Наука

УДК 669.168;548.75 **М. И. Гасик /д. т. н.**/

С. П. Шуваев

Национальная металлургическая академия Украины ПАО «Орджоникидзевский ГОК»

ИК-спектроскопическое исследование минерального состава концентратов обогащения марганцевой руды и шлака отработанного шламонакопителя

M. I. Gasik /Dr. Sci. (Tech.)/ S. P. Schuvaev National Metallurgical Academy of Ukraine PJSC «Ordzhonikidze GOK»

IR-spectroscopic study of the mineral composition of concentrates manganese ore and slag concentrates the spent slurry tank

Цель. ИК-спектроскопическое исследование качества (минерального состава) марганцевых концентратов обогащения первичных марганцевых руд и шлама отработанного шламонакопителя с целью получения качественных товарных концентратов.

Методика. Инфракрасные спектры снимались на двухлучевом ИК-спектрометре UR-20 при получении ИК-спектров поглощения и на ИК-Фурье спектрометре Nicoleti s 10 при получении ИК-спектров отражения с получением функции Кубелки – Мунка.

Результаты. Впервые получены и проанализированы ИК-спектры поглощения и отражения концентратов обогащения исходной марганцевой руды и концентрата, полученного обогащением шлама отработанного шламонакопителя.

Научная новизна. Впервые экспериментально исследованы особенности физических явлений и закономерностей ИК-излучения при прохождении через среду (марганцевые концентраты) и отражение света несамосветящимися веществами (марганцевыми концентратами различного минерального состава), представлен анализ результатов исследований в соответствии с законом Бугера и теорией Кубелки – Мунка.

Практическая значимость. Результаты исследования могут быть использованы для совершенствования технологии обогащения первичных марганцевых руд и шламов отработанных шламонакопителей. (Ил. 7. Табл. 2. Библиогр.: 10 назв.)

Ключевые слова: инфракрасная спектроскопия, марганцевые руды, обогащения, концентраты, шламы, ИК-поглощение (отражения), закон Бугера, функция Кубелки – Мунка.

Анализ явлений и закономерностей поглощения инфракрасного излучения при прохождении его через вещества (марганцевый концентрат, агломерат). Физический смысл закона Бугера. Инфракрасная спектроскопия является разделом спектроскопии, включающим получение, исследование и применение спектров *поглощения* в инфракрасной области спектра [1–3]. Инфракрасное излучение¹ (инфракрасные лучи), представляющее электромагнитное излучение, занимает спектральную область между красным конусом видимого света (с длиной волны $\lambda = 0,74$ мкм) и коротковолновым радиоизлучением (λ ≈ 1-2 мкм). Инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет [1; 2].

Инфракрасная спектроскопия занимается главным образом изучением молекулярных спектронов, так как в ИК-области расположено большинство колебательных и вращательных спектров молекул [4]. При прохождении ИКизлучения через вещество оно поглощается колебательными и вращательными частотами молекул или частотами колебаний кристаллических решеток.

¹Инфракрасное излучение было открыто в 1800 г. английским ученым В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного цвета (т. е. в невидимой части спектра) температура термометра повышается.

[©] М. И. Гасик /д. т. н./, С. П. Шуваев, 2016 г.

[©] Металлургическая и горнорудная промышленность/2016 � 5

В инфракрасной спектроскопии наиболее широкое распространение получило исследование ИК-спектров поглощения, которые возникают в результате поглощения ИК-излучения при прохождении его через вещество. Это поглощение имеет селективный характер и происходит на тех частотах, которые совпадают с некоторыми собственными частотами колебаний атомов в молекулах вещества и с частотами вращения молекул как целого, а в случае кристаллического вещества – с частотами колебаний кристаллической решетки. В результате интенсивность ИКизлучения на этих частотах резко падает – образуются *полосы поглощения* (см. рис. 1) [1; 2].

Рис. 1. Зависимость интенсивности падающего (I_o(v)) и прошедшего через вещество I(v) излучения. v₁, v₂, v₃, ... – собственные частоты вещества; заштрихованные области – полосы поглощения [2]

Основным законом, описывающим поглощение света, проходящего через среду, заполненную веществом, является установленный в 1729 г. закон Бугера [5]

$I = I_{O} \cdot \exp(k_{\lambda \ell}),$

связывающий интенсивность І пучка света, прошедшего слой поглощающей среды толщиной *l*, с интенсивностью падающего пучка I₀. Не зависящей от интенсивности света Іо коэффициент k_λ называется показателем поглощения, причем k_{λ} , как правило, различен для разных длин волн. В последствии этот закон теоретически был выведен немецким ученым И. Ламбертом (1760 г.), а для растворов сформулирован также немецким ученым А .Бером (1852 г.). Поэтому в итоге этот закон называется законом Бугера – Ламберта – Бера [6]. Физический смысл закона Б. – Л. – Б. состоит в утверждении независимости потери фотонов* от их плотности в световом пучке, т. е. не зависит от интенсивности света, проходящего через вещество [7].

На практике обычно ИК-спектр поглощения представляют графически в виде зависимости от частоты v (или длины волны λ) ряда величин, характеризующих поглощающее вещество: коэффициента пропускания $T(v) = I(v)/I_0(v)$; коэффициента поглощения A(v) = 1 - T(v); оптической плотности $D(v) = \ln[1/T(v)] = æ(v)c \ \ell$, где æ(v) – показатель поглощения, с – концентрация поглощающего вещества, ℓ – толщина поглощающего слоя вещества.

Основные характеристики спектра ИКпоглощения – *число полос* в спектре, их положение, определяемое частотой vγ (или длиной волны λ); ширина и форма полос, а *величина* поглощения *определяется природой* (структурой и химсоставом поглощающего вещества) температурой и давлением [1; 2].

Методика проведения экспериментального исследования ИК-спектров. Для получения инфракрасных спектров мономинеральных фракций, выделенных из исходных окисных и карбонатных марганцевых руд, концентратов, мономинеральных фракций из исходных руд, применен инфракрасный спектрометр UR-20, который охватывает широкий диапазон волновых чисел от 400 до 5000 см⁻¹. Первая серия экспериментальных исследований была проведена в ИОНХ НАН Украины.

Инфракрасные спектры снимались на двухлучевом ИК-спектрометре UR-20 в приведенном выше диапазоне волновых чисел, в котором расположены колебательные или вращательные спектры молекул. Прибор работает по принципу двух лучей света с оптическим выравниванием. Принципиальная схема работы двухлучевого спектрометра UR-20 приведена на рис. 2.

В качестве источника света в приборе UR-20 используется тепловой излучатель – нагретый силитовый стержень, дающий интенсивное сплошное излучение в инфракрасной области. Существенную часть спектрографа, определяющую его разрешающую способность, составляет монохроматор для разложения света, представляющий собой призмы материалов, обладающих большой дисперсией**.

В опытах ИК-спектры обычно получают с применением различных призм, характеризующихся рабочими областями: КВr (области 685–1100 см⁻¹), NaCl (650–5000 см⁻¹) и LiF (1800– -5000 см⁻¹). Разложение полихроматического излучения на монохроматическое позволяет ис-

^{*} Фотон – квазичастица, сопоставляемая волне смещений атомов (ионов) и молекул кристалла из положений равновесий.

^{**} Спектральные призмы (дисперсионные призмы) – одна из групп призм оптических; служат для пространственного разделения (разложения, в спектр) излучений оптического диапазона, различающихся длинами волн (Физический энциклопедический словарь. – М.: Советская энциклопедия, 1983, 707 с.).

Рис. 2. Принципиальная схема инфракрасного двухлучевого спектрометра UR-20

- 1 источник инфракрасного излучения;
- 2 нижняя кювета; 3 кювета сравнения;
- 4 монохроматор; 5 приемник излучения;
- 6 усилитель; 7 сервомотор; 8 выпрямитель;
- 9 вращательное зеркало; 10 самописец

следовать изменение поглощения образцом при изменении длины волны. Каждая призма пригодна для измерения лишь в определенном диапазоне волн. В качестве образца сравнения в экспериментах использовалась призма KBr.

В экспериментах получены ИК-спектры поглощения следующих мономинеральных фракций, выделенных из исходной окисной марганцевой руды: пиролюзит, манганит, псиломелан, фосфат (рис. 3). В качестве эталонов использовали чистые реактивные препараты двуоксида

а – трифосфат кальция и мономинеральных фракций никопольской марганцевой оксидной руды фосфата; б – пиролюзит; в – манганат; г – псиломелан марганца MnO_2 и трифосфата кальция $Ca_3P_2O_8$. Наряду с мономинеральными фракциями получены также ИК-спектры окисной и окисленной марганцевой руды (нижнего и верхнего пластов) и ее минеральной разновидности (манганитовой, пиролюзитовой и псиломелановой) (рис. 3 и 4).

Волновые числа (v) и величины поглощения ИК-излучения представлены, наряду с рис. 3 и 4, также в табл. 1.

Анализ представленных на рис. 3 и 4 ИКспектрограмм поглощения мономинеральных фракций, выделенных из руды, свидетельствует, что использование метода ИК-спектроскопии подтверждает возможность получения информации о наличии в марганцевых рудах минералов по волновым числам. Так, для ИК-спектра

Рис. 4. ИК-спектры поглощения оксидной марганцевой руды

а - окисная; б - окисная (нижний пласт);

- в окисная (верхний пласт); г манганитовая;
- д пиролюзитовая; е псиломелановая

Величины поглощения инфракрасного излучения, определенные методом ИК-спектроскопии, марганцевыми мономинеральными фракциями, окисными и карбонатными марганцевыми рудами

Наименование марганцевых минералов и оксидной руды	Величины поглощения инфракрасного излучения в соответствующих интервалах волновых чисел (см ⁻¹)							
	450-620	725-830	1050-1150	1420-1470	1630			
	(Mn-O	, Ca-O)	(P-O)	CO_3^2	OH			
Псиломелан	70 23		47	-	-			
Манганит ү-MnOOH	62	-	58	-	-			
Пиролюзит (реактивный)	92	_	-	-	_			
Псиломелановая руда	70	-	49	42	46			
Пиролюзитовая руда	72 –		46	57	-			
Марганцевая руда	68 –		51	-	-			
Оксидная руда (окисленная)	106	_	100	-	34			
Оксидная руда (верхний слой пласта)	74	-	62	60	_			
Трикальций фосфат (препарат) Са ₃ Р ₂ О ₈	55	-	76	-	-			
Манганокальцит (Mn, Ca)CO ₃	24	19-27	60	73	-			
Марганцевая руда карбонатная	27	36	58	71	_			

пиролюзита характерны волновые числа 610 и 830 см⁻¹, для манганита – 550, 610 и 1100 см⁻¹, псиломелана – 550, 830 и 1050 см⁻¹.

ИК-спектры образцов марганцевых руд, различаются не только наличием рудных минералов марганца, но и пиков, соответствующих фосфатной группе $PO_4^{3^-}$, что подтверждается соответствием волновых чисел трифосфаткальция волновым числам фосфатной группы в спектрах марганцевой руды. Впервые [8] было экспериментально обосновано, что полосы поглощения в области 1050–1090 см⁻¹ относятся к колебаниям фосфор-кислородной группе $PO_4^{3^-}$. Это полоса поглощения обнаружена в фосфатной из оксидной марганцевой руды.

В ИК-спектрах поглощения карбонатной марганцевой руды (рис. 5) (нижнего и верхнего рудных слоев) наряду с пиками поглощения, относящимися к манганокальциту (Мл, Са) CO_3 , четко прослеживается пик волнового числа 1060 см⁻¹, характерного для ортофосфатной группы $PO_4^{3^-}$ [8]. В спектрах карбонатной руды наряду с группой $CO_3^{2^-}$ имеется ортофосфатная группа $PO_4^{3^-}$. Возможность химического замещения в манганокальците радикала $CO_3^{2^-}$ радикалом $PO_4^{3^-}$ сопровождается образованием гомогенного источника примеси фосфора в карбонатных рудах [9].

Основные положения и закономерности отражения света несамосветящимися телами, физическая сущность теории Кубелки – Мунка. Одно из важнейших положений теории отражения света (оптическое излучение) состоит в том, что несамосветящиеся тела становятся видимыми вследствие отражения света от их по-

Таблица 1

верхности. При попадании света из первой среды на границу раздела со второй средой (например, марганцевая руда, концентрат, агломерат) взаимодействие света с веществом приводит к появлению *световой волны*, распространяющейся от границы раздела обратно в первую среду. *Поэтому несамосветящиеся* тела становятся *видимыми*.

Пространственное распределение интенсивности отраженного света определяется отношением размеров неровностей поверхностей (границ раздела) к длине волны λ подающего излучения. При этом учитываются следующие особенности процесса [1; 2]. Если неровности поверхностей малы по сравнению с длиной волны λ, имеет место правильное или зеркальное отражение света. Когда размеры неровностей поверхностей соизмеримы с длиной волны λ или превышают ее (шероховатые поверхности, матовые поверхности) и расположение их беспорядочно, отражение света диффузно. При попадании света на границу раздела со второй средой возможно также и смешанное отражение света, при котором данная часть падающего излучения отражается зеркально, а вторая диффузно. Если же неровности поверхностей с размером примерно равным длине волн λ и более, расположены регулярно, распределение отраженного света имеет особый характер, близкий к наблюдаемому при отражении света от дифракционной решетки.

Интенсивность отражения волны характеризуется коэффициентом отражения R, который равен отношению потока излучения, отраженного телом, к упавшему на него потоку излучения. В общем случае коэффициент отражения R есть сумма коэффициентов зеркального отражения и диффузионного отражения [1, с. 513].

В 1930 г. Пауль Кубелка и Франц Мунк предложили уравнение, описывающее цвет отраже-

ния в зависимости от соотношения коэффициента поглощения К и коэффициента рассеивания S [10]. Известно также уравнение Гуревича – Кубелки – Мунка, устанавливающее связь между отношением K/S и коэффициентом отражения бесконечного толстого слоя, т. е.:

$$K / S = \frac{\left(1 - R_x\right)^2}{2R} ,$$

где $R_x = I_0/I$.

Таким образом, уравнение Г. – К. – М. представляет формулу, устанавливающую связь между одним из параметров R, который можно определить экспериментально и характеристиками K и S для данного вещества.

Экспериментальное определение и анализ ИК-спектров отражения инфракрасного излучения марганцевыми концентратами и концентратом гравитационного и магнитного обогащения шлама отработанного шламохранилища

Производственная деятельность ПАО «ОГОК» по добыче и обогащению оксидной и карбонатной марганцевых руд сопровождается накоплением шламов, содержание марганца в которых в прошлые годы при обогащении богатых оксидных руд достигало от 13 до 19 %. Начиная со 2-го полугодия 2011 г. на ПАО «ОГОК» приступили к практической реализации ресурсосырьевой концепции вовлечения в технологию обогащения шлама отработанного шламонакопителя. Целью экспериментального исследования является анализ ИК-спектров отражения рудных и примесных минералов марганцевыми концентратами обогащения сырой руды и шлама отработанного шламохранилища, марганцевого оксидного зернистого концентрата 2-го сорта крупностью 1–0 мм (табл. 2) (TV V 07.2 - 00190928 - 001 : 2014).

Марганцевый зернистый концентрат (проба 4) характеризуется тонкофракционным составом:

Класс крупности, мм:	+1	-1+0,5	-0,5+0,16	-0,16+0,071	-0,071	S
Выход фракции, %:	1,56	11,38	52,35	33,01	1,7	100
Содержание Mn, %:	40,18	35,12	34,13	30,62	36,89	33,75

Таблица 2

Химические составы представительных проб марганцевых концентратов, обогащения исходной руды, шлама и марганцевого агломерата АМ-2 БОАФ

№ п/п Наименование концентрата, агломерата -		Содержание компонентов, % масс.								
	Mn	SiO ₂	CaO	MgO	Al_2O_3	Fe	Р	W ^e	п.п.п.	
1	Концентрат оксидный 1-й сорт	45,3	13,1	2,2	1,4	2,0	2,1	0,23	15,2	12,2
2	Концентрат оксидный 2-й сорт	35,2	21,	2,4	2,1	2,4	4,3	0,18	15,2	11,5
3	Концентрат оксидный	38,0	15,4	4,7	2,4	2,2	1,9	0,21	10,0	16,2
4	Концентрат зернистый 2-го сорта	37,4	24,5	2,2	1,4	1,9	1,7	0,18	15,2	10,6
5	Карбонатный концентрат	29,2	9,5	12,2	1,9	2,1	1,5	0,28	9,8	30,0
6	Агломерат марганцевый 2-го сорта	41,6	23,1	5,7	2,3	3,0	2,9	6,22	-	-

© Металлургическая и горнорудная промышленность/2016 🛠 5

Характеристика ИК-спектрометра и методика проведения экспериментов получения инфракрасных спектров отражения. Инфракрасные спектры (ИКС) пяти образцов марганцевых концентратов и одного агломерата получали на ИК-Фурье спектрометре Nicoleti s 10. ИКС регистрировались в режиме диффузного рассеяния в среднем ИК-диапазоне. Так как интенсивность отражения в этих пределах неравномерна, для наглядности выделены два поддиапазона длин волн 1200-3800 см⁻¹ (рис. 6) и 300–1200 см⁻¹ (рис. 7). Полученные данные представлены в виде двух соответствующих графических зависимостей и полных ИКС в табличном виде, где первый столбец - это волновое число, а второй - функция Кубелки - Мунка коэффициента отражения (приближенный аналог традиционного показателя, % поглощения) [9].

В высокочастотном ИК-поддиапазоне (рис. 6) имеются полосы, характерные для молекул сорбированной и кристаллизационной воды, а также валентных (2600–3600 см⁻¹) и деформационных колебаний (1600 см⁻¹) гидроксильных групп.

Наиболее влагонасыщены окисные концентраты образцов № 1 и № 2, наименее – карбо-

натный концентрат. Выделяются характеристичные пики карбонат-иона: диффузная полоса с максимумом 1430 см⁻¹ – антисимметричные валентные колебания СО₃⁻², отдельные вибрации карбонильной группы (1800 см⁻¹) и составные колебания (2500 см⁻¹). Абсолютный лидер по содержанию карбонат-ионов – карбонатный концентрат, образец № 5.

Большое количество пиков второго, более низкочастотного, поддиапазона, трудно идентифицировать (рис. 7). Однако можно предположить, что для марганцевых концентратов пики полосы 700–1200 см⁻¹ могут принадлежать различным валентным колебаниям тетраэдрических оксоанионов* (фосфатов, сульфатов, силикатов, манганатов** и т. п.).

Для длинноволновой полосы 300–700 см⁻¹ наиболее характерными могут быть деформационные колебания тех же солей и валентные колебания связей металл-кислород в кристаллических решетках оксидов, в том числе и Mn_xO_y. Наиболее устойчивому диоксиду марганца принадлежит пик около 560 см⁻¹, но в исследуемых пробах он четко не выделяется. Исследования мономинеральных фракций, извле-

Рис. 6. Инфракрасные спектры отражения марганцевых концентратов № 1-5 и агломерата № 6, полученные регистрированием в режиме диффузионного рассеяния в среднем ИК-диапазоне длин волн 1200–3800 см⁻¹

1 - первый сорт; 2 - второй сорт; 3 - бессортный; 4 - зернистый второй сорт; 5 - карбонатный, 6 - агломерат

^{*} Оксоанионы - кислородсодержащие анионы.

^{**} Манганаты – соли несуществующей в свободном состоянии кислоты марганца. Содержат тетраэдрические анионы MnO_4^7 , $MnO_4^{2^-}$ или $MnO_4^{3^-}$.

Рис. 7. ИК-спектры отражения пяти образцов марганцевых концентратов и образца марганцевого агломерата АМ-2, которые регистрировались в режиме диффузного рассеяния в поддиапазоне длин волн 300-1200 см⁻¹

1 – первый сорт; 2 – второй сорт; 3 – бессортный; 4 – зернистый второй сорт; 5 – карбонатный, 6 – агломерат

ченных из сырой оксидной марганцевой руды, показали, что для рудных минералов марганца характерны пики: пиролюзитовой фракции 610 и 830 см⁻¹, манганитовой – 550, 610 и 1100 см⁻¹ и псиломелановой – 550, 830 и 1050 см⁻¹. В спектре отражения марганцевого зернистого концентрата, полученного методом высокоградиентной магнитной сепарации марганцевого шлама отработанного шламонакопителя, четко выделяются пики 410 см⁻¹, 560 см⁻¹ (60), 675 см⁻¹ (220) и 770 см⁻¹ (180).

Выводы

1. Рассмотрены особенности физических явлений и закономерностей инфракрасного излучения при прохождении через среду, заполненную веществом; физическая сущность закона Бугера, описывающего поглощение света, проходящего через среду.

2. Получены и проанализированы ИКспектры поглощения марганцевых мономинеральных фракций, исходных оксидных и карбонатных руд и концентратов. Представлены величины поглощения инфракрасного излучения в соответствующих интервалах волновых чисел.

3. Проанализированы особенности физических явлений и закономерностей отражения света несамосветящимися веществами и физическая сущность теории Кубелки – Мунка, условий зеркального и диффузионного отражения света. Экспериментально получены спектры отражения марганцевых концентратов обогащения марганцевых оксидных и карбонатных руд, а также концентрата 2-го сорта класса зернистости 1–0 мм.

4. В высокочастотном ИК-диапазоне полосы характерны молекулам сорбированной и кристаллизационной воды; валентные (2600–3600 см⁻¹) и деформационные колебания (1600 см⁻¹) относятся к гидроксильным группам. В спектре отражения карбонатного концентрата выделяются характеристичные пики карбонат-иона $CO_3^{2^-}$: диффузная полоса с максимумом 1430 см⁻¹ – антисимметричные валентные колебания карбонат-ионов $CO_3^{2^-}$; отдельные вибрации карбонатной группы (1800см⁻¹) и составные колебания (2500 см⁻¹).

5. ИК-спектры отражения низкочастотного поддиапазона характеризуются как трудноиндентифицируемые. Вместе с тем можно предполагать, что для марганцевых концентратов пики полосы отражения 700-1200 см⁻¹ могут принадлежать оксидным марганцевым рудным минералам и тетраэдрическим оксоанионам (фосфатам, силикатам марганца, манганатам).

6. В спектре отражения марганцевого зернистого концентрата 2-го сорта, полученного из шлама отработанного шламохранилища, четко выделяются пики: 410 см⁻¹; 560 см⁻¹ (60); 675 см⁻¹ (220) и 770 см⁻¹ (180).

© Металлургическая и горнорудная промышленность/2016 � 5

Библиографический список / References

1. Малышев В. И. Инфракрасная спектроскопия / В. И. Малышев. – М.: Физический энциклопедический словарь. 1983. – С. 226-227.

Malyishev V. I. *Infrakrasnaya spektroskopiya*. Moscow, Fizicheskiy Entsiklopedicheskiy Slovar, 1983, pp. 226-227.

2. Малышев В. И. Инфракрасное излучение / В. И. Малышев. – М.: Большая Советская энциклопедия. 1972. – Т. 10. – С. – 357–358.

Malyishev V. I. *Infrakrasnoe Izluchenie*. Moscow, Bolshaya Sovetskaya Entsiklopediya, 1972, vol. 10, pp. 357-358.

3. Ахманова М. В. Инфракрасные спектры поглощения минералов / М. В. Ахманова // Успехи химии. – 1959. – Т. 28. – С. 312.

Ahmanova M. V. *Infrakrasnyie Spektryi Pogloscheniya Mineralov*. Uspehi Himii. 1959, vol. 28, 312 p.

4. Накомато К. Инфракрасные спектры неорганических и координационных соединений / К. Накомато. – М.: Изд-во «МИР», 1966.

NakomatoK.InfrakrasnyieSpektryiNeorganicheskih I KoordinatsionnyihSoedineniy. Moscow, MIR, 1966.

5. Плюскина И. И. Инфракрасные спектры силикатов / И. И. Плюскина. – М.: Изд-во МГУ, 1967.

Plyuskina I. I. *Infrakrasnyie Spektryi Silikatov*. Moscow, MGU, 1967.

6. Литтл Л. Инфракрасные спектры адсорбированных молекул / Литтл Л. – М.: Изд-во «МИР», 1969.

Littl L. Infrakrasnyie Spektryi Adsorbirovannyih Molekul. Moscow, MIR, 1969.

7. Бугера-Ламберга-Бера закон // Физический энциклопедический словарь. – М.: Советская энциклопедия, 1983. – С. 60.

Bugera-Lamberga-Bera Zakon. Fizicheskiy Entsiklopedicheskiy Slovar. Moscow, Sovetskaya Entsiklopediya, 1983, p. 60.

8. Гасик М. И. Повышение качества марганцевых концентратов и ферросплавов / М. И. Гасик, И. И. Хитрик, В. Ф. Горбачев, К. И. Тищенко, А. С. Шорникова. – Днепропетровск: Изд-во «Промінь», 1972. – 108 с.

Gasik M. I., Hitrik I. I., Gorbachev V. F., Tischenko K. I., Shornikova A. S. *Povyishenie Kachestva Margantsevyih Kontsentratov i Ferrosplavov*. Dnepropetrovsk, Promin, 1972, 108 p.

9. Пройдак А. Ю. Исследование кристаллоструктурных превращений фосфорита малакамышеватского месторождения методом гравиметрического и ренгеноструктурного анализов / А. Ю. Пройдак, О. И. Поляков, М. И. Гасик // Металлургическая и горнорудная промышленность. - 2009. - № 4. - С. 32-35.

Proydak A. Yu., Polyakov O. I., Gasik M. I. Issledovanie Kristallostrukturnyih Prevrascheniy Fosforita Malakamyishevatskogo Mestorozhdeniya Metodom Gravimetricheskogo i Rengenostrukturnogo Analizov. Metallurgicheskaya i Gornorudnaya Promyishlennost. 2009, no. 4, pp. 32-35.

10. Функция Кубелки-Мунки. Справочник химика 21 (химия – химическая технология). Chem. 21. info/info/ 142725.

Funktsiya Kubelki-Munki. Spravochnik Himika 21 (Himiya – Himicheskaya Tehnologiya). Chem. 21. Info/Info/ 142725.

Purpose. IR-spectroscopic study quality (mineral composition) of manganese beneficiation of manganese ore concentrate primary sludge and waste sludge tank in order to obtain high-quality salable concentrate.

Methodology. Infrared spectra were recorded on a double-beam IR-spectrometer UR-20 in the preparation of the IR absorption spectra and FT-IR spectrometer Nicoleti s 10 when receiving IR-reflection spectra to obtain a function of Kubelka-Munk.

Findings. The first obtained and analyzed by IRabsorption spectra of reflection and enrichment of manganese ore concentrates original and concentrate produced enriched sludge waste sludge collector.

Originality. For the first time an experimental investigated characteristics of physical phenomena and laws of IR-radiation while passing through a medium (manganese concentrates), and the reflection of light not-glowing substance (manganese concentrates different mineral composition) presents an analysis of the research results, in accordance with the law of Bouguer and Kubelka – Munk theory.

Practical value. Results of the study can be used to improve the technology of enrichment of manganese ores and primary sludge waste sludge tanks.

Key words: infrared spectroscopy, manganese ore beneficiation, concentrates, sludges, infrared absorption (reflection), Bouguer's law, the Kubelka – Munk function.

Поступила 06.09.2016

Metallurgical and Mining Industry

www.metaljournal.com.ua