на технология производства марганцевого магнезиального агломерата AMHB-2M с применением в аглошихт магнезиально-силикатного отвального шлака (30 % MgO, 50 SiO_2 , 4,6 CaO и 2,5 % $\mathrm{Al}_2\mathrm{O}_3$) выплавки богатого ферроникеля (18-20 % Ni) в OOO «Побужский ферроникелевый комбинат». Новизна и промышленная полезность разработанной технологии защищены патентом [7].

- 3. Разработана, промышленно освоена и внедрена технология выплавки в сверхмощных рудовосстановительных электропечах типа РПЗ-63 и РПГ-63 ферросиликомарганца MнС17 на стабильных магнезиальных шлаках (9,9-11,8 % MgO, 48,8-50,1 SiO_2 , 8,6-9,9 % Mn).
- 4. По итогам опытно-промышленной кампании (в период март-май 2012 г.) производства агломерата АМНВ-2М и выплавки МнС17 с применением этого агломерата, достигнуто существенное улучшение технико-экономических показателей: снижены удельный расход электроэнергии на 64 кВт×ч/т, марганцевого сырья на 39 кг/т, коксика на 12 кг/т и кварцита на 39 кг/т. При этом достигнуто повышение коэффициентов полезного извлечения из марганца из шихты с 87,6 % (базовая технология) до 88,7-91,0 % (опытная технология) и кремния с 44,1 до 46,1-49,5 %.
- 5. В ходе проведения масштабной опытной кампании установлены новые взаимосвязи коэффициентов извлечения марганца и кремния в зависимости от соотношения компонентов шихты и химических составов шлаков, которые подлежат теоретическому обоснованию и опытно-промышленной проверке с целью выявления условий дальнейшего снижения удельного расхода электроэнергии.

Библиографический список

1. Гасик М.И. МАРГАНЕЦ. – М.: Металлургия, 1992. – 702 с.

- 2. Гасик М.М., Куцин В.С., Гасик М.И. Математический анализ экспериментальных данных электропроводности шлаковых расплавов системы MnO-SiO $_2$ -CaO производства марганцевых ферросплавов // Металлург. и горноруд. пром-сть. 2011. № 2. С. 32-37.
- 3. Гасик М.И., Кучер И.Г., Величко Б.Ф. Промышленное опробование технологии получения марганцевого агломерата и выплавки силикомарганца с его использованием // Сталь. 1988. № 11. С. 34-36.
- 4. Куцин В.С., Гасик М.М. Разработка сквозной технологической схемы и процессов получения марганцевого магнезиального агломерата и выплавки ферросиликомарганца // Металлург. и горноруд. пром-сть. 2011. N 6. С. 12-16.
- 5. Куцин В.С., Гасик М.И. Разработка и освоение технологии выплавки ферросиликомарганца с применением марганцевого магнезиального агломерата // Металлург. и горноруд. пром-сть. -2012. \cancel{N} ₂ \cancel{N} ₂ C. 21-28.
- 6. Куцин В.С., Гасик М.И. Производство марганцевого магнезиального агломерата с использованием обогащенной никопольской марганцевой руды и отвального магнезиально-силикатного шлака выплавки ферроникеля // Сталь. 2012. \mathbb{N} 1. С. 22-28.
- 7. Пат. 99087А Украина, МПК С22В 47/00. Шихта для виробництва марганцевого агломерату / В.С. Куцин, М.І. Гасик, заявник та патентовласник Національна металургійна академія України. № 0201201299; заявл. 08.02.2012; опубл. 10.05.2012, Бюл. № 9.

Поступила 05.12.2012

УДК 669.15-198 **Зубов В.Л. /д.т.н./** НМетАУ

Наука

Исследование влияния фазового состава ферросилиция машинной разливки на устойчивость к рассыпанию

Изложены обобщённые результаты исследований химического состава основных структурных составляющих и избыточных фаз выделения в слитках 75%-ного ферросилиция промышленной выплавки и разлитого на конвейерной машине. Ил. 4. Табл. 3. Библиогр.: 4 назв.

Ключевые слова: ферросилиций, фазовый состав, микроструктура, механизированная разливка, фракционирование

Generalized results of research of the chemical composition of the major structural components and excess phases of allocation of 75% aqueous industrial ferrosilicon in ingots cast on the conveyor machine are presented.

Keywords: ferrosilicon, phase composition, microstructure, machine casting, fractionation

Постановка задачи исследования

Анализ экспортных поставок украинского ферро-

силиция на зарубежные рынки ферросплавов показывает неуклонный рост количества высококремнистых марок ФС65, ФС70 и ФС75 с содержанием кремния

© Зубов В.Л., 2013 г.

Таблица 1. Химический состав структурных составляющих ферросилиция ФС75

Номер образца	Массовая доля элемента, %									
	Si	Fe	A1	Ca	Mn	Cr	Sn	Ti	Cu	
1	99,5	0	0	0	0	0	0,5	-	-	
2	99,3	0	0	0	0	0	0,7	-	-	
3	99,3	0	0	0	0	0	-	-	-	
4	62,5	37,5	0	0	0	0	-	-	-	
5	55,5	44,5	0	0	0	0	-	-	-	
6	53,6	37,7	5,2	3,1	0	0,4	-	-	-	
7	50,3	44,9	3,7	0,3	0,4	0,5	-	-	-	
8	34,3	18,4	17,7	22,8	1,3	3,2	-	1,6	0,3	
9	27,1	38,1	15,0	18,6	1,2	0	-	1,6	0,3	

более 65 %. Составы сплавов приведены на рис. 1. Эти виды ферросплавной продукции относятся к так называемым экспортно-ориентированным.

Зарубежные потребители высококремнистого ферросилиция постоянно повышают требования к качеству сплава по содержанию примесных элементов, строго регламентируют гранулометрический состава продукции. Данное обстоятельство обуславливает потребность производителей проводить системные исследования по повышению качества ферросилиция и выхода конкурентоспособных коммерческих классов крупности.

В проведенных нами исследованиях [1-3] показано, что примесные элементы, регламентированные стандартом ГОСТ 1415-93, оказывают влияние на формирование микро- и макроструктуры слитка в процессе кристаллизации расплава. Избыточные фазы выделения из маточного расплава, обогащенного примесными элементами, при кристаллизации слитков располагаются, как правило, по границам зерен. В зависимости от химсостава этих избыточных фаз и их расположения (дисперсности) в микроструктуре слитков, они оказывают влияние на механическую прочность слитков ферросилиция и склонность их к самопроизвольному рассыпанию во влажной атмосфере с образованием ядовитых газов PH₃ (фосфина) и AsH, (арсина).

По данным промышленной практики, при фракционировании сплавов ФС65 и ФС75 образуется до 15 % некондиционных отсевов, которые в значительной мере обуславливают снижение технико-экономических показателей производства, что понижает конкурентоспособность ферросилиция.

Экономическая целесообразность дальнейшего научного поиска решения перечисленных задач вполне обосновывает актуальность проведения материаловедческих исследований металлофизической сущности процессов и явлений при формировании микроструктуры сплавов коммерческого ферросилиция механизированной разливки.

В данной статье представлены обобщенные результаты исследований химического состава основных структурных составляющих и избыточных фаз выделения в наиболее механически непрочных слитках 75%-ного ферросилиция промышленной выплав-

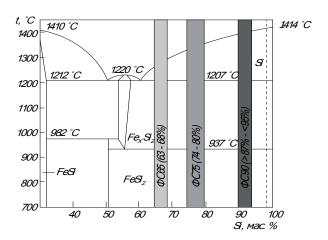


Рис. 1. Участок диаграммы Fe-Si с указанием интервалов концентраций кремния в ферросилиции марок ФС65, ФС75 и ФС90 в соответствии с ДСТУ 4127-2002

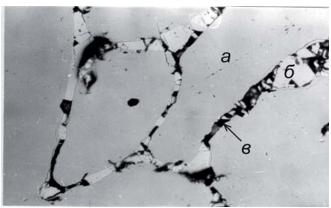


Рис. 2. Микроструктура 75%-ного ферросилиция X 250: а - крупные зёрна («тёмная» фаза) - высококремнистая фаза; б - «светлая» фаза - с меньшим содержанием кремния; в - чёрные поля по границам зерен - различные избыточные фазы выделения и поры

ки, в большей мере подверженных к рассыпанию.

Методики экспериментального исследования

Химический состав структурных составляющих ферросилиция определяли с помощью энергодисперсионного спектрометра на электронном микроскопе — микроанализаторе РЭММА 101А. Микроанализ проводили как на шлифе, так и на поверхности свежеизготовленного излома и поверхности лунки газовых пузырей. В каждой анализируемой точке записывали энергодисперсионные спектры, которые количественно обрабатывали по специальной программе. Количественная обработка спектров заключалась в определении интенсивности аналитических линий химических элементов, присутствующих на спектре, через площадь соответствующих пиков.

В сводных табл. 1, 2 приведены результаты химического состава в относительных процентах для исследованных основных и избыточных фаз выделения в ферросилиции марки ФС75.

Результаты исследования и анализ

На первом этапе исследованию подвергались фазы, выявленные под оптическим микроскопом на аншлифе образца промышленного ферросилиция марки ФС75 (74,2 % Si; 2,3 Al; 0,3 Ca; 0,2 Ti; 0,2 Mn; 0,03 P; 0,01 % S).

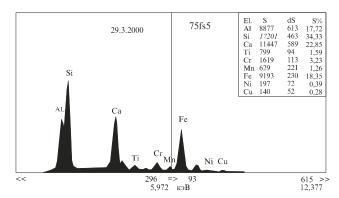
Таблица 2. Химический состав микроструктурных фаз ферросилиция ФС75 по данным микроанализа поверхностей свежих изломов образцов промышленного слитка машинной разливки

_				_					•		
Номер зондиро-	Содержание элементов, масс. %										
ванной фазы	Si	Al	Fe	Ca	Р	As	Ti	Cr	Mn	Ni	Cu
1	99,5	-	0,5	-	-	-	-	-	-	-	-
2	84,5	1,4	6,4	1,1	-	-	3,5	0,3	0,4	0,8	1,5
3	66,2	4,8	22,7	-	-	-	2,2	1,9	0,6	0,2	0,4
4	64,6	8,7	12,8	7,9	3,5	0,1	0,5	0,7	0,4	0,3	0,5
5	62,4	7,7	11,0	10,8	5,5	0,3	15,9	1,3	0,2	0,3	1,0
6	57,9	9,1	8,6	7,6	7,1	0,7	6,1	1,4	-	-	0,7
7	55,6	8,0	7,1	19,2	7,7	0,2	0,5	0,6	0,2	0,2	0,7
8	51,5	-	26,0	0,4	3,3	-	15,9	1,3	0,5	0,3	0,6
9	51,3	5,7	24,8	-	2,5	-	3,1	3,6	0,3	1,1	6,3
10	51,2	6,6	26,3	5,2	5,1	0,2	2,1	0,8	0,7	0,7	1,0
11	50,8	6,4	27,0	9,5	4,4	0,2	0,2	0,7	0,5	0,2	0,1
12	47,4	19,3	7,9	18,2	5,0	0,2	0,8	0,4	-	-	0,8

Таблица 3. Термодинамические свойства фосфидов и арсенидов кальция, алюминия, кремния и железа

						· •	
Термодинамические вели- чины	Ca ₃ P ₂	Ca ₃ As ₂	AIP	AlAs	SiP	SiAs	Fe ₂ P
-D \mathbf{H}°_{298} , кДж/моль	505,8	377,11*	164,3	122,5	61,86	46,12*	160,0
S ₂₉₈ , Дж/(К·моль)	123,7	151,40*	47,2	57,77	32,18	39,92*	72,14
-D ${f G}^{ m o}_{298}$, кДж/моль	444,18	316,44*	157,87	112,47	53,62	38,2*	153,02
-D $\mathbf{G}_{298}^{\mathrm{o}}$, кДж/атом	222,09	158,22*	157,87	112,47	53,66	38,2*	153,02

^{*} Расчетные значения


Изучение микроструктуры аншлифов с помощью оптического микроскопа показало, что она состоит, в основном, из двух фаз, которые идентифицированы по цвету как «темная» - высококремнистая фаза и «светлая» – с меньшим содержанием кремния (рис. 2).

Многочисленные избыточные фазы расположены по границам основных структурных составляющих и, как показано ниже, имеют сложный химический состав. Результаты микрозондового анализа, выявленных на аншлифе основных и избыточных фаз выделений, обобщены в табл. 1.

В фазе «чистого» кремния (образцы 1-3) обнаружено содержание олова 0,5 и 0,7 %, вместе с тем другие примесные элементы в ней отсутствуют. В образцах 4 и 5 фазы представлены силицидами железа. Более сложный химсостав имеют избыточные фазы выделения, хотя ни в одном микрозондированном объеме основных и избыточных фаз содержание фосфора (мышьяка) не обнаружено (рис. 3). Это объясняется тем, что в ходе предварительных экспериментов было установлено, что при изготовлении аншлифа при мокром шлифовании фосфор (мышьяк), концентрировавшиеся в некоторых избыточных фазах, взаимодействуя с влагой, удалились в виде $PH_3(AsH_3)$ по реакции

$$P(As) + H_2O$$
 $PH_2(AsH_2)$

На втором этапе исследований с целью установления наличия фосфор (мышьяк) содержащих фаз в структуре 75%-ного ферросилиция микрозондировано 28 микрообъемов различных фаз на поверхности «свежих» изломов образцов. Причем микрозондированию подвергались не столько основные структурные фазы (Si, Fe, Si, и FeSi,), сколько избыточные

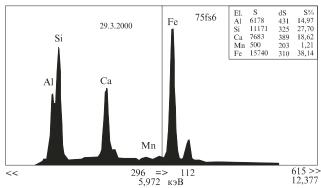


Рис. 3. Энергетические спектры элементов в избыточных фазах выделения в 75%-ном ферросилиции, идентифицированных на поверхности микрошлифа

фазы выделения, хорошо различавшиеся при визуальной оценке их в полях зрения оптического и электронного микроскопов. Выборочные результаты зондирования свеже образованной поверхности при изломе образца сплава ФС75 приведены в табл. 2.

Данные о химсоставе «темной» фазы (кремния) приведены одним файлом \mathfrak{N}_{2} 1, поскольку микрозон-

дирование ее во многих участках поверхности излома образца давало примерно одни и те же результаты.

Анализ данных табл. 2 показал, что избыточные фазы выделения имеют широкий спектр химического состава. Большинство выявленных микрозондированием избыточных фаз можно свести к системам Si-Fe-Al, Si-Fe-Al-Ca, Si-Fe-Ti, а также Si-Fe-Al-Ca-P (As), Содержание элементов в этих фазах изменяется в следующих пределах, %: 47,4-66,2 Si; 6,4-12,8 Fe; 1,4-19,3 Al; 0,4-18,2 Ca; 0,5-15,9 Ti; 0,3-14,0 Cr; 0,2-0,7 Мп. Фосфор содержится в 9 из 12 микрозондированных объемах в количестве от 2,5 до 7,7 %. Мышьяк концентрируется в фосфорсодержащих фазах в количестве 0,1-0,7 % (рис. 4). Содержание фосфора в наибольшей мере коррелирует с содержанием кальция.

Наличие двухфакторной связи фосфор–кальций обусловлено высокой термодинамической прочностью фосфидов кальция в сравнении с другими кальцийсодержащими соединениями (табл. 3) [4].

В связи с отрицательным влиянием Са и Р на процессы самопроизвольного рассыпания слитков ферросилиция во влажной атмосфере, обычно при морской транспортировке ферросилиция, необходимо строго регламентировать содержание СаО в кварците и золе кокса.

Во многих фазах, не приведённых на рисунках, выявлено содержание 0,3-0,4 % Ni. О попадании стружки легированных сталей в сплав свидетельствует химический состав микрообъема, %: 65,2 Ni; 0,9 Nb; 1,8 Mo; 3,0 Si; 1,9 Fe; 1,3 Al. Еще более сложный состав обнаружен в избыточной фазе выделения, %: 24,9 W; 1,9 Mo; 17,7 Ti; 7,3 Cr; 3,4 Al; 3,4 Fe; 0,7 Ca; 40,7 Si. Многообразие по составу избыточных фаз выделения в слитках 75%-ного ферросилиция подтверждает необходимость весьма тщательного соблюдения требований к качеству стальной стружки и не допускать попадания стружки легированных и высоколегированных сталей в шихту для выплавки ферросилиция.

Таким образом, приведенные данные позволяют заключить, что при формировании избыточных фаз выделения в структуре 75%-ного ферросилиция, инициирующих рассыпание слитков с выделением ядовитых газов PH₃ и AsH₃, в основном, принимают участие три элемента — кальций, алюминий и фосфор. Кремний и железо в составе этих фаз, по-видимому, стабилизируют их устойчивость и снижают склонность слитков к рассыпанию во влажной атмосфере. При наличии в расплаве даже небольшого количества мышьяка он концентрируется в фазах с кальцием, алюминием и фосфором.

Выводы

1. Определен химический состав основных и избыточных фаз выделения в структуре 75%-ного ферросилиция.

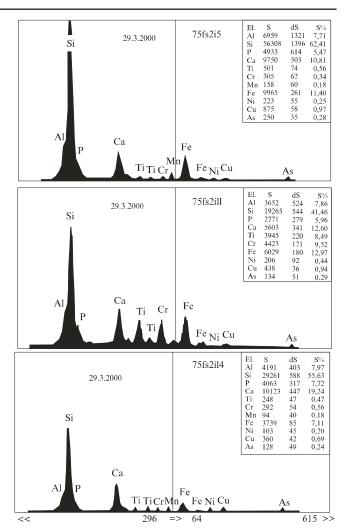


Рис. 4. Энергетические спектры избыточных фаз выделения в структуре свежих изломов образцов 75%-ного ферросилиция

- 2. Установлен характер расположения и условия образования фосфор- и мышьк содержащих соединений в структуре высококремнистого ферросилиция.
- 3. Выяснено влияние кальция, алюминия, фосфора на условия рассыпания 75%-ного ферросилиция с выделением ядовитых газов арсина и фосфина.

Библиографический список

- 1. Зубов В.Л., Гасик М.І. Механізована розливка і фракціонування кремнистих феросплавів, технологія і обладнання. Дніпропетровськ: НМетАУ, 2011. 143 с.
- 2. Гасик М.И., Гасик М.М. Электротермия кремния. Днепропетровск: НМетАУ, 2011. 487 с.
- 3. Зубов В.Л. Сплави системи залізо-кремній комплексні властивості і структурні характеристики. Дніпропетровськ: НМетАУ, 2012. 121 с. 4 Кубашевский О. Опкокк С.Б. Металлургинеская
- 4. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия. 1982. 392 с.

Поступила 05.12.2012