Knen ctg(p—x'

U mm2 K FVCH 2

From the last expression we get the third phase shift dependence.

0, = Zarcctgm 6)
FNCHUmu)Z
Deducing of the fourth dependence
Similarly, for the inverse ratio of amplitudes we get the fourth phase shift
dependence
(PX — Zal‘ctg KFNCHUm(u2 (’7)

FVCH U mol

The expressions (6) and (7), in their turn, are partially similar to the expression
obtained in [10] without binary sampling, but they also do not take into account the
impact of the filters.

From the expressions (4), (5), (6), (7) it is evident that the error in measuring the
phase shift will be determined by the measurement error of the amplitudes U, U,
U,.. and K., K. But we are interested in the error caused by the inequality

of the signal amplitudes.

Assessing the impact of the amplitude inequality on measurement error

Let us estimate the errors caused by the amplitude inequality 8U of comparable
signals. To do this, let us select the first summand of (2) using a low-pass filter and
by measuring its amplitude, we get

‘sz (1+8U) + (3U)> ®)

Ul = Kinen %\/4(:052

Similarly, selecting the second summand of expression (2) with a high-pass filter,
multiplying it by the function signsin(Qt + ¢) and by measuring its amplitude, we get

!
U mo2

= Kpven %\/4 sin’ %(1 +8U) +(8U)> )

Error analysis for the first dependence

Similarly to the way how the expression (4) is obtained, we select from the
expression (2) using a low-pass filter the first summand by measuring its amplitude
and the amplitude of the first input signal and considering the expression (8), we get
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K e [;\/40052 (sz (1+8U) + (8U)>
@', =2arccos U =

K v \/40052 %(1+8U)+(8U)2

2

=2 arccos

To evaluate the error from the influence of the amplitudes inequality of the com-
parable signal U, we accept that K ., =1. Thus, the absolute error of the phase shift
measurement will look like

\/40052 @7"(1+8U)+(8U)2

A = ¢!, — @, =2arccos 5 -0,

Based on the last expression we will present the dependence for a relative error

J4 cos? ¥ (14 85U) + (5U)?
3¢ =ﬂ= iarccos 2 —1/-100% (10)
Ox | Pk 2

Based on (10), the dependence of the relative amplitude measurement error of
the phase shift 8¢ from the phase shift ¢, in the range of change from 0 to 1 rad.
for various values of U is presented in Fig. 2.

Phase shift, rad. @, rad

The relative phase shift error, %

Fig.2. Charts of relative errors of the phase shift measurement ¢, based on the dependence (10) for
different values of the amplitudes inequality SU

Fig. 2 shows that reducing the phase shift measurement sensitivity threshold
requires high precision in alignment of the comparable signals amplitude. Therefore,
this measurement method is not suitable for measuring small phase shifts.
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Error analysis for the second dependence

Now similarly to how the expression (5) is obtained, we select from the expression
(2) using a high-pass filter the second summand, measuring its amplitude U’ _, and
having already the result of the measurement of the amplitude of the first input signal
U and considering (9), we obtain

Kpver S\/4 sin’ (sz (1+8U) + (8U)>
¢’ =2arcsin =
U

K pver \/4 sin? @7"(1+8U)+(8U)2

2

=2 arcsin

To evaluate the error from the influence of the amplitudes inequality of

comparable signal U we accept that K, =1. Then accordingly, the absolute and
relative errors of the phase shift measurement will be

\/4sin2 Px (14 8U) + (5U)>
Ap =9 —@, =2arcsin 2

2 — P

20, 2
Ao ) . J4sm 5 (1+8U) + (8U)
— =| —arcsin
Ox | 9x 2

o =

~1-100% (11)

Based on (11), the dependence of the relative amplitude measurement error of
the phase shift ¢ from the phase shift ¢, in the range of change from 0 to 0.2 rad.
for various values of 3U is presented in Fig. 3.

op, %
3
1

The relative phase shift error, %

U 1
0 0.05 0.10 0.15 0.20
Phase shift, rad. @,, rad

Fig.3. Dependence of the relative phase shift measurement error for different values of ampli-
tudes of the comparable signal inequality
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As shown in Fig. 3, in this case you can get a much lower threshold. Therefore, this
approach to measuring the phase shift can be applied for measuring small phase shifts.

Error analysis for the third dependence

To evaluate the error of the third method based on the (8) and (9), we write the
expression for the phase shift similarly to (6)

Koner \/40052 %Xa 1+ 8U) + (8U)?
@ 'x = 2arcctg .

Kpven \/4sin2 %Xa +8U) + (8U)>

Now we write the expression for the absolute error

K e \/40052 P (145U +(5U)?

A=« —, =2arcctg 2

— 0y

K pver \/4 sin’ % (14 8U) + (8U)>

Based on this expression, we will get the dependence for the relative error

KFNCH‘/4 cos? "’7"(1 +58U) + (8U)2

2arcctg

N KFVCH\/4sin2 X (14 5U) + (5U)>
59 =22 100% = 2
(PX (pX

~1]-100% (12)

To select the amplitude error, we will accept that Kycy =Kpyey- Based on (12),
the dependence of the relative amplitude measurement error of the phase shift d¢
from the phase shift ¢, in the range of change from 0 to 0.2 rad. for various values
of 8U is presented in Fig. 4.

This case also causes great values of the sensitivity threshold, making it impos-
sible to use when measuring small phase shifts.
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Fig.4. Charts of relative errors of the phase shift measurement ¢, , based on the dependence (12) for
different values of the amplitudes inequality U

Error analysis for the fourth dependence
Now we consider the amplitude error of the fourth method described by the ex-
pression (7). Here for the phase shift, we get this dependence

K pven \/4sin2 “’7*(1 +3U) + (3U)?
@'x = 2arctg

KFNCH\/4 cos? "’7*(1 +8U) + (8U)>

Let us write the expression for the absolute error

K pve \/4Sin2 Px (148U + (5U)?
' 2
Ap=¢ x — @, =2arcctg — Py
K pner \/4 cos? ‘sz (1+8U) + (8U)2
and also for the relative error
KFVCH‘/4sin2 Ox (14 5U) + (BU)?
2arctg 2
KpNCH ‘/4 cos? X (1 1 5U) + (5U)2
50 =29 1000 = 2 ~1/-100% (13)

Px Px

In the case of K ¢y =Ko Dased on (13), the dependence of the relative ampli-
tude measurement error of the phase shift 3¢ from the phase shift ¢, in the range of
change from 0 to 0.2 rad. for various values of 5U is presented in Fig. 5.
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Fig.5. Dependencies (13) of relative measurement errors of the phase shift ¢, by the third method for
different values of the amplitudes of inequality 8U

As shown in Fig. 5, the errors for the third and fourth methods are the same.
Therefore, this option is also not suitable for measuring small phase shifts as it leads
to high values of sensitivity threshold.

Analysis of results

Using the expressions (10), (11), (12) and (13), we can calculate the sensitivity
thresholds A¢ yesnoi determining the phase shift ¢, for different values of the amplitudes
of inequality 8U of comparable signals. The values of sensitivity thresholds are
summarized in Table 1.

Table 1
Values of sensitivity thresholds AQ ,eshoiq fOr different values of the amplitudes

inequality 8U of the comparable signals for different dependencies for determining
the phase shift (4-7)

Formula number for determin- . . . o
ing the phase shift Amplitudes inequality 5U | Sensitivity threshold AQ g,reshold» rad

0.001 0.06

“4) 0.01 0.2

0.05 0.44
0.001 0.001
%) 0.01 0.006
0.05 0.029
0.001 0.006
6,7) 0.01 0.028
0.05 0.055

According to Table 1, we construct schemes of dependences for threshold phase
shifts AQ reshold from the amplitudes inequality oU for all expressions (4-7) (Fig. 6).
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Figure 6. Dependence of phase shifts threshold from the amplitudes inequality for expressions (4-7)
that determine the phase shift @,

In Fig. 6, the dependencies are numbered, meaning the formulas number that is
used to calculate the phase shift. Fig. 6 shows that the lowest threshold can be achieved
if the phase shift is determined by the formula (5). The highest threshold happens if
the phase shift is determined by the formula (4). The sensitivity threshold in case of
determining the phase shift using formulas (6, 7) takes an intermediate value.

From the information above it follows that before measuring the phase shift to
reduce the sensitivity threshold we should apply the amplitudes equalization of the
compared signal (Fig. 7). It is hoped that the relative amplitudes inequality, which
can be practically achieved, will be no worse than dU = 0,001. From Table 1 we find
that in this case the sensitivity threshold of measuring of the phase shift caused by
the amplitudes inequality will be AQ threshold = 0.001 rad.

This corresponds to about 3.5 arc minutes.

The method of reducing error

The additive error can be reduced if the amplitude equalization is carried out
with greater accuracy. This scheme is implemented in Fig. 7.

In Fig. 7 the following notation are used: AES - amplitude equalization scheme;
DF1, DF2 - respectively the first and the second differentiator; CM1, CM2 - respectively
the first and the second comparator; MM1, MM2 - respectively the first and the second
monostable multivibrator; SVG - switching voltage generator; S - automatic switch; SA -
selective amplifier; SD - synchronous detector; A - amplifier; MC - microcomputer, Input
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signals u,y, ) and u,, come to the amplitude equalization scheme AES, which does
not change the phase shift between the signals. At frequencies in few Hz, this requirement
can be met. The AES output signals are sent to the appropriate inputs of the automatic
switch A, controlled by impulse voltage from the output of the switching voltage
generator SVG. Switch output signal (Fig. 1), which is described by the expression (2)
goes to the selective amplifier SA, that provides the second member of the expression (3),
which is a balance-modulated signal. After the synchronous detection from the last signal
sinusoidal signal envelope are selected, the amplitude of which must be measured. To
make this, the envelope is first boosted by the amplifier A with the gain K and then sent
to the first analog input of the microcomputer MC. Simultaneously, the envelope goes to
the differentiator, which shifts the phase by V , and then on the comparator CM2, which
converts shifted in phase sine wave to a signal with rectangular form, from the front of
which the monostable multivibrator MM2 generates short pulses that coincide with the
moment in which the instantaneous value of the output amplifier A reach the amplitude
value. Output pulses from MM2 go to the first digital input of microcomputer MC. If MC
detecting on the first digital input high level, using an ADC does a count of instantaneous
signal value in the first analog input and saves it into memory. This count corresponds to
the KU where K — is the gain of the amplifier A.

|

|

: I

g ADC}» RAM)‘ Display
|

|

I

|

mm?2’

Uin1 (1) » DFI [—>{cMI1 —> MMlJ
AES
Uina(t
_> | |
j ! CM2 || MM2
L A
> (s

SVG Y
SA > SD [ A DF2

Fig. 7. Block scheme of the phase shift measurement using binary sampling
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At the same time one of the AES output signals enters the second analog input of
the microcomputer MC and simultaneously to the differentiator DF1, which shifts the
phase in % , and then goes to the comparator CM1, which converts the rectangular
signal, from the front of which the monostable multivibrator MM1 generates short
pulses that coincide with the moment in which the instantaneous value of the sine wave
on the second analog input of microcomputer MC reach the amplitude value U. And
at this moment, if on the second digital input a high level is detected, coming from the
monostable multivibrator MM 1, the microcomputer MC using the ADC does a count
of the analog signal, operating on the first analog input, and writes it into RAM.

Then, using the formula, the microcomputer MC calculates the phase shift

. -U
¢, =2arcsin mo2

" INFVCH ‘U

where K — I the gain of the amplifier A; k — is a constant, which is in memory and its
value is equal to the gain of the amplifier A.

CONCLUSIONS

The additive error caused by inequality amplitude occurs when measuring the
phase shift between the harmonic signals when applying the sumo-difference method.

This paper analyzes the error for this case, when applying the binary sampling
to signals. In the analysis rangeof the binary-sampled signal we have detected four
dependencies determining the algorithms, which can calculate the phase shift by
measuring the amplitude of a comparable signal and the amplitude of spectral com-
ponents of a binary-sampled signal.

We have found the algorithm with the smallest error in which we measure the
amplitude of the high frequency components of the signal after sampling and binary
amplitude compared with other signals. We have shown the graphs of errors for dif-
ferent values of the amplitudes of inequality.

The block diagram of the phasemeter of small phase shifts has been suggested
based on the results that implements the algorithm for measuring the phase shift with
the least errors.
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