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The article analyzes the measurement error of the phase shift between the har-
monic signals using binary sampling. We consider four methods of determining the 
phase shift. Mathematical models of errors caused by inequality signal amplitudes 
have been designed. Their graphical dependence has been presented. The method 
that provides the smallest additive error has been determined. The structural circuit 
of the device that implements the mentioned method has been shown.
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INTRODUCTION. The cyber-physical systems become more common [1]. An 
important role belongs to eddy current measurement and computational tools of the 
fi rst level [2, 10, 11]. These tools of cyber-physical system are based on measuring the 
level of the quadrature component of the secondary magnetic fi eld consolidated to the 
primary magnetic fi eld or small phase shift between the primary magnetic fi eld intensity 
and the total intensity (primary and secondary) harmonic low frequency magnetic fi elds 
[2]. When measuring small phase shifts in low frequency cyber-physical system, the 
preference is given to algorithmic sum-difference methods based on the use of digital 
measurement and computational tools and the ability to provide a low threshold [10].

ANALYSIS OF THE PROBLEM. Measuring a small phase shift between the 
harmonic signals in the range of low frequencies and infra-low frequencies requires 
using methods to reduce the infl uence of additive fl icker noise. One of the most 
effective methods for reducing the infl uence of low-frequency fl icker noise is the use 
of the periodic comparison method, in which the angular frequency comparison   
of signal is much higher than the comparable circular frequency of signals   [3-5]. 
This method of comparison, particularly when measuring the phase shift is called a 
binary sampling [6]. 

Here we would like to note that the mentioned method would reduce the fl icker 
noise effect only if the fl icker noise, acting on comparable signals, are correlated. 
The correlation of the fl icker noise occurs, particularly in cases of including sensors 
in four arms measuring bridge or semi measuring bridge [7].

So, sum-difference methods for measuring the phase shift with binary sample 
can be assigned to the most sensitive ones, because under certain conditions they al-
low to reduce the infl uence of the fl icker noise which other sum-difference methods 
do not provide. Therefore, in range of infra-low frequencies where the fl icker noise 
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has a signifi cant impact on measurement accuracy, the use of binary sampling can 
reduce the threshold.

FORMULATION OF THE PROBLEM. However, in scientifi c works there is 
no theoretical analysis of errors related with the use of binary sampling. In particular, 
the method of binary sampling, as other sum-difference methods, requires the equal-
ity of amplitudes of compared signals [6], which is hard to provide.

Therefore, the goal of this article is the  theoretical analysis of the measurement 
errors of the phase shift caused by the inequality of comparable signals amplitude 
when using binary sampling.

PRESENTING MAIN MATERIAL. Deducing of basic dependencies to determine the phase shift
Let us consider the harmonic signals with unequal amplitudes and initial phases

tsinUu 11 

and

)tsin(Uu 22 x ,
where 1U  and 2U  - are respectively the amplitudes of the fi rst and the second signals; 

ω - is the circular frequency of signals; x  - is the phase shift between the signals.

After binary sampling of these signals with the circular frequency   by using 
the automatic switch with two inputs and one output, controlled by voltage 

)tsin(signU)t(u KK  ,

where   - is the initial phase of a switching signal.

On the output of the switch we get the amplitude-modulated signal
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shown in Fig. 1.
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Fig.1. Binary-sampled signal at the output of the switch

It is accepted that the switch is ideal, i.e. its transmission coeffi cient is equal to 
one. This means that the resistance of the opened and closed switch inputs is respec-
tively equal to zero and infi nity.

Based on the Fig. 1, switch output signal can be presented by another expression
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Now let us consider the expression (2), assuming that the amplitudes of the input 
signals are equal, i.e. δU=0. Then from (2) we get
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Now, based on the expression (3), we fi nd the dependence, which can determine 
the phase shift x  between the switch input signals.

Deducing of the fi rst dependence 
For the fi rst dependence we select the fi rst summand of (3) using a low-pass fi lter 

and by measuring its amplitude 1mU   we are able to write

2
cosUKU x

1m


 FNCH

where FNCHK  – is the low-pass fi lter transmission coeffi cient.

From here we get the fi rst expression, in which, when 1mU   and FNCHK , we can 
determine the phase shift.
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Deducing of the second dependence
For deducing the second dependence, we select the second summand of (3) using a 

high-pass fi lter. Multiplying it to the function )tsin(sign  , we get the harmonic signal
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where FVCHK  - is the high-pass fi lter transmission coeffi cient.

Now, by measuring the amplitude, based on the last expression, we can determine 
the phase shift by the formula
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The expressions (4) and (5) only partially coincide with the expressions obtained 
in [10], because there is fi lters infl uence.

Deducing of the third dependence
The third dependence is obtained from the ratio of the fi rst and second summand 

amplitudes of (3), i.e.
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From the last expression we get the third phase shift dependence.
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Deducing of the fourth dependence
Similarly, for the inverse ratio of amplitudes we get the fourth phase shift 

dependence
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The expressions (6) and (7), in their turn, are partially similar to the expression 
obtained in [10] without binary sampling, but they also do not take into account the 
impact of the fi lters.

From the expressions (4), (5), (6), (7) it is evident that the error in measuring the 
phase shift will be determined by the measurement error of the amplitudes U, 1mU  , 

2mU   and FNCHK , FVCHK . But we are interested in the error caused by the inequality 
of the signal amplitudes.

Assessing the impact of the amplitude inequality on measurement error
Let us estimate the errors caused by the amplitude inequality U  of comparable 

signals. To do this, let us select the fi rst summand of (2) using a low-pass fi lter and 
by measuring its amplitude, we get

   2x2
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Similarly, selecting the second summand of expression (2) with a high-pass fi lter, 
multiplying it by the function )tsin(sign   and by measuring its amplitude, we get
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Error analysis for the fi rst dependence
Similarly to the way how the expression (4) is obtained, we select from the 

expression (2) using a low-pass fi lter the fi rst summand by measuring its amplitude 
and the amplitude of the fi rst input signal and considering the expression (8), we get
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To evaluate the error from the infl uence of the amplitudes inequality of the com-
parable signal U , we accept that 1K FVCH  . Thus, the absolute error of the phase shift 
measurement will look like
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Based on the last expression we will present the dependence for a relative error
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Based on (10), the dependence of the relative amplitude measurement error of 
the phase shift  δφ  from the phase shift x  in the range of change from 0 to 1 rad. 
for various values of U  is presented in Fig. 2.

Fig.2. Charts of relative errors of the phase shift measurement x , based on the dependence (10) for 
different values of the amplitudes inequality U

Fig. 2 shows that reducing the phase shift measurement sensitivity threshold 
requires high precision in alignment of the comparable signals amplitude. Therefore, 
this measurement method is not suitable for measuring small phase shifts.

δφ
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Error analysis for the second dependence
Now similarly to how the expression (5) is obtained, we select from the expression 

(2) using a high-pass fi lter the second summand, measuring its amplitude 2mU   and 
having already the result of the measurement of the amplitude of the fi rst input signal 
U and considering (9), we obtain
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To evaluate the error from the infl uence of the amplitudes inequality of 
comparable signal U , we accept that 1K FVCH  . Then accordingly, the absolute and 
relative errors of the phase shift measurement will be
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Based on (11), the dependence of the relative amplitude measurement error of 
the phase shift δφ from the phase shift x  in the range of change from 0 to 0.2 rad. 
for various values of U  is presented in Fig. 3.

Fig.3. Dependence of the relative phase shift measurement error for different values of ampli-
tudes of the comparable signal inequality

δφ
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As shown in Fig. 3, in this case you can get a much lower threshold. Therefore, this 
approach to measuring the phase shift can be applied for measuring small phase shifts.

Error analysis for the third dependence
To evaluate the error of the third method based on the (8) and (9), we write the 

expression for the phase shift similarly to (6)
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Now we write the expression for the absolute error
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Based on this expression, we will get the dependence for the relative error
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To select the amplitude error, we will accept that FVCHFNCH KK  . Based on (12), 
the dependence of the relative amplitude measurement error of the phase shift δφ 
from the phase shift x  in the range of change from 0 to 0.2 rad. for various values 
of U  is presented in Fig. 4.

This case also causes great values of the sensitivity threshold, making it impos-
sible to use when measuring small phase shifts.

δφ
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Fig.4. Charts of  relative errors of  the phase shift measurement x , based on the dependence (12) for 
different values of the amplitudes inequality U

Error analysis for the fourth dependence
Now we consider the amplitude error of the fourth method described by the ex-

pression (7). Here for the phase shift, we get this dependence
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In the case of FNCHFVCH KK   based on (13), the dependence of the relative ampli-
tude measurement error of the phase shift δφ from the phase shift x  in the range of 
change from 0 to 0.2 rad. for various values of U  is presented in Fig. 5.

δφ
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Fig.5. Dependencies (13) of relative measurement errors of the phase shift x  by the third method for 
different values of the amplitudes of inequality U

As shown in Fig. 5, the errors for the third and fourth methods are the same. 
Therefore, this option is also not suitable for measuring small phase shifts as it leads 
to high values of sensitivity threshold.

Analysis of results 
Using the expressions (10), (11), (12) and (13), we can calculate the sensitivity 

thresholds threshold  determining the phase shift x  for different values of the amplitudes 
of inequality U  of comparable signals. The values of sensitivity thresholds are 
summarized in Table 1.

Table 1
Values of sensitivity thresholds threshold  for different values of the amplitudes 

inequality U  of the comparable signals for different dependencies for determining 
the phase shift (4-7)

Formula number for determin-
ing the phase shift Amplitudes inequality U Sensitivity threshold threshold , rad

(4)
0.001 0.06
0.01 0.2
0.05 0.44

(5)
0.001 0.001
0.01 0.006
0.05 0.029

(6,7)
0.001 0.006
0.01 0.028
0.05 0.055

According to Table 1, we construct schemes of dependences for threshold phase 
shifts threshold  from the amplitudes inequality U  for all expressions (4-7) (Fig. 6).
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Figure 6. Dependence of phase shifts threshold from the amplitudes inequality for expressions (4-7) 
that determine the phase shift x

In Fig. 6, the dependencies are numbered, meaning the formulas number that is 
used to calculate the phase shift. Fig. 6 shows that the lowest threshold can be achieved 
if the phase shift is determined by the formula (5). The highest threshold happens if 
the phase shift is determined by the formula (4). The sensitivity threshold in case of 
determining the phase shift using formulas (6, 7) takes an intermediate value.

From the information above it follows that before measuring the phase shift to 
reduce the sensitivity threshold we should apply the amplitudes equalization of the 
compared signal (Fig. 7). It is hoped that the relative amplitudes inequality, which 
can be practically achieved, will be no worse than 001,0U  . From Table 1 we fi nd 
that in this case the sensitivity threshold of measuring of the phase shift caused by 
the amplitudes inequality will be 001.0threshold   rad.

This corresponds to about 3.5 arc minutes.

The method of reducing error
The additive error can be reduced if the amplitude equalization is carried out 

with greater accuracy. This scheme is implemented in Fig. 7.
In Fig. 7 the following notation are used: AES - amplitude equalization scheme; 

DF1, DF2 - respectively the fi rst and the second differentiator; CM1, CM2 - respectively 
the fi rst and the second comparator; MM1, MM2 - respectively the fi rst and the second 
monostable multivibrator; SVG - switching voltage generator; S - automatic switch; SA - 
selective amplifi er; SD - synchronous detector; A - amplifi er; MC - microcomputer, Input 
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signals (t)uIN1  and (t)uIN2  come to the amplitude equalization scheme AES, which does 
not change the phase shift between the signals. At frequencies in few Hz, this requirement 
can be met. The AES output signals are sent to the appropriate inputs of the automatic 
switch A, controlled by impulse voltage from the output of the switching voltage 
generator SVG. Switch output signal (Fig. 1), which is described by the expression (2) 
goes to the selective amplifi er SA, that provides the second member of the expression (3), 
which is a balance-modulated signal. After the synchronous detection from the last signal 
sinusoidal signal envelope are selected, the amplitude of which must be measured. To 
make this, the envelope is fi rst boosted by the amplifi er A with the gain K and then sent 
to the fi rst analog input of the microcomputer MC. Simultaneously, the envelope goes to 
the differentiator, which shifts the phase by 2

 , and then on the comparator CM2, which 
converts shifted in phase sine wave to a signal with rectangular form, from the front of 
which the monostable multivibrator MM2 generates short pulses that coincide with the 
moment in which the instantaneous value of the output amplifi er A reach the amplitude 
value. Output pulses from MM2 go to the fi rst digital input of microcomputer MC. If MC 
detecting on the fi rst digital input high level, using an ADC does a count of instantaneous 
signal value in the fi rst analog input and saves it into memory. This count corresponds to 
the K 2mU  , where K – is the gain of the amplifi er A.

MM2

MM1

ADC

MC

uin1(t) CM1

CM2
uin2(t)

DisplayRAM

DF1

AES

SA SD DF2

SVG

S

A

Fig. 7. Block scheme of the phase shift measurement using binary sampling
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At the same time one of the AES output signals enters the second analog input of 
the microcomputer MC and simultaneously to the differentiator DF1, which shifts the 
phase in 2

 , and then goes to the comparator CM1, which converts the rectangular 
signal, from the front of which the monostable multivibrator MM1 generates short 
pulses that coincide with the moment in which the instantaneous value of the sine wave 
on the second analog input of microcomputer MC reach the amplitude value U. And 
at this moment, if on the second digital input a high level is detected, coming from the 
monostable multivibrator MM1, the microcomputer MC using the ADC does a count 
of the analog signal, operating on the fi rst analog input, and writes it into RAM.

Then, using the formula, the microcomputer MC calculates the phase shift

UKk
UK

arcsin2
FVCH

2m
x 


  ,

where K – I the gain of the amplifi er A; k – is a constant, which is in memory and its 
value is equal to the gain of the amplifi er A.

CONCLUSIONS

The additive error caused by inequality amplitude occurs when measuring the 
phase shift between the harmonic signals when applying the sumo-difference method.

This paper analyzes the error for this case, when applying the binary sampling 
to signals. In the analysis rangeof the binary-sampled signal we have detected four 
dependencies determining the algorithms, which can calculate the phase shift by 
measuring the amplitude of a comparable signal and the amplitude оf spectral com-
ponents of a binary-sampled signal.

We have found the algorithm with the smallest error in which we measure the 
amplitude of the high frequency components of the signal after sampling and binary 
amplitude compared with other signals. We have shown the graphs of errors for dif-
ferent values of the amplitudes of inequality.

The block diagram of the phasemeter of small phase shifts has been suggested 
based on the results that implements the algorithm for measuring the phase shift with 
the least errors.
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УДК 621.317.77 (088.8)

ВИМІРЮВАННЯ ФАЗОВОГО ЗСУВУ МІЖ ГАРМОНІЧНИМИ 
СИГНАЛАМИ З ВИКОРИСТАННЯМ БІНАРНОЇ ДИСКРЕТИЗАЦІЇ

Ігор Бучма
Національний університет “Львівська політехніка”

вул. С. Бандери, 12, Львів, 79013, Україна
e-mail: ibuchma1@gmail.com

В статті проаналізовано похибки вимірювання фазового зсуву між гармо-
нічними сигналами з використанням бінарної дискретизації. Розглянуто чоти-
ри методи визначення фазового зсуву. Створено математичні моделі похибок, 
зумовлених нерівністю амплітуд сигналів. Приведено їх графічні залежності. 
Виокремлено метод, що забезпечує найменші адитивні похибки. Наведено 
структурну схему пристрою, що реалізує згаданий метод.

Ключові слова: вимірювання фазового зсуву, похибки, гармонічні сигнали, 
низькі частоти, бінарна дискретизація, нерівність амплітуд, порогова чут-
ливість.
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