

УДК. 621. 771. 01 Максименко О.П. /д.т.н./, Лобойко Д.И., Романюк Р.Я. /к.т.н./ Днепродзержинский ГТУ

Наука

Анализ силового взаимодействия в очаге деформации при прокатке

В статье проанализирована предельная захватывающая способность валков в установившемся режиме с учетом продольных сил пластически деформируемого металла. Показано, что с учетом этих сил отношение $\frac{a_{i}^{m}}{f_{i}} \approx 1.5$. Уточнена методика определения предельной захватывающей способности валков. Дана оценка величины средней результирующей продольных сил и показано, что она составляет значительную долю от резерва сил трения в очаге деформации. Ил. 3. Библиогр.: 6 назв.

Ключевые слова: валок, очаг деформации, силы трения

The article analyzes the spectacular ability the marginal rolls in the steady mode terms of longitudinal forces of plastically a deformable metal. It is shown that given attitude of the forces $\frac{a_{max}}{f_{s}} \approx 1.5$. Method has been refined, of determining the maximum gripping capacity of the rolls. We have rated middle value of the resulting longitudinal forces and shows that it is a significant part of the reserve forces of friction in it the byte of deformation.

Keywords: roll, byte of deformation, forces of friction

В теории принято, что предельное условие прокатки в установившемся режиме наступает тогда, когда угол нейтрального сечения принимает нулевое значение. Вместе с тем, имеются опытные данные, показывающие, что в определенных условиях равновесие металла в валках нарушается (с последующей пробуксовкой) при значительном опережении [1, 2]. С другой стороны, результаты исследований [3, 4] подтверждают возможность устойчивого процесса при однозонном скольжении полосы в очаге деформации. В работе [5] предложен новый метод оценки предельной захватывающей способности валков в установившемся режиме, который в определенной мере объясняет причины расхождения выше приведенных результатов опытов с теорией. Метод разработан на основе определения текущей горизонтальной контактной силы Q_{i}^* и расчета критерия продольной устойчивости процесса прокатки $K_{ycm} = Q_{cp\kappa}^* = \frac{1}{\alpha} \int_0^{\alpha} Q_{x\kappa}^* d\phi.$

Однако логически более обосновано оценку захватывающей способности валков давать, исходя из распределения нормальных напряжений в очаге деформации σ_x , определения текущих продольных сил пластически деформируемого металла Q_{xnp} и расчета средней результирующей этих сил.

Анализируя равновесие выделенного текущего объема металла в очаге деформации (рис. 1), видно, что в продольном направлении, наряду с контактными силами, действуют горизонтальные силы пластически деформируемого металла, равные

 $Q_{xnp} = \sigma_x \cdot b \cdot h_x$ или в безразмерном виде * $Q_{xnp} = \sigma_x (h_x)$

$$Q_{xnp}^* = \frac{Q_{xnp}}{R \cdot b \cdot 2k} = \frac{\sigma_x}{2k} \left(\frac{h_1}{R} + \phi^2\right).$$
(1)

Рис. 1. К равновесию горизонтальных сил: а – очаг деформации; б – выделенный текущий объем металла

В случае установившегося процесса прокатки при известном граничном условии на входе в очаг деформации (при $\phi = \alpha_y$ значение $\sigma_x = 0$), равновесие этого текущего объема определяется

$$2\int_{\phi}^{a} (-p_x \sin \phi + t_x \cos \phi) bR d\phi - \sigma_x bh_x = 0.$$

или в безразмерном виде

$$2\int_{\phi}^{\alpha} \left(-\frac{p_x}{2k}\sin\phi + \frac{t_x}{2k}\cos\phi\right)d\phi - \frac{\sigma_x}{2k}\left(\frac{h_1}{R} + \phi^2\right) = 0.$$
(2)

В статье [6] показано, что выражение (2) соответствует начальному уравнению равновесия элемента металла, полученного Т. Карманом. Поэтому о характере изменения силы Q^* в очаге деформации можно судить, решив дифференциальное уравнение равновесия. Для оценки величины продольных сил, введем понятие средней результирующей продольной силы в зоне деформации 1 α

$$Q_{cp\,np}^{*} = \frac{1}{\alpha} \int_{0}^{\infty} Q_{xnp}^{*} d\phi. \qquad (3)$$

Заметим, что результирующая $Q_{cp\,np}^{*}$ является силой сопротивления, реакцией на действие контакт-

[©] Максименко О.П., Лобойко Д.И., Романюк Р.Я., 2013 г.

ПРОКАТНОЕ ПРОИЗВОДСТВО

ных сил. Поэтому, она никогда не может быть направленной по движению полосы, т.е. быть движущей силой. В то время, как при определенных условиях прокатки, например при $\alpha_y > \beta_y$, силы Q_{xnp}^* могут быть на одной части очага деформации сжимающими, а на другой –растягивающими.

Практически важным вопросом является оценка величины силы Q_{cpnp}^* в разных условиях прокатки. Очевидно, что втягивающим контактным силам необходимо уравновешивать не только выталкивающие, но и результирующую продольных сил пластически деформируемого метала Q_{cpnp}^* . Определим силу Q_{cpnp} для случаев прокатки от-

Определим силу $Q_{cp\,np}$ для случаев прокатки относительно тонких полос, когда применение гипотезы плоских сечений не вносит существенных ошибок в расчеты контактных и продольных напряжений. Решение уравнения Т. Кармана с кулоновской моделью трения выполняли с помощью ЭВМ, применяя метод последовательных приближений Рунге-Кутта. Проанализируем характер изменения текущей силы Q_{xnp}^* в очаге деформации и средней результирующей Q_{cpnp}^* на конкретном примере. Пусть прокатка ведется в валках радиусом $R = 100 \, \text{мM}$, обжатие $\Delta h = 0,36 \, \text{мM}$, начальная толщина полосы $h_0 = 1 \, \text{мM}$, угол захвата $\alpha_y = 0,06 \, pad$, а коэффициент трения в установившемся режиме деформации f_y принимает значения: 0,06; 0,0405; 0,03.

Результаты расчета распределения контактных напряжений и текущей продольной силы Q_{xnp}^* приведены на рис. 2. Как видно характер изменения продольной силы пластически деформируемого металла существенно (количественно и качественно) зависят α

от отношения $\frac{\alpha_y}{f_y}$.

При $\frac{\alpha_y}{f_y} = 1$ (рис. 2в, кривая 1) во всех сечениях

очага деформации сила Q_{xnp}^* является сжимающей, её среднее значение равно 0,0004. Противоположная картина наблюдается при прокатке в условиях когда $\frac{\alpha_y}{f_y} = 2$. В этом случае текущая продольная сила по всей длине зоны контакта полосы с валками будет растягивающей (рис 2в, кривая 3). Среднее значение её равное -0,0003, направлено в соответствии с движением полосы и она, как бы выполняет роль активной (движущей) силы. Ранее обращалось внимание на то, что Q_{cpnp}^* , являлась силой сопротивления, выполнять активную роль не может. Поэтому равновесие металла в валках должно нарушаться при меньшем отношении $\frac{\alpha_y}{d}$

шем отношении $\frac{\alpha_y}{f_y}$. Рассмотрим распределение Q_{xnp}^* при $\frac{\alpha_y}{f_y} = 1,446$

(рис. 2, в, кривая 2). При прокатке в этих условиях на одной части очага деформации текущая сила Q_{xnp}^* является растягивающей, а на другой – сжимающей, причем площади этих значений одинаковы, т.е. $Q_{cpnp}^* = 0$ и по нашему предположению этот случай прокатки относится к предельному. Оценим справед-

Рис. 2. Контактные напряжения (а, б) и текущие продольные силы (в): 1 - $f_y = 0,06$; 2 - $f_y = 0,0405$; 3 - $f_y = 0,03$

ливость принятого предположения, сравнивая результаты определения силы Q_{cpnp}^* при разных углах захвата с опытными данными А.П. Грудева [1, рис. 32].

С этой целью выполним расчеты, построим эпюры контактных и продольных напряжений, а также определим текущее значение силы Q_{xnp}^* и найдем величину Q_{cpnp}^* для условий опытов вышеуказанной работы.

Результаты экспериментального определения опережения S и расчета силы Q_{cpnp}^* приведены на рис. 3. В своей книге А.П. Грудев отмечает, что при угле захвата равном 0,34 *рад* прокатка проводилась со значительным опережением, равным S = 10%. Казалось бы, в очаге деформации имеется достаточный резерв сил трения для того, чтобы дополнительно увеличить обжатие. Однако при увеличении угла захвата до 0,35 *рад* нарушилось равновесие полосы в валках, вследствие чего полоса забуксовала.

Как видно на рис. 3 (кривая 2) в момент пробуксовки средняя результирующая сила принимает нулевое значение. Аналогичные результаты были получены и при сравнении опытных данных [2] с расчетами по предложенной методике. Необходимо также отметить, что в предельном случае прокатки ($Q_{cpnp}^* = 0$) теоретическая эпюра удельных сил трения включала зону опережения, т.е. качественная картина имела такой же вид, как и в выше рассмотренном примере (см. рис. 26, в, кривые 2).

Таким образом, предположение о том, что средняя результирующая продольных сил пластически

Рис. 3. изменение опережения, результирующей продольной силы и отношения $\frac{Q_{cpnp}^*}{T_{on}^*}$ в зависимости от угла захва-

та: 1 – опережение (опыты А.П. Грудева); 2 – расчетное значе-

ние средней результирующей продольной силы; 3 – изменение отношения $\frac{Q_{cpnp}^{*}}{Q_{cpnp}}$

$$T_{d}$$

деформируемого металла в предельном случае прокатки равна нулю получило экспериментальное подтверждение.

Далее оценим значимость Q_{cpnp}^* в балансе втягивающих металл в валки сил. Поскольку зона опережения определяет резерв сил трения для дальнейшего увеличения захватывающей способности валков, проведем сравнение этого запаса T_{on}^* со средней результирующей продольных сил. Силу T_{on}^* определим непосредственно по теоретическим эпюрам удельных сил трения.

Зависимость $\frac{Q_{cpnp}^{*}}{T_{on}^{*}}$ от угла захвата приведена на рис. 3, кривая 3. Она имеет качественно такой же вид, как и опытная кривая опережения. Отношение $\frac{Q_{cpnp}^{*}}{T_{on}^{*}}$ изменяется в достаточно широких пределах. При угле захвата примерно равном коэффициенту трения оно приближается к 0,7, в предельном случае прокатки $\frac{Q_{cpnp}^{*}}{T^{*}}$ равно нулю.

 T_{on}^{*} Проведенный анализ показывает, что при определении предельного угла захвата силу сопротивления Q_{cpnp}^{*} необходимо учитывать, т.к. она существенно ограничивает захватывающую способность валков в установившемся режиме.

В вышеприведенном примере до
$$\frac{\alpha_y^{\text{max}}}{f_y} = 1,446$$
.

Выводы

Уточнена методика определения предельной захватывающей способности валков, учитывающая продольные силы пластически деформируемого металла. Учет этих сил ограничивает максимальный угол захвата до значения $\alpha_y^{max} \approx 1.5 f_y$.

Средняя результирующая продольных сил в зависимости от параметра прокатки весьма существенно изменяется и может составлять значительную часть от резерва сил трения в зоне опережения.

Библиографический список

1. Грудев А.П. Захватывающая способность прокатных валков. – М.: СП «Интермет Инжиниринг», 1998. – 283 с.

2. Экспериментальное исследование максимальных углов захвата в установившемся процессе прокатки / А.П. Чекмарев, В.И. Прокофьев // Обработка металлов давлением: науч. тр. ДМетИ. – М.: Металлургия, 1967. – Вып. LII. – С. 79-88.

3. К вопросу об отрицательном опережении при прокатке / И.М. Павлов, В.К. Белосевич // Изв. вузов. Черная металлургия. – 1961. – № 10. – С. 46-49.

4. Николаев В.А. Технологические параметры прокатки с вязкими смазками // Изв. вузов. Черная металлургия. – 1995. – № 4. – С. 29-32.

5. Теоретический анализ захватывающей способности валков в установившемся режиме прокатки // О.П. Максименко, А.А. Никулин, Р.Я. Романюк // Изв. вузов. Черная металлургия. – 2008. – № 10. – С. 32-34.

6. Анализ предельных условий прокатки с учетом продольных сил деформируемого металла / О.П. Максименко, Д.И. Лобойко // Обработка металлов давлением: сб. науч. трудов. – Краматорск: ДГМА, 2012. – № 4(33). – С. 60-65.

Поступила 16.09.2013

Журнал «МГП», начиная с № 6, 2013 г., будет размещен в интернете с использованием своего «старого» доменного имени

www.metinfo.dp.ua

вместо www.metaljournal.com.ua