

УДК 669.184:629.113 **Ху Минь, Ма Фань, Сонг Мантань** Бэнсиская металлургическая группа, КНР Производство

Практика производства автолистовых IF-сталей

В кислородно-конвертерном производстве ООО БМК освоен выпуск автолистовых IF-сталей в потоке ВОF (180 m) →(LF)→ RH → CC с содержанием углерода не более 0,0025 % и азота не более 0,0025 %. Продукция предназначена для производства как внутренних, так и лицевых деталей китайских автомобилей. Освоение производства таких сталей по технологическому потоку ВОF (180 m) → LF → RH → FTSC еще не завершено, так как не решена проблема качества поверхности горячекатаного листа. Табл. 4.

Ключевые слова: BOF, RH, LF, CC, FTSC, SEDDQJ, автолистовые IF-стали

In the oxygen- converter steelmaking of BMC, Ltd there practiced the output of autosheet IF-steel in the BOF flow (180 t) \rightarrow (LF) \rightarrow RH \rightarrow CC with carbon content not more than 0.0025 % and nitrogen content not more than 0.0025 %. Production is designed and suitable for manufacturing both inside and face components of Chinese automobiles. Production assimilation of such steel according to the technological flow BOF (180 t) \rightarrow LF \rightarrow RH \rightarrow FTSC is not completed yet, as the problem of surface quality of hot rolled sheet is not solved yet.

Keywords: BOF, RH, LF, CC, FTSC, SEDDQJ, autosheet IF-steels

После ввода в эксплуатацию в ООО БМК линии непрерывного отжига холоднокатаного листа кислородно-конвертерный сталеплавильный завод (ККСЗ) уже в первом полугодии 2008 г. освоил технологию производства IF-сталей с содержанием углерода не более 0,0025 % (табл. 1) и поставил горяче- и холоднокатаному производствам комбината годные заготовки для прокатки тонкого автолиста.

Химический состав полученных типичных IF-сталей (SEDDQJ) (табл.1).

В настоящее время в ККСЗ существуют две линии кислородно-конвертерного производства (*BOF*), внепечной обработки на установках ковш-печь (*LF*) и циркуляционного вакуумирования (*RH*), с разливкой на двух двухручьевых установках МНЛЗ в слябы сечением 230×1600 мм (*CC*) и двух одноручьевых тонкослябовых МНЛЗ сечением 85×1750 мм (*FTSC* – Flexible Thin Slab Cast, поставки компании Danieli, Италия) по следующим схемам:

- BOF (180 T)
$$\rightarrow$$
 (LF) \rightarrow RH \rightarrow CC;
- BOF (180 T) \rightarrow LF \rightarrow RH \rightarrow FTSC.

Шихтовые материалы при выплавке стали в кислородных конвертерах должны быть чистыми по содержанию вредных примесей. Жидкий чугун десульфурируют путем продувки смесью гранулированного магния и порошкообразной извести до содержания серы 0,003 %.

Для обеспечения низкого содержания остаточных элементов (Cr, Cu, Ni) используют оборотный металлолом комбината. Для шлакообразования применяют известь с содержанием CaO не менее 90 % и содержанием серы не более 0,02 %.

ВОГ. В процессе плавки в конвертерах для обеспечения в металле содержания азота не более 0,002 %, не допускается исправление плавки путем додувки. С этой целью контролируется состав металла путем ввода в конвертер в конце продувки измерительного зонда. Окончание продувки производится при содержании углерода и кислорода в пределах 0,04-0,05 % и 0,060-0,070 % соответственно. Для обеспечения содержания серы и фосфора не более 0,008 % основность конвертерного шлака в конце продувки должна составлять около 4 ед.

Во время выпуска плавки из конвертера раскисление должно обеспечивать содержание в металле углерода и кислорода в пределах 0,04-0,05 % и 0,050-0,060 % соответственно. Попадание конвертерного шлака в сталеразливочный ковш ограничивается путем его отсечки при выпуске плавки.

LF. При внепечной обработке на установке ковш-печь путем электронагрева достигается требуемая для процесса вакуумирования температура металла.

RH. Металл с требуемой температурой направляется на вакуумную обработку. На этой стадии путем создания глубокого вакуума (67 Па)

Таблица 1. Химический состав стали SEDDQJ (типичных IF-сталей) (SEDDQJ – Super extra deep drawing JFE, по стандарту комбината JFE, Япония)

	Химический состав, %									
Технологический	С	Si	Mn	P	S	Al	Ti	Nb	N	
поток	не более			не более					не более	
BOF → CC	0,0022	0,02	0,10 0,18	0,010	0,010	0,02 0,05	0,04 0,06	0,003 0,007	0,0025	
$BOF \rightarrow FTSC$	0,0025	0,02	0,10 0,18	0,012	0,008	0,02 0,05	0,03 0,04	0,003 0,007	0,0030	

© Ху Минь, Ма Фань, Сонг Мантань, 2014 г.

и скорости циркуляции 130 т/мин путем естественного обезуглероживания может быть достигнуто содержание углерода в металле 0,0008-0,0020 % при активности кислорода не более 0,030 %.

После обезуглероживания осуществляется раскисление и легирование металла алюминием с доведением его содержания в стали до 0,03-0,04 %, затем вводится марганец, титан и ниобий. Причем, титан и ниобий вводят в определенном соотношении с содержанием углерода и азота

На заключительной стадии производят вакуумную обработку в течение 8 мин, после чего общая активность кислорода снижается и не превышает 0,0030 %.

На данной стадии широко распространенный при производстве рядовых сталей метод повышения температуры с использованием кислорода и присадки алюминия не применяется, чтобы предотвратить образование алюмооксидных включений и обеспечить минимальное содержание неметаллических включений в металле, предназначенном для производства лицевых деталей автомобилей.

СС. Для предотвращения вторичного окисления разливаемого металла применяется защита струи огнеупорами с продувкой аргоном в местах сочленения их с шиберными затворами сталеразливочного и промежуточного ковшей. Нужно постоянно контролировать зеркало жидкости в кристаллизаторе, и обеспечить ее колеблемость не более ±3 mm.

Изменение содержания углерода и азота в металле по ходу всего технологического процесса производства стали SEDDQJ приведено в табл. 2. Из этих данных видно, что содержание углерода и азота незначительно повышается в металле, находящемся в промежуточном ковше и полученной затем литой заготовке, но в целом не превышает допустимых значений, а металл отвечает предъявляемым требованиям.

Второй технологический поток BOF (180 т) \rightarrow $LF \rightarrow RH \rightarrow FTSC$ находится в стадии освоения из-за проблем обеспечения качества поверхности горячекатаного листа.

На первом этапе освоения при опробовании упрощенного варианта этой технологической схемы $BOF \to RH \to FTSC$ было установлено, что без применения электронагрева и без операции

Таблица 2. Изменение содержания C, N на последующих стадиях

Точки опробования		(Ξ, %		N, %				
	мак.	мин.	сред.	инкрем.	мак.	мин.	сред.	инкрем.	
В конце ВОГ	0,05	0,03	0,04	-	0,0025	0,0011	0,0018	-	
Перед <i>LF</i>	0,05	0,03	0,045	-	0,0027	0,0011	0,0020	0,0002	
После LF	0,05	0,03	0,045	_	0,0030	0,0013	0,0023	0,0003	
После RH	0,0020	0,0008	0,0015	-	0,0027	0,0012	0,0021	-0,0002	
Промковш	0,0022	0,0012	0,0016	0,0001	0,0029	0,0020	0,0023	0,0002	
Заготовки	0,0022	0,0012	0,0017	0,0001	0,0030	0,0020	0,0024	0,0001	

наведения восстановительного шлака на стадии LF не удается разлить даже половины плавки из-за затягивания канала сталеразливочного ковша. При использовании полной технологической схемы $BOF \rightarrow RH \rightarrow LF \rightarrow FTSC$ проблема разливаемости решается, но происходит увеличение содержания углерода на 0,002 %, что не позволяет производить IF-стали (ограничение — не более 0,0025 %).

Чтобы улучшить разливаемость и качество металла, необходимо снизить содержание в нем серы и кислорода, для чего необходимо навести восстановительный шлак на стадии *LF*. Поэтому по сравнению с первым вариантом технологии, при выпуске плавки производится полное раскисление металла. На стадии *RH* в этом случае применяется операция принудительного обезуглероживания путем верхней продувки кислородом. В процессе обезуглероживания

содержание FeO несколько возрастает, но свойства восстановительного шлака сохраняются. Изменения химического состава шлака в сталеразливочном ковше на стадиях процесса представлены в табл. 3.Восстановительный шлак с высокой основностью (CaO:SiO $_2$ более 13) и низкой окисленностью (суммарное содержание FeO и MnO не более 1,5 %) играет важную роль в процессах:

- глубокой десульфурации;
- ассимиляции включений, образующихся после принудительного вакуумного обезуглероживания и легирования;
- защиты металла от вторичного окисления в сталеразливочном ковше во время разливки;
 - улучшения показателей разливаемости стали;
- ограничения активности кислорода в разливаемом металле не более 0,0025 %.

Таблица 3. Изменение химического состава верхнего шлака на последующих стадиях

Т	Химический состав верхнего шлака, %							
Точки опробования	CaO	SiO ₂	Al ₂ O ₃	MgO	FeO	MnO		
Перед шлакообразованием в <i>LF</i>	49,44	14,567	2,030	12,35	13.37	4,110		
Восстановительный шлак <i>LF</i>	54,09	4,033	30,18	9,620	0,932	0,262		
После обезуглероживания <i>RH</i>	49,76	5,033	32,36	9,200	1,146	1,680		
После легирования <i>RH</i>	48,15	5,167	32,75	9,240	1,167	2,060		
Мягкая продувка <i>RH</i> в течение 8 мин	43,19	5,633	37,55	9,760	1,870	2,300		

В табл. 4 представлено изменение содержания углерода и азота на стадиях производства стали SEDDQJ. Из этих данных следует, что в процессе разливки *FTSC* наблюдается увеличение содержания углерода и азота в промежуточном ковше и в заготовке и оно более значительно, чем в процессе разливки *CC*.

Для данной схемы необходимы более эффективные решения по уплотнению стыковочных узлов в средствах для защиты струи и по предотвращению вторичного окисления металла с целью ограничения прироста содержания азота в металле не более 0,0005 %.

Таблица 4. Изменение содержания C, N на последующих стадиях

Точки		(2, %		N, %				
опробования	мак.	мин.	сред.	инкрем.	мак.	мин.	сред.	инкрем.	
При конце ВОГ	0,05	0,03	0,04	_	0,0025	0,0011	0,0018	_	
Перед <i>LF</i>	0,05	0,03	0,045	_	0,0028	0,0012	0,0020	0,0002	
После LF	0,05	0,03	0,045	_	0,0035	0,0019	0,0023	0,0003	
После RH	0,0024	0,0016	0,0020	_	0,0030	0,0018	0,0025	0,0002	
Промковш	0,0025	0,0021	0,0022	0,0002	0,0035	0,0025	0,0029	0,0004	
Заготовки	0,0025	0,0022	0,0023	0,0001	0,0035	0,0026	0,0030	0,0001	

Выводы

Технологическая схема $BOF \to CC$ на стадии конвертерной плавки включает в себя выпуск металла без раскисления (содержание кислорода в пределах 0,050-0,060 %), электронагрев плавки на установке ковш-печь, естественное вакуумное обезуглероживание с последующим легированием и непрерывную разливку с защитой струи, что позволяет производить IF-сталь с содержанием углерода менее 0,0022 % и азота менее 0,0030 %.

Технологическая схема $BOF \rightarrow FTSC$ включает в себя выпуск конвертерной плавки с полным раскислением, образование восстановительного шлака на установке ковш-печь, принудительное кислородное обезуглероживание с последующим дополнительным легированием на стадии вакуумирования и непрерывную разливку на тонкослябовой МНЛЗ с защитой струи.

По данной схеме обеспечивается разливаемость плавки и производство IF-стали с содержанием углерода менее 0,0025 % и азота менее 0,0030 %.

В настоящее время на комбинате сталь SED-DQJ для производства как внутренних, так и лицевых деталей китайских легковых автомобилей выплавляется по схеме $BOF \rightarrow CC$. При производстве горячекатаного рулона по схеме $BOF \rightarrow FTSC$ на стадии выплавки достигнуто содержание химических элементов, соответствующее марочному составу, однако еще не решен вопрос улучшения качества поверхности конечной продукции. Работы в этом направлении проводятся учеными и специалистами комбината.

Поступила 16.07.2014

Подписчикам, авторам, рекламодателям!

Журнал публикует материалы, связанные с памятными датами предприятий и юбилеями известных ученых-металлургов, руководителей предприятий.

тел./факс 0562-46-12-95