З ДОСВІДУ ВИЩОЇ ШКОЛИ

УДК: 984.235.856-456.89

O. Buryanov, V. Chorney Bogomolets National Medical University, Kyiv, Ukraine

METHODICAL DEVELOPMENT OF SESSIONS FOR TRAINING STUDENTS: " BONE TUMORS "

1. Background:

Tumors of the musculoskeletal system include tumors of bone, soft tissue and skin. Tumor is solitary or multiple abnormal uncontrolled multiplication of own cell from which it is derived. Modern theories of carcinogenesis (chemical, physical, biological, genetic) do not correspond fully to the origin and development of tumors. Tumors may originate not only from their own bone or cartilage elements, but also from other tissues that make up the bone, including the bone marrow, periosteum, blood vessels and nerves. In practice, there are considerable difficulties in distinguishing between benign and malignant tumors and tumor diseases.

In Ukraine in 2008, the incidence of malignant primary bone tumors and articular cartilage was 1,2 cases and deaths amounted 0,7 per 100 thousand of population (560 and 342 patients, respectively). The incidence was 1 in men and 0.6-0.7 cases in women per 100 thousand populations [1]. The incidence is higher in Kirovohrad, Rivne region. Mortality is higher in Crimea, Rivne region. The diagnosis is confirmed by histological examination in 67.7% of patients. Special treatment covered 63.3% of primary patients, only 30.7% received combined or complex treatment. Among patients who got a disease first in 2008, 37.8% lived less then 1 year afterwards [1].

Among all bone lesions [4] benign bone tumors account for 35.5%, primary malignant tumor – 29.5%, bone metastases – 15.7%, pseudotumor diseases – 13.7%, lesion system tumor diseases – 5.6%. Primary bone tumors occur most often between the ages of 15 and 40. Benign bone tumors are distributed as follows: osteochondroma – 28%, osteoid osteoma – 18.7%, giant cell tumor (GCT) – 15.4%, chondroma – 10.4%, fibrous dysplasia – 6.1%, fibrous histiocytoma – 5.8%, hondroblastoma – 4.5%. Among malignant bone tumors most often are found: osteosarcoma, in 41.4% cases, chondrosarcoma, in 21.3% cases, Ewing's sarcoma, in 17.9% cases, the others take place significantly rarely. Most affected are long bones and pelvic bones. Joints are affected by tumor process in 50-60% cases.

Metastatic bone tumors occur in nature 6-20 times more often than primary bone tumors. Cancer metastases in the spine account for 59%, pelvis -49%, edge -30%, tubular bones -25% of the skull bones -18-20%. Metastasis of breast cancer occur in 60 - 90% cases, lung cancer - in 40% cases, kidney cancer in 20-30% cases, prostate cancer - in 10 to 20% cases.

2. The specific objectives:

Educational tasks of the lesson:

- 1. To get acquainted with the general features and stages of medical care.
- 2. An overview of possible tumors and tumor-like bone diseases, known classification, complications of tumors.
- 3. To learn algorithm of clinical examination of patients with bone tumors.
- 4. To master algorithm of providing care to patients with bone tumors.
- 5. To read the radial image and other bone tumors instrumental methods of diagnosis.
- 6. To know the indications and principles of conservative and surgical treatment of tumors and tumor-like bone diseases.

Educational goals: formulating the future professional as individual taking into consideration deontological and professional responsibilities.

3. Basic knowledge and skills necessary for studying the themes of interdisciplinary integration.

Discipline	To know	To be able
1. Preceding disciplines (normal and topographical anatomy, operational surgery, radiol- ogy	 Osteology. Anatomical structure of bone sections. Syndesmology. Large joints, ligaments joints, tendon sheath. The anatomic and topographic features of limbs, important neurovascular bundles. Peculiarities of biomechanics of movement of large joints. Age characteristics of bones skeleton in the X-ray image. 	X-ray examination and bone diseases semiotics Identifying bias fragments in frac- tures based on X-ray data
2. The following disciplines (normal physi- ology, patho- physiology, generalsurgery, oncology, internal propedeutics diseases)	Transport immobiliza- tion, desmurgy, timing immobilization fusion disability and loss. Care of patients in plaster bandages. Prevention ofpossible complica- tions andways to pre- vent them.Clinic and chemoradiotherapy malignant bone tu- mors.	Conducting social, labor and householde xamination depend- ing onthe nature of the damage and possible complica- tions
3. Interdiscipline integration (themes of the given discipline with which it is integrated)	 Indications and methods ofconservative treatment of bone tumors, external immobilization, skeletal elevator. Indications, choice of method and implants in surgical treatment 	 Measuring amplitude movements of the joints and spine. Measuring lengthlower extremity and analyzing the reasons leading to these changes. Conducting trans- port and medical immobilization. Identify places, means and methods of skeletal stretch- ing depending on the nature of the damage.

•	Content	of	educational	material.

. The list of key terms, parameters, ricti .h:ab 41.

learn preparing for the lesson:
Term Definition
Malignant tumor – a solitary or multiple abnormal uncontrolled multiplica- tion of own cells from which it is derived.
Tumor a pathological process caused by uncontrolled multiplication of own cells, invasion of surrounding tissue and sometimes metastasis.
Combined treatment Combination of
two or three methods of treatment.
iary methods of treatment Using auxil- iary methods of treatment together with the main ones, such as immu- notherapy, hormone therapy, mag- netic hyperthermia, etc
Pathological fractures Fractures of pain- fully altered bone malignant tumor
Benign bone tumors Osteoid osteoma, osteoblastoma, osteochondroma, chondroma, chondroblastoma, hondromixoid fibroma, desmoplas- tic fibroma, benign fibrous histio- cytoma, giant cell tumor, haemangioma
Tumor-like lesions of bone (miscella-
neous lesions) Aneurysmal bone cyst, simple bone cyst, fibrous dys- plasia, osteofibrous dysplasia, Langerhans cell histiocytosis, syn- ovial chondromatosis
Malignant bone tumors Osteosarcoma,
parosteal osteosarcoma, periosteal osteosarcoma, chondrosarcoma, plasma cell myeloma, bone me- tastases, malignant fibrous histiocy- toma, Ewing's sarcoma, chordoma, lymphoma, malignant giant cell tu- mor, angiosarcoma, fibrosarcoma, adamantinoma.
Bone sections Epiphysis, metaphysis, diaphysis, periosteum, cortical layer

sed fracture A fracture, when there is no communication of fracture areas with the environment.

mobilization Creating conditions of complete immobility or decreasing limb or joint mobility.

- **Bone calluses (callus)** Plot bone that is formed in a violation of the integrity of the bone and connecting it to debris.
- Signs of benign bone tumors Clear paths, sclerotic rim, correct structure, slow growth
- Symptoms of malignant bone tumors Violation of bone formation defects, fuzzy, irregular shape diffuse, heterogeneous structure, no structure, periosteal reaction, needle-shaped periostitis (spicules), rapid growth, Codman triangle, the reaction of the periosteum, the lack of boundaries between tumor and healthy bones plot.

4.2. Information block:

Physical examination of patients with tumors of bone.

Complaints: 1) the appearance of neoplasm, 2) pain, 3) limb dysfunction, claudication, contracture, temperature, and so on (Fig. 1.)[2,3].

History of disease: patient's age, the time of the disease, the rate of tumor growth general condition of the patient.

Fig. 1. Appearance of tumors, expansion saphenous veins, dysfunction of limbs, contracture (a,b).

Status localis:

- run (for the lower limbs), using additional support, the presence of splints, Extent of movement of the affected parts of the skeleton;
- condition and changes in the skin (subcutaneous veins expand, the availability of post-surgical scars, wounds, ulcers, their origin and state of decay tumor bleeding, infection);
- tumor in the bone segment (top, middle or bottom) and on its surface (front, inside, outside, back);
- tumor size, circumference sick and healthy limbs over the tumor;
- pain tumors consistency tumor mobility;
- status of regional lymph nodes (mobility, tenderness, texture, shape, size)[2,7].

X-ray studies. Radiography can give the following information: location of the tumor in segments (epiphysis, metaphysis, diaphysis, periosteum, cortical

layer or endosteal) solitary or plurality of defeat. Benign tumor is indicated by sharp contours, normal structure, and slow growth (Fig. 2). Malignant tumor characteristics are: violations of bone formation de-

Multilocular focus destruction (a), which is often located centrally in the proximal long bones metadiaphysis, (b) rim osteosclerosis.

fects, fuzzy, irregular shape diffuse, heterogeneous structure, no structure, periosteal reaction, needle-shaped abscess (spicules), rapid growth, Codman triangle, the reaction of the periosteum, the lack of boundaries between tumor and healthy section of bone (Fig. 3,4). To clarify the location of the tumor X-ray

Fig. 3. A. Lymphoma of the femoral shaft: (a) soft tissue component with spicules, (b) pathological fracture, (c) small focal bone destruction ("moth-eaten"), (d) destruction of all segments of bone; B. Radiographs of the mixed form osteosarcoma of the femur metaepiphysis, the threat of pathological fracture: (a) Codman triangle, (b) osteolityc destruction, (c) the destruction of the cortical layer, (d) destruction all segments of bone, (e) soft tissue component.

examinations in two or more projections should be performed. In case of small fire, such as osteoid osteoma, your computer tomography should be used.

To identify the multiplicity of lesions, total X-ray is used (such as myeloma (Fig. 5.), lymphoma, multiple exostosis), which can detect asymptomatic lesions of bone. Angiography. This method is the introduction of a specific s u b s t a n c e (Cardiotrastum, Triombrastum) in the vascular patient limb. A dense grid of atypical newly drive (afferent) vessels, the presence of numerous gaps, curls are the evidence of malignancy.

Angiography is performed invasively during vessel puncture. Today CT angiography with three-dimensional reconstruction image has become widespread (Fig. 6).

Radionuclide studies (bone scintigraphy) determine the prevalence of the whole process in pigtails skeleton. Bone tissue has the ability to accumulate radiopharmaceuticals (technetium, strontium). Characteristic of malignant tumors is the accumulation of radiopharmaceuticals 200% or more.

Laboratory diagnosis. In laboratory diagnostics at tumors of bone today is the con-

Fig. 4. CT scan of the giant secondary peripheral chondrosarcoma (G3-4) wing of the ilium, which developed against the backdrop of multiple exostosis.

Fig. 5. Typical lesion of the skull bones in multiple myeloma (multiple "punched-out" holes).

Fig. 6. On an angiogram through the intra-arterial catheter contrasting branches of the femoral artery, which supplies the osteosarcoma of the distal femur.

cept of molecular tumor markers. These are mainly proteins that emit or contain some kind of tumor cells. Their value lies in the diagnosis, prognosis and disease "target" (targeted) therapy. The level of alkaline phosphatase, calcium, Ki67, p53, Her-2, S100, vascular endothelial growth factor (VEGF) becomes higher. They are determined by immunohistochemical methods (in tumor tissue) and enzyme-linked immunosorbent assay (serum).

Pathological research is basic and the most accurate means of diagnosing mandatory origin tumors. The most informative is biopsy during surgery or bone marrow aspiration and biopsy. Less informative in case of bone tumors is needle biopsy. Disregard to this diagnostic method is unacceptable and has serious consequences for the patient.

Classification of bone tumors (WHO ICD -10, 2002)

CARTILAGE TUMOURS

Osteochondroma	9210/0*
Chondroma	9220/0
Enchondroma	9220/0
Periosteal chondroma	9221/0
Multiple chondromatosis	
Chondroblastoma	9230/0
Chondromyxoid fibroma	
Chondrosarcoma	9220/3
Central, primary, and secondary	9220/3
Peripheral	
Dedifferentiated	9243/3
Mesenchymal	9240/3
Clear cell	9242/3
OSTEOGENIC TUMOURS	
Osteoid osteoma	9191/0
Osteoblastoma	9200/0
Osteosarcoma	9180/3
Conventional	9180/3
chondroblastic	9181/3
fibroblastic	9182/3
osteoblastic	9180/3
Telangiectatic	9183/3
Small cell	9185/3
I ow grade central	9187/3
Secondary	9180/3
Parosteal	9192/3
Periosteal	0103/3
High grade surface	010//3
FIBROGENIC TUMOURS	
Desmonlastic fibroma	8823/0
Fibrosarcoma	8810/3
FIPDOHISTIOCVTIC TUMOUDS	
Banign fibrous histiogytoma	8830/0
Malignant fibrous histocytoma	8830/0
EWING SADCOMA/DDIMITIVE	8850/5
NEUDOECTODEDMAL TUMOUD	
Ewing sarooma	0260/2
	9200/3
Plasma cell myeloma	0732/3
Malignant lymphoma NOS	0500/2
	9390/3
GIANT CELL TUMOUR	0250/1
Malignangy in gight call tymour	0250/1
NOTOCHODDAL TUMOUDS	9230/3
Chardema	0270/2
Unordoma	93/0/3
	0120 /0
Haemangioma	
	9120/3
SWOUTH WUSCLE IUWOUKS	0000/0
	8890/0
Leiomyosarcoma	8890/3

LIPOGENIC TUMOURS

Linoma	8850/0
	0050/0
Liposarcoma	8830/3
NEUKAL IUMOUKS	05(0/0
	9560/0
MISCELLANEOUS IUMOUKS	00(1/2
Adamantinoma	.9261/3
Metastatic malignancy	
MISCELLANEOUS LESIONS	
Aneurysmal bone cyst	
Periosteal	.9193/3
High grade surface	.9194/3
FIBROGENIC TUMOURS	
Desmoplastic fibroma	8823/0
Fibrosarcoma	.8810/3
FIBROHISTIOCYTIC TUMOURS	
Benign fibrous histiocytoma	8830/0
Malignant fibrous histiocytoma	8830/3
EWING SARCOMA/PRIMITIVE	
NEUROECTODERMAL TUMOUR	
Ewing sarcoma	9260/3
HAEMATOPOIETIC TUMOURS	
Plasma cell myeloma	9732/3
Malignant lymphoma, NOS	9590/3
GIANT CELL TUMOUR	
Giant cell tumour	.9250/1
Malignancy in giant cell tumour	9250/3
NOTOCHORDAL TUMOURS	
Chordoma	9370/3
VASCULAR TUMOURS	
Haemangioma	.9120/0
Angiosarcoma	.9120/3
SMOOTH MUSCLE TUMOURS	
Leiomyoma	8890/0
Leiomyosarcoma	8890/3
LIPOGENIC TUMOURS	
Lipoma	8850/0
Liposarcoma	8850/3
Simple cyst	
Fibrous dysplasia	
Osteofibrous dysplasia	
Langerhans cell histiocytosis	. 9751/1
Erdheim-Chester disease	
Chest wall hamartoma	
JOINT LESIONS	
Synovial chondromatosis	9220/0

* Morphology code of the International Classification of Diseases for Oncology (ICD-O) [5] and the Systematized Nomenclature of Medicine (http://snomed.org). Behaviour is coded /0 for benign tumours, /1 for unspecified, border-line or uncertain behaviour, /2 for in situ carcinomas and grade III intraepithelial neoplasia, and /3 for malignant tumours.

TNM Classification of bone tumours [6]

Primary	TX: primary tumour cannot be assessed
tumour (T)	T0: no evidence of primary tumour
	T1: tumour ≤ 8 cm in greatest dimension
	T2: tumour > 8 cm in greatest dimension
	T3: discontinuous tumours in the primary
	bone site
Regional	NX: regional lymph nodes cannot
lymph	be assessed
nodes (N)	N0: no regional lymph node metastasis
	N1: regional lymph node metastasis

Note: Regional node involvement is rare and cases in which nodal status is not assessed either clinically or pathologically could be considered N0 instead of NX or pNX.

Distant	MX: distant metastasis cannot be assessed
metastasis	M0: no distant metastasis
(M)	M1: distant metastasis
	M1a: lung
	M1b: other distant sites

G Histopathological Grading

Translation table for 'three' and 'four grade' to 'two grade' (low vs. high grade) system.

TNM two grade	Three grade	Four grade
system	systems	systems
Low grade	Grade 1	Grade 1
		Grade 2
High grade	Grade 2	Grade 3
	Grade 3	Grade 4

Note: Ewing sarcoma is classified as high grade.

Stage IA	T1	N0,NX	M0	Low grade
Stage IB	T2	N0,NX	M0	Low grade
Stage IIA	T1	N0,NX	M0	High grade
Stage IIB	T2	N0,NX	M0	High grade
Stage III	T3	N0,NX	M0	Any grade
Stage IVA	Any T	N0,NX	M1a	Any grade
Stage IVB	Any T	N1	Any M	Any grade
	Any T	Any N	M1b	Any grade

Treatment: The main treatment of tumors of the musculoskeletal apparatus is surgery (S), chemotherapy (ChT) and radiotherapy (RT). By chemotherapy the following cytotoxic drugs are used: methotrexate at a high dose, doxorubicin, cisplatin, ifosfamide, bisphosphonates and others. Radiotherapy is conducted in total focal dose of 30-60 Gray. Combined treatment is combination of two or three main methods of treatment, such as:

- 1. preoperative chemotherapy (2-3 courses at 3 weeks).
- 2. surgery (resection of the lower third of the thigh bone tumor and knee replacement).
- 3. postoperative chemotherapy (4-6 courses at intervals of 3 weeks). Complex treatment is combination

of main basic methods with additional basic methods, such as hormone therapy, immunotherapy, and hyperthermia. The volume of surgery depends on the location, nature and size of the tumor [2,7].

	Surgery:	Combined treatment	Comp	lex
-	Benign bone tu-	(chemotherapy +	treatm	ent:
	mors,	operation):	 Myele 	oma,
-	Chondro-	 Osteosarcoma, 	 Ewing 	g's
	sarcoma	 Angiosarcoma 	sarcoi	ma,
•	parosteal	of bone,	 Reticution 	ulo-
	osteosarcoma	 Fibrosarcoma 	sarcoi	ma,
•	Hordoma,	bone	 Lymp 	homa,
•	Adamantinoma	 Mesenchymal 	 Bone 	
		chondrosarcom,	metas	stases
		 Malignant 		
		fibrous histiocy-		
		toma		
		 Malignant giant 		
		cell tumor.		

Scheme of the main treatments for bone tumors

Surgical intervention in oncosurgery is divided into organ surgery and those who mutilate, radical, non-radical and symptomatic. Among them are distinguished:

- bone biopsy (biopsy trepan, or open biopsy);
- curettage or inside bone resection with plastic ceramic implants (tricalcium phosphate, hydroxyapatite), used in benign tumors, or bone cement – with aggressive metastases and benign tumors;
- wide resection of bone section (regional, wedge, segmental) + auto- or alograft + osteosynthes with plates or external fixation devices;
- articular resection of bone section with tumor + section arthroplasty articular bone - malignant tumors;
- extirpation (complete removal of bone scapula, clavicle, calcaneus);
- amputation limb or finger, disarticulation;
- cryodestruction tumors; X-surgery.

5.1. Theoretical questions for the class.

- 1. General peculiarities of bone tumors and phases of medical assistance.
- 2. Algorithm of clinical examination of patients with bone tumors. To be able to identify the leading clinical manifestations.
- 3. Etiology and pathogenesis of tumors.
- 4. Clinic, differential diagnosis of benign and malignant tumor of bone tumors.
- 5. Known classification of bone tumors.
- 6. Algorithms for the treatment of bone tumors.
- 7. X-ray picture, CT, MRI diagnosis of bone tumors.
- 8. Indications and principles of conservative and surgical treatment of benign tumor and malignant bone tumors.

5.2 Practical tasks for lesson preparation.

- 1. To master algorithm of clinical examination of patient with a bone tumor.
- 2. To capture algorithm of medical care to the tumor of bone.
- 3. To be able to carry out clinical and radiological differential diagnosis of benign and malignant bone tumors.
- 4. To know the basic principles of surgery for tumor diseases, benign and malignant tumors of bone.
- 5. To know the principles of conservative and surgical treatment of this disease.

5.3. Tasks and tests for self-control.

- 1. Often metastasizes to bone:
 - a) breast cancer b) kidney cancer
 - c) lung cancer d) the correct answer a) and b) e) all correct answers.
- 2. Benign osteogenic tumors of bone are:
 - a) osteoblastoma, osteoid osteoma,
 - b) osteochondroma, chondroma, Chondroblastoma, hondromiksoid fibroma,
 - c) all answers are correct.
- 3. The main method in the diagnosis of bone tumors is:a) X-rayc) computed tomography
 - b) bone scan **g)** pathomorphological investigation.
- 4. Bone marrow tumors:
 - a) Ewing's sarcoma b) lymphoma of bone
 - c) multiple myeloma **d)** all answers are correct.
- 5. Benign tumors of cartilage:
 - a) chondroma, chondroblastoma, hondromiksoidnaya fibroma, osteochondroma
 - b) osteoblastoma, osteoid osteoma,
 - c) chondrosarcoma

References

- Бюлетень національного канцер-реєстру України № 11 Київ – 2010 р.
- Травматологія и ортопедія : підручник для студ. вищіх навчальних закладів / за ред.: Голки Г.Г., Бур'янова А.А., Климовицького В.Г. – Вінниця : Нова книга, 2014. – 416 с. : іл. С. 344-359
- 3. Травматологія та ортопедія: Підручник /Є.Т. Скляренко. К.: Здоров'я, 2005. 384 с. Бібліогр.:

Further Reading:

- Rizzolli Syllabus Atlas of Musculoskeletal Tumors and Tumorlike Lesions / Mario Campanacci, Mario Mercuri, Gaetano Bacci, Marco Albergbini. – 2013. – P.239
- 5. Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin LH, Parkin DM, Whelan S (2000). International Classification of Diseases for Oncology. 3rd ed.World Health Organization: Geneva.
- Green FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M(2002). AJCC Cancer Staging Manual. 6thed. Springer: New York.]

Online resources:

 Онкологія, ортопедія, травматологія, реабілітація.
 Режим доступу: http://www.onco-ortoped.kiev.ua/ oncology-surgeon/опухоли-костной-ткани