УДК 543.26

С. АЛАНКО, В.-М. ХОРНЕМАН,

Университет г. Оулу, Финляндия e-mail: <u>Seppo.Alanko@oulu.fi</u>

Л.В. БАСКАКОВА, О. І. БАСКАКОВ, д-р физ.-мат.наук

Харьковский национальный университет имени В. Н. Каразина Пл. Свободы, 6, г. Харьков, 61022 e-mail: lvbaskaukr@gmail.com, fin_first@i.ua

ИДЕНТИФИКАЦИЯ ЛИНИЙ ИК СПЕКТРА МОЛЕКУЛЫ МУРАВЬИНОЙ КИСЛОТЫ ДЛЯ ИСПОЛЬЗОВАНИЯ В СИСТЕМЕ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА

Исследуется фундаментальная ИК полоса v_2 изотопической разновидности молекулы муравьиной кислоты DCOOH. Идентификация линий спектра заключается в определении вращательных квантовых чисел уровней, переходы между которыми соответствуют этим линиям. Для решения задачи использован метод комбинационных разностей, примененный к сериям однотипных линий. Выполнены измерения волновых чисел линий поглощения фундаментальной ИК полосы v_2 молекулы DCOOH с точностью порядка $0{,}0003~{\rm cm}^{-1}$. Методом комбинационных разностей идентифицировано более 2000 переходов в основном ${\bf b}$ типа.

Ключевые слова: муравьиная кислота, ИК спектр, идентификация, линии спектра

Аланко С., Хорнеман В.-М., Університет м. Оулу, Фінляндія

Баскакова Л. В., Баскаков О. І., Харківський національний університет імені В. Н. Каразіна

ІДЕНТИФІКАЦІЯ ЛІНІЙ ІК СПЕКТРУ МОЛЕКУЛИ МУРАШИНОЇ КИСЛОТИ ДЛЯ ВИКО-РИСТАННЯ В СИСТЕМІ ЕКОЛОГІЧНОГО МОНІТОРИНГУ

Досліджується фундаментальна ІК смуга v2 ізотопічної різновиди молекули мурашиної кислоти DCOOH. Ідентифікація ліній спектра полягає у визначенні обертальних квантових чисел рівнів, переходи між якими відповідають цим лініям. Для розв'язання задачі використано метод комбінаційних різниць, застосований до серій однотипних ліній. Виконані вимірювання хвильових чисел ліній поглинання фундаментальної ІК смуги v2 молекули DCOOH з точністю порядку 0,0003 см-1. Методом комбінаційних різниць ідентифіковано більше 2000 переходів в основному b типу.

Ключові слова: мурашина кислота, ІК спектр, ідентифікація, лінії спектра

Alanko S., Horneman V.-M., University of Oulu, Finland

Baskakova L.V., Baskakov O. I., V. N. Karazin Kharkiv National University

LINE IDENTIFICATION IR SPECTRA OF MOLECULES OF FORMIC ACID FOR USE IN ENVIRONMENTAL MONITORING

We investigate the poorly understood fundamental infrared band v2 isotopic variations of formic acid molecules DCOOH. The identification of spectral lines is to determine the rotational quantum number of levels, which correspond to transitions between those lines. To solve the problem the method of combination differences applied to a series of similar lines. Done measuring wave numbers absorption lines of basic IR bands v2 molecules DCOOH order of accuracy 0,0003 cm-1. The method of combinational differences identified more than 2000 transitions mainly type b.

Keywords: formic acid, IR spectrum, identification, spectral lines

Введение

Муравьиная кислота (НСООН) является повсеместно распространенной составляющей тропосферы [1, 2] и относится к 38 наиболее важным атмосферным примесям (загрязнителям). Большая часть атмосферной муравьиной кислоты образуется непосредственно в ней в результате фотохимических реакций из неметановых

© Аланко С., Хорнеман В.-М., Баскакова Л. В., Баскаков О. І., 2015

углеводородов. Наряду с этим имеется множество наземных источников муравьиной кислоты, к которым относятся растительность, насекомые, почва, горящая биомасса. Общий ежегодный объем эмиссии муравыной кислоты оценивается в 1 - 4 Тг [3,4]. Появление больших избыточных масс муравьиной кислоты в атмосфере часто связано с лесными пожарами на больших площадях. Так в результате пожаров в России в июле — августе 2010 года было

выявлено дополнительно 0.9–3.9 Тг атмосферной НСООН [5].

Муравьиная кислота является одним из основных источников атмосферной кислотности и доминирующим фактором (60-80%) кислотных дождей над северными лесными регионами [6]. Что являеется важным фактором в атмосферных процессах, зависящих от рН.

Мониторинг этой молекулы непрерывно осуществляется как в отдаленных, так и в урбанизированных регионах мира [7 – 9]. Для этого используются различные летательные аппараты: баллоны, самолеты, спутники. Основные методы дистанционного мониторинга основаны на регистрации поглощения, в характерной для данной молекулы области длин волн, в ИК диапазоне на фоне термического излучения Земли или солнечного света.

Возможность проведения мониторинга определяется, в первую очередь, наличием лабораторных спектральных исследований высокой точности исследуемого объекта. Обычно считается, что лабораторные спектроскопические данные обладают полнотой, если они проведены в широком диапазоне длин волн, начиная от милли-метрового и заканчивая ближним инфра-красным и оптическим диапазонами. А также, если исследованы спектры не только основной изотопической разновидности, но и однократно изотопически замещенных молекул с 13 C. как такими изотопами, Лабораторные исследования изотопически замещенных, широко распространенных в природе молекул, их индикация в окружающей среде, позволяют делать выводы не только об их присутствии, но и об отклоненииях от естественных пропорций с основной изотопической разновидностью. В силу этого в работе исследуется малоизученная фундаментальная ИК полоса v2 изотопической разновидности молекулы муравьиной кислоты DCOOH.

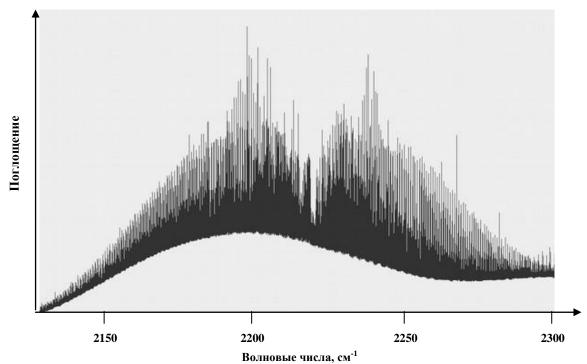
Спектроскопические свойства молекулы муравьиной кислоты. Молекула муравьиной кислоты является плоской пятиатомной молекулой, линии поглощения которой рассеяны в широком диапазоне частот. С точки зрения вращательных свойств это асимметричный волчок, близкий вытянутому симметричному волчку. Врашательные постоянные молекулы DCOOH, A, B и C, равны соответственно 1.925, 0.402 и 0.332cm⁻¹, так что параметр асимметрии Рея близок к –1 и равен – 0.91. Оси а и в молекулярной системы координат лежат в плоскости молекулы, а ось с перпедикулярна ей. Чисто вращательный спектр молекулы, попадающий в миллиметровый и субмиллиметровый диапазоны, обусловлен постоянными составляющими дипольного момента μ_а и μ_b, которые равны 1.42D и 0.26D, соответственно. Так как μ_a значительно больше µb, то во вращательном спектре преобладают линии а типа с правилами отбора $\Delta j = 1$, $\Delta k_a = 0$.

Колебательно-вращательный муравьиной кислоты расположен в ИК диапазоне в области короче 20 мкм. Эта молекула обладает девятью нормальными колебаниями, семь из которых совершаются плоскости, а два перпендикулярно плоскости молекулы. Каждое нормальное колебание является источником фундаментальной колебательно-вращательной полосы с центральной частотой, равной частоте нормального колебания. Фундаментальные полосы всегда самые интенсивные, так как нижним состоянием для всех них является основное состояние, в котором при нормальных условиях находится большая часть молекул. Центральные частоты фундаментальных колебательных полос молекулы DCOOH, измеренные в низкотемпературной <a> неоновой матрице с низким разрешением [10], приведены в таблице 1.

Таблица 1 Центры фундаментальных ИК полос поглощения молекулы DCOOH в см $^{-1}$ [10]

Колебание	v_1	ν2	ν3	ν ₄	ν ₅	ν ₆	ν7	ν8	ν9
Частота	3570	2216	1726	1203	1141	971.4	620.4	874.8	628.3
Симметрия	Плоскостные							Вне-плоскостные	

К настоящему времени с разной степенью полноты проведены исследования ИК спектров высокого разрешения ряда фундаментальных колебательно-вращательных полос молекулы DCOOH в газовой фазе. Это взаимодействующие пары v_7/v_9 [11] и v_6/v_8 [12] авторами данной статьи, а


также v_2 [13], v_3 [14] и v_5 [55] сингапурской группой ученых. Что касается полосы v_2 , то в работе [13] спектр был снят с невысокой чувствительностью и были идентифицированы только невозмущенные переходы с относительно небольшими $j \le 26$ и $k_a \le 9$.

Методика эксперимента

Измерения проведены на ИК Фурье спектрометре Bruker IFS 120HR в университете г. Оулу, Финляндия.

Образец DCOOH, обогащенный до 98% дейтерия, получен из кембриджской лаборатории изотопов (CIL), США. Полоса v₂ молекулы DCOOH расположена в районе 2219 см⁻¹ и измерения проводились в диапазоне 2000 – 2330 см⁻¹. Длина поглощающей ячейки составляла 3,2 м и давление образца было 0,085 торр. Спектр

регистрировался при комнатной температуре с использованием Глобара, как источника излучения, разделителя луча из Kbr и МСТ детектора. Разрешение в основном определялось доплеровской шириной линии и составляло 0,0048 см-1 на частоте 2200 см⁻¹. Результирующий спектр являлся результатом усреднения 1125 сканов. Калибровка осуществлялась по линиям СО2 [16, 17]. Обзорный вид зарегестрированной полосы показан на рис.1.

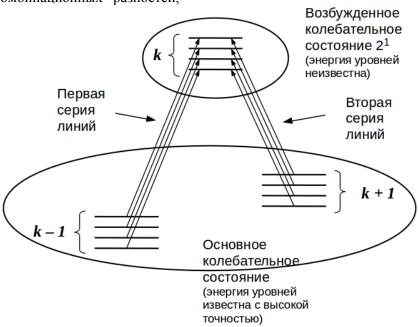
Рис. 1 – Обзорный спектр полосы v₂. 2130 – 2300

Результаты исследования

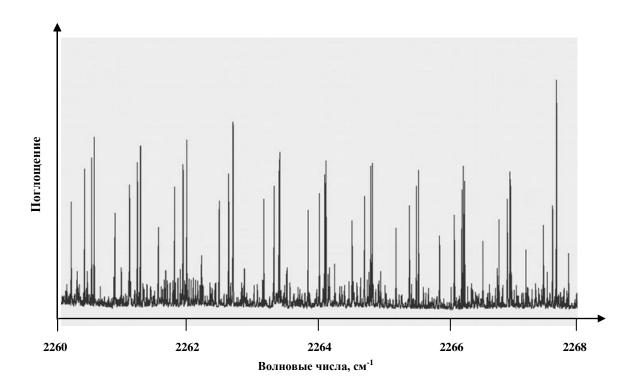
Идентификация переходов. Идентификация линий спектра заключается в определении вращательных квантовых чисел уровней, переходы между которыми соответствуют этим линиям.

Наблюдаемый спектр образован переходами между различными вращательными уровнями двух колебательных состояний. Нижнее колебательное состояние это основное состояние, энергия

вращательных уровней которого известна с высокой степенью точности из многочисленных предыдущих работ. Верхним состоянием колебательным является состояние 2^{1} симметрии A'. Энергия его вращательных уровней для квантовых чисел ј и ka, больших примерно десяти, неизвестна. Если бы энергии вращательных уровней нижнего и верхнего состояний были известны с точностью, сравнимой или лучшей погрешности эксперимента, то решение задачи сводилось бы к тривиальным действиям. Нужно было бы вычислить разности энергий для разрешенных переходов, и далее, используя Планка, получить формулу частоты переходов:


$$v_{ij} = \frac{E_i \ j_i k a_i - E_j \ j_j k a_j}{h} \tag{1}$$

После этого нужно было бы найти в спектре линии с частотами, равными вычисленным, и приписать им квантовые числа рассчитанных частот.


Однако, энергии вращательных уровней верхнего колебательного состояния 2^1 для широкого диапазона вращательных квантовых чисел являлись неизвестными величинами и поэтому формулу Планка для идентификации линий применить было невозможно. Для решения задачи использован метод комбинационных разностей,

примененный к сериям однотипных линий (рис. 2).

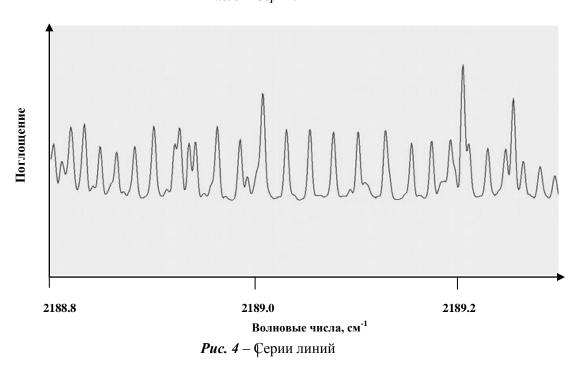

Он заключается в том, что ищутся две или более линии, у которых верхний вращательный уровень один и тот же. В этом случае разность волновых чисел этих линий будет равняться разности энергий нижних вращательных уровней, которая является уникальной и может служить индикатором правильности идентификации. Применять данный метод к одиночным линиям весьма трудно и ненадежно. Намного проще строить алгоритм поиска, если проводить соответствующие действия с сериями подобных линий. Серия в спектре представляет собой последовательность линий, отстоящих друг от друга примерно на равных расстояниях, и интенсивность которых плавно меняется вдоль серии. В спектре изучаемой полосы обнаружить отдельные примеры которых показаны на рис. 3 и 4. Важной особенностью серии является то, что все ее члены имеют одинаковые правила отбора, только одно квантовое число меняется вдоль серии, причем с шагом 1, а остальные квантовые числа фиксированы или однозначно определяются меняющимся квантовым числом.

Рис. 2 – Диаграмма, описывающая метод комбинационных разностей применительно к сериям линий.

Рис. 3 – Серии линий

Практическая работа по идентификации начата с выбора подходящих для этого серий линий. Прежде всего нужно было установить правила отбора для наиболее сильных линий. Колебательное

состояние 2^1 имеет симметрию A' в группе симметрии молекулы муравьиной кислоты C_S . Это значит, что из трех возможных компонент дипольного момента за переходы с основного состояния в возбужденное

отвечают только две, те, которые лежат в плоскости молекулы. Это $\partial \mu_a/\partial Q_2$ и $\partial \mu_b/\partial Q_2$. Здесь O_2 – нормальная координата, соответствующая колебательному состоянию 2^1 . Теперь, если обратиться к рис. 1 с изображением колебательно-вращательной полосы, то отчетливо видны Р и R ветви, которые образуются в основном линиями разных типов с правилами отбора $\Delta j = -1$ и В то же самое время Q ветвь, которая находится в центральной части имеет относительно спектра, интенсивность. Так как Q ветвь состоит из линий с правилами отбора $\Delta i = 0$ и $\Delta k = 0$, которые являютя линиями а-типа, то их малая интенсивность свидетельствует о том, что а компонента дипольного момента намного меньше **b** компоненты.

В силу этого в спектре следовало в первую очередь искать серии самых линий сильных b-типа. Наиболее подходящими кандидатами для поиска представлялись серии линий с правилами отбора $\Delta k = 1$, $\Delta j = 1$ и $\Delta k = -1$, $\Delta j = -1$ с фиксированным значением к для каждой серии и изменением і на 1 вдоль серии. Каждая такая серия должна начинаться с линии, у которой k = j, (голова серии) и далее для всех последующих линий ј должно увеличиваться на 1. Если для оценки частот линий применить выражение для энергии молекулы, близкой к вытянутому жесткому симметричному волчку,

$$E = \frac{B+C}{2}j \ j+1 + \frac{2A-B-C}{2}k^2$$
, (2)

то тогда легко вычислить приблизительное расстояние между соседними линиями. Оно равно B+C, что для молекулы DCOOH составляет примерно $0,734~{\rm cm}^{-1}$. Далее, точно также легко оценить примерное расположение начальных диний серий, голов, относительно центра полосы. Для серий в P ветви это -1,925(2k+1)-0,367, а в R ветви $1,925(2k-1)+0,367~{\rm cm}^{-1}$. Расстояние между головами соседних серий должно быть равным примерно $3,850~{\rm cm}^{-1}$.

Конечно, данные оценки носят приближенный характер, так они не учитывают асимметрию молекулы, центро-бежные поправки и различные возмущения спектра. Тем не менее они во многом помогают провести начальную иденти-фикацию.

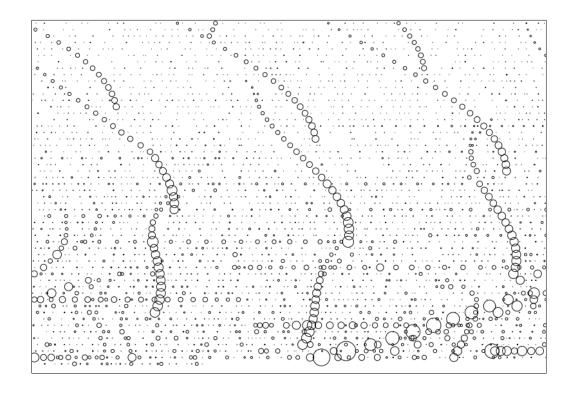
Следовало также обратить внимание на такую важную характеристику серий, как Как интенсивности линий. известно, интенсивность перехода В дипольном приближении пропорциональна квадрату матричного элемента дипольного момента и населенностям уровней. Для данного типа переходов составляющая квадрата матричного элемента дипольного момента, зависящая от вращательных квантовых чисел, с учетом вырождения уровней, имеет вид:

$$j-1, k-1 \mu j, k^{-2} = \frac{j+k+1 \ j+k}{8 \ j+1}$$
 (3)

Разность населенностей колебательновращательных состояний определяется населенностью только основного состояния, так как при комнатной температуре населенность возбужденного состояния 2 на четыре порядка меньше, чем у основного. Поэтому согласно распределению Больцмана в выражении для интенсивности линий будет присутствовать множитель

$$exp - E kT$$
, (4)

где Е определяется выражением (2).


Если теперь проследить за тем, как изменяется интенсивность вдоль серии линий начиная от ее головы, когда квантовое число ј потепенно увеличивается, то первый множитель (3) будет линейно возрастать, а второй (4) экспоненциально уменьшаться. Параметры обоих множителей таковы, что экспоненциальная функция оказывается более резкой, чем линейная, и поэтому в целом интенсивность линий серии должна уменьшаться от головы в сторону хвоста.

Для более наглядного представления существующих серий удобно воспользоваться диаграммой Лумиса—Вуда. Эта диаграмма строится путем нарезки спектра на равновеликие части, и затем расположение соседних частей друг над другом. Если выбрать размер каждой части приблизительно равной периоду какой-либо серии, то все линии этой серии на диграмме Лумиса-Вуда окажутся лежащими на почти вертикальной, возможно плавно изогнутой кривой.

Пример диаграммы Лумиса-Вуда, на которой отчетливо проявляются $^{P}P_{Ka}$ серии, то есть серии с линиями, имеющими правила отбора $\Delta j = -1$ и $\Delta k = -1$, представлен на рис. 5. Период этой диаграммы, 0.75 см $^{-1}$, очень близок к полученной ранее оценке расстояния между

линиями в 0,734 см⁻¹. Каждая линия на диаграмме представляется окружностью, размеры которой пропорциональны интенсивности. Как видно наиболее интенсивной

линией в каждой серии является первая, голова, и далее интенсивность спадает вдоль серии, что полностью соответствует ранее

Рис. 5 – Диаграмма Лумиса-Вуда. Начало 2160 см⁻¹. Период 0,75 см⁻¹

сделанным выводам относительно поведения интенсивностей в таких сериях. Кроме того, разности волновых чисел между первыми линиями соседних серий хотя и не остаютя постоянными, но, тем не менее, близки к оценочной величине в $3,850~{\rm cm}^{-1}.$ Все это указывает на то, что наблюдаемые серии действительно линии $^{\rm P}\!P_{\rm Ka}$ типа.

В R полосе спектра точно также отчетливо проявляются серии типа ${}^R R_{Ka}$.

Идентификация линий в сериях проводилась в два этапа. Вначале для каждой серии по ее расположению относительно Q полосы определялось значение квантового числа Ka, которое является параметром серии. А затем методом комбинационных разностей с использованием комплементарных серий ${}^{R}\mathbf{R}_{Ka}$ типа и известных значений энергий

вращательных уровней основного колебательного состояния, значение Ка подтверждалось окончательно, с практически стопроцентной вероятностью.

Пример использования метода комбинационных разностей для серий с Ka=20 верхних вращательных уровней представлен в таблице 2.

В колонке 5 показана разность волновых чисел двух измеренных линий из комплементарных серий. В колонке 8 представлена разность между энергиями соответствующих вращательных уровней основного колебательного состояния. В 9-й колонке представлена разность чисел из 5-й и 8-й колонок. Как видно значения в 9-й колонке не превосходят погрешностей измерений, что свидетельствует о правильности идентификации линий.

Выводы

В работе выпонены с точностью порядка 0,0003 см⁻¹ измерения волновых чисел линий поглощения фундаментальной ИК полосы v_2 молекулы DCOOH. Методом комбинационных разностей идентифицировано более 2000 переходов в основном **b** типа. Следующий этап работы будет заклю-

чаться в выявлении областей возмущений этой полосы и в определении параметров эффективного вращательного гамильтониана, учитывающего взаимодействие колебательного состояния с рядом расположенными колебательными состояниями.

Таблица 2 Пример идентификации линий двух комплементарных серий методом комбинационных разностей с квантовым числом верхних вращательных уровней Ka = 20

Серия ^Р Р ₂₁ (j)		Серия ^R R ₁₉ (j)		_	Основное состояние			l
Частота	Интенсив- ность	Частота	Интенсив- ность	Разность частот	Уровни Ка=21	Уровни Ка=19	Разность уровней Ка=21 и Ка=19	Разность колонок 5 и 8
1	2	3	4	5	6	7	8	9
2290,3965	0,057	2137,1826	0,029	153,2139	851,9972	698,7837	153,2134	0,0004
2291,1010	0,056	2136,4150	0,024	154,6860	868,1786	713,4926	154,6860	0,0000
2291,8039	0,048	2135,6448	0,035	156,1591	885,0953	728,9368	156,1585	0,0006
2292,5052	0,043	2134,8742	0,021	157,6310	902,7470	745,1163	157,6307	0,0003
2293,2041	0,045	2134,1015	0,019	159,1027	921,1339	762,0311	159,1028	-0,0001
2293,9020	0,036	2133,3272	0,019	160,5749	940,2557	779,6811	160,5746	0,0003
2294,5977	0,030	2132,5513	0,017	162,0464	960,1125	798,0664	162,0461	0,0002
2295,2914	0,032	2131,7736	0,016	163,5177	980,7042	817,1868	163,5174	0,0004
2295,9833	0,029	2130,9949	0,014	164,9883	1002,0307	837,0425	164,9882	0,0001
2296,6740	0,031	2130,2144	0,014	166,4596	1024,0920	857,6333	166,4587	0,0009

Литература

- 1. Lefer B.L., Talbot R.W., Harriss R.C., Bradshaw J.D., Sandholm S.T., Olson J.O., Sachse G.W., Collins J., Shipham M.A., Blake D.R., Klemm K.I., Klemm O., Gorzelska K., Barrick J. Enhancement of acidic gases in biomass-burning impacted air masses over Canada // J. Geophys. Res. 1994. Vol. 99, № D1. –P. 1721-1738.
- 2. Perrin A., Rinsland C. P., Goldman A. Spectral parameters for the v_6 region of HCOOH and its measurement in the infrared tropospheric spectrum // J. Geophys. Res. 1999. Vol. D104, $N_{\rm P}$ D15. P. 18661-18666.
- 3. Stavrakou, T., M"uller, J.-F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., De Mazi`ere, M., Vigouroux, C., Deutscher, N. M., Griffith, D. T., Jones, N., and Paton-Walsh, C. Satellite evidence for a large

- source of formic acid from boreal and tropical forests, Nature Geos., 5, 26–30, 2011.
- 4. Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., Gonz´alez Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazi`ere, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O. Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, –1989–2013, 2011.
- 5. Y. R'Honi, L. Clarisse, C. Clerbaux, D. Hurtmans, V. Duflot, S. Turquety, Y. Ngadi, P.-F. Coheur.: Exceptional emissions of NH₃ and HCOOH in the 2010 Russian wildfires, Atmos. Chem. Phys., 13, 4171–4181, 2013.

- 6. Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., De Mazière, M., Vigouroux, C., Deutscher, N. M., Griffith, D. W. T., Jones, N., Paton-Walsh, C.: Satellite evidence for a large source of formic acid from boreal and tropical forests, Nat. Geosci., 5, 26 30, 2012.
- 7. Khwaja H. A. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site // Atmospheric Environment. 1995. Vol. 29, № 1. P. 127-139.
- 8. Chapman E. G., Kenny D. V., Busness K. M., Thorp J. M., Spicer C. W. Continuous airborne measurements of gaseous formic and acetic acids over the western North Atlantic // Geophys. Res. Lett. 1995. Vol. 22, № 4. P. 405-408.
- 9. Khare P., Kumar N., Kumari K.M., and Srivastava S.S. Atmospheric formic and acetic acids: an overview // Rev. Geophys. 1999. Vol. 37, № 2. P. 227-248.
- 10. Redington R. L. Vibrational spectra and normal coordinate analysis of isotopically labeled formic acid monomers // J. Mol. Spectrosc. 1977.– Vol. 65, № 2. P. 171-189.
- 11. Baskakov O.I., Lohilahti J., Horneman V.-M. High Resolution Analysis of the v_7 and v_9 Bands of DCOOH // J. Mol. Spectrosc. 2003. Vol. 219, N_2 2. P. 191-199.
- 12. Baskakov O.I., Alanko S., Koivusaari M. The Coriolis-coupled States $v_6 = 1$ and $v_8 = 1$ of

- DCOOH // J.Mol. Spectrosc. −1999. –Vol. 198, № 1. P. 40-42.
- 13. Tan T. L., Goh K. L., Ong P. P., Teo H. H. Rovibrational constants of v_2 and $2v_5$ bands of DCOOH by high resolution FTIR spectroscopy // J. Mol. Spectrosc. 1999. –Vol. 198, No 2. P. 387-392.
- 14. Goh K. L., Ong P. P., Tan T. L. The v_3 band of DCOOH // Spectrochimica acta. 1999. Vol. A 55, $Noldsymbol{N}$ 13. –P. 2609-2614.
- 15. Goh K. L., Ong P. P., Tan T. L., Wang W. F., Teo H. H. The high-resolution infrared spectrum of the ν_5 band of deuterated formic acid (DCOOH) // J. Mol. Spectrosc. 1998. –Vol. 190, No 1.– P. 125-129
- 16. Guelachvili G., Rao K. N. Handbook of Infrared Standards, 1986, Academic Press, 851 pp.
- 17. Guelachvili, G.; Birk, M.; Borde, C.J.; Brault, J.W.; Brown, L.R.; Carli, B.; Cole, Gregory; Evenson, K.M.; Fayt, A.; Hausamann, D.; Johns, J.W.C.; Kauppinen, J.; Kou, Q.; Maki, A.G.; Narahari Rao, K.; Toth, R.A.; Urban, W.; Valentin, A.; Verges, J.; Wagner, G.; Wappelhorst, M.H.; Wells, J.S.; Winnewisser, B.P.; Winnewisser, M., High Resolution Wavenumber Standards for the Infrared. Pure and Appl. Chem. vol 68, pp 193-208, 1996.

Надійшла до редколегії 19.09.2015