С. М. Григорьев, А. С. Петрищев*

Запорожский национальный университет, Запорожье *Запорожский национальный технический университет, Запорожье

Некоторые физико-химические закономерности углеродотермического восстановления ванадия

Проведен термодинамический анализ вероятности протекания реакций в системе V-O-C в температурном интервале 300-2000 К. Исследованы фазовые превращения в процессе углеродотермического восстановления оксида ванадия V₂O₅. Выявлена высокая вероятность параллельного карбидообразования наряду с металлизацией. Фрактограммы и результаты рентгеновского микроанализа подтвердили и уточнили картину фазовых превращений. На основе комплекса исследований построена схема превращений в системе V-O-C в температурном интервале 1073-1473 К.

Ключевые слова: термодинамический анализ, вероятность реакций, фазовые превращения, углеродотермическое восстановление, карбидизация

акопленный опыт утилизации тугоплавких элементов из металлооксидных техногенных отходов инструментальных легированных и быстрорежущих сталей в качестве шихтовой добавки предварительно металлизированных брикетов отличается высокой эффективностью и подтверждает перспективность выбранного направления [1, 2]. Прослеживаются некоторые аналогии при восстановлении оксидов молибдена и вольфрама углеродом в системах без появления жидких фаз при сравнении с восстановлением оксидов ванадия [3-5], однако для достижения совершенства и технологической завершенности необходимы результаты более глубоких исследований восстановления оксидов ванадия в гетерогенной системе.

Цель настоящей работы заключалась в разработке основных технологических параметров восстановления металлооксидных техногенных ванадийсодержащих отходов. Конкретные задачи этого этапа исследований состояли в изучении термодинамического равновесия соответствующих реакций в системе V-O-C, фазовых и структурных превращений, протекающих при углеродотермическом восстановлении ванадийсодержащего оксидного сырья.

Для сравнительной вероятности прохождения восстановительных реакций в системе V-O-C температур 300-2000 К использовали данные термодинамических величин (ΔH , S, C_p), взятые из справочников [6-8]. Для более точных расчетов применяли методику с учетом влияния изменения теплоемкости C_p и прохождения полиморфных преобразований в исходных компонентах и продуктах реакций с изменением температуры на указанные выше термодинамические величины [6].

Образцы для исследований подвергали изотермической тепловой обработке при температурах 1073-1473 К в течении 1 ч. В качестве исходного материала для образцов использовали технически чистый оксид ванадия V_2O_5 с добавками графита в виде циклонной пыли (соотношение O/C = 1,33). С целью приближения состава образцов к химическому и минералогическому составам рудного сырья разработали состав шихтовых компонентов, позволяющий регулировать сопутствующие оксидные примеси, присутствующие в рудном сырье. Одним из таковых является флюс АН-295 (ТУ 5929-004-05764417-2003).

Фазовый состав ванадийсодержащих таблеток исследовали на дифрактометре ДРОН-6 в излучении медного катода с никелевым фильтром по методике и рекомендациям, описанным в работе [9]. Режим сканирования 40 кВ, 20 мА. Качественный и количественный фазовые анализы проводили с использованием комплекса программ PDWin 2.0 и дополнительной справочной литературы [10, 11].

Микроструктуру образцов исследовали на растровом электронном микроскопе JSM 6360LA, оснащенном системой рентгеноспектрального энергодисперсионного микроанализа (PCMA) JED 2200 (производство японской фирмы JEOL) по методике, описанной в работе [12]. Работу выполнили при ускоряющем напряжении 15 кВ и диаметрах – электронного зонда 4 нм; зоны возбуждения рентгеновского излучения - порядка 1 мкм. Определение состава фаз производили безэталонным методом расчета фундаментальных параметров – поправочных коэффициентов отражения электронов зонда и поглощения характеристического рентгеновского излучения и флуоресценции. Определение химического состава фаз выполняли на участках, отмеченных соответствующими условными обозначениями.

Угар легирующих элементов при выплавке стали как расходная статья может осуществляться переходом их в шлак, окислением атмосферой печи, а также сублимацией соединений, имеющих высокую упругость паров. Настоящая работа направлена на углубление представлений о природе угара и разработку мероприятий, приводящих к его снижению, и как следствие, повышению степени усвоения легирующих элементов и выхода годного.

Puc. 1. Изменение свободной энергии Гиббса реакций восстановления оксидов ванадия при участии С, СО от температуры: Изменение своюдной энергии Гибса реакций восстановления оксидов ванадия при участии С, CO от температуры: $1 - 1/4V_{04} + C = 1/2V + CO; 2 - V_{03} + C = 2VO + CO; 3 - 1/3V_{03} + C = 2/3V + CO; 4 - VO + C = V + CO; 5 - VO + CO = V + CO;; 6 - 1/3V_{03} + CO = 2/3V + CO; 1 - 1/4V_{04} + CO = 1/2V + CO;; 8 - V_{03} + CO = 2/3V + CO; 9 - 1/5V_{05} + CO = 2/5V + CO;; 10 - 1/2V_{04} + CO = VO + CO;; 11 - 1/3V_{05} + CO = 2/3VO + CO;; 12 - V_{04} + CO = V_{04} + CO;; 13 - 1/2V_{05} + CO = 1/2V_{03} + CO;; 14 - 1/3V_{05} + CO = 2/5V + CO;; 16 - 1/2V_{04} + CO = 1/2V_{04} + CO;; 15 - 1/5V_{05} + C = 2/5V + CO;; 16 - 1/2V_{04} + C = VO + CO;; 17 - 1/3V_{05} + C = 2/3VO + CO;; 18 - V_{05} + C = V_{04} + CO;; 19 - 1/2V_{05} + C = 1/2V_{03} + CO;; 10 - 1/2V_{04} + C = 1/2V_{03} + CO;; 16 - 1/2V_{04} + C = 1/2V_{03} + C = 2/5VC + 3/5CO;; 2 - 1/5V_{04} + C = 1/5V_{2}C + 4/5CO;; 3 - 2/3VO + C = 1/3V_{2}C + 2/3CO;; 4 - 1/4V_{20} + C = 1/4V_{2}C + 3/4CO;; 5 - 1/2VO + CO = 1/4V_{2}C + 3/4CO;; 6 - 1/5V_{20} + C = 1/5V_{2}C + 4/5CO;; 7 - 1/3VO + C = 1/3V_{2}C + 2/3CO;; 8 - 1/6V_{04} + CO = 1/6V_{2}C + 5/6CO;; 9 - 1/7V_{03} + C = 2/7VC + 5/7CO;; 10 - 1/8V_{20} + C = 1/4VC + 3/4CO_2; 11 - 1/7V_{20} + C = 2/7VC + 5/7CO;; 12 - 1/9V_{05} + C = 2/7VC + 5/7CO;; 13 - 1/2VO + C = 1/2VC + 1/2CO;; 14 - 1/7V_{20} + C = 2/7VC + 5/7CO;; 15 - 1/6V_{20} + C = 1/6V_{2}C + 5/6CO;; 16 - 1/6V_{20} + C = 2/6VC + 4/6CO (6)$

В качестве восстановителей в системе V-O-C помимо углерода могут активно участвовать продукты реакций восстановления и газификации углерода – монооксид углерода и карбиды ванадия.

Из рис. 1 видно, что реакции восстановления оксидов ванадия углеродом эндотермичны, а при участии в качестве восстановителя монооксида углерода – экзотермичны. Наиболее вероятны, судя по построенным графикам, реакции понижения оксидов ванадия при взаимодействии их с углеродом и монооксидом углерода (рис. 1, а). Реакции с восстановлением оксидов углеродом до ванадия термодинамически вероятны лишь при температурах выше 1200 К. А в случае участия в качестве восстановителя монооксида углерода кривые реакций с образованием ванадия находятся в положительной части графика на всем исследуемом температурном интервале (рис. 1, а). Реакции восстановления углеродом с образованием карбидов ванадия термодинамически вероятны уже при температурах выше 900 К с явным смещением равновесия в сторону образования карбидов ванадия в отличие от V₂C. Реакции 8 и 10 указывают на возможность взаимодействия карбидов ванадия с углеродом, монооксидом углерода и СО,, при этом карбид ванадия до 1200 К проявляет себя как более прочное термодинамически соединение, чем V₂C. Реакции карбидообразования при восстановлении монооксидом углерода проявляют экзотермичность и выше 1000 К (они находятся

25

 $9 - VO + V_2C = 3V + CO; 10 - V_2C + C = 2VC$

в положительной части графика, рис. 1, б). Реакции с участием карбидов в качестве восстановителей эндотермичны и приобретают термодинамическую вероятность лишь при температурах выше 1500 К (рис. 2).

Из построенных графиков зависимостей видна закономерность повышенной вероятности восстановления высших оксидных соединений ванадия до низших оксидов и карбидных соединений; реакции восстановления низших оксидов ванадия до карбидов и ванадия свободного обладают меньшей вероятностью. При этом процессы карбидообразования принимают меньшие значения ∆*G*, чем реакции металлизации до температур 1600-1800 К. С повышением температуры термодинамически возможна параллельность двух процессов с проявлением конкурентоспособности участия карбидов ванадия в качестве восстановителей.

Поскольку многие реакции в системе V-O-C протекают с участием монооксида углерода и CO₂, то изменение давления и температуры в зоне реакции оказывает смещение равновесия в сторону выхода тех или иных продуктов реакции. Наличие в системе двух газообразных компонентов позволяет построить диаграмму равновесия и с достаточной достоверностью предусмотреть области существования фаз

в зависимости от двух взаимосвязанных факторов: температуры и парциального давления монооксида углерода. Соотношение монооксида углерода и CO₂ в зависимости от температуры дает дополнительные данные о расположении равновесных кривых реакций.

Из рис. 3, а, б видно, что с повышением парциального давления монооксида углерода равновесие смещается в сторону образования более низких оксидов ванадия и образования карбидов ванадия и V₂C с расширением температурного интервала существования соответствующих областей. Повышение же температуры с одновременным повышением парциального давления монооксида углерода приводит к смещению равновесия в сторону понижения оксидных соединений ванадия и образования ванадия свободного. Практический интерес представляют области существования карбидов ванадия или ванадия свободного с минимальным количеством недовосстановленных оксидов. Из рис. 3, а, б видно, что данным требованиям в достаточной мере соответствует часть диаграммы выше кривой 4 при T = 300-1200 К и выше кривой 1 при T > 1200 К. Это означает, что в отмеченной части графика реакции с образованием карбидов ванадия вероятны при более низких концентрациях монооксида углерода

РШ. 3. Диаграмма термодинамического равновесия в системе V-O-C. Линии соотвтетсвуют равновесию следующих реакций: $1 - 1/5V_2O_3 + CO = 1/5V_2C + 4/5CO_2$; $2 - VO + CO = V + CO_2$; $3 - 1/3V_2O_3 + C = 2/3V + CO$; $4 - 1/7V_2O_3 + CO = 2/7VC + 5/7CO_2$; $5 - 1/6V_2O_4 + CO = 1/6V_2C + 5/6CO_2$; $6 - 1/4V_2O_4 + CO = 1/2V + CO_2$; $7 - V_2O_3 + CO = 2VO + CO_2$; $8 - 1/8V_2O_4 + CO = 1/4VC + 3/4CO_2$; $9 - 1/2VO + CO = 1/4V_2C + 3/4CO_2$; $10 - 1/5V_2O_5 + CO = 2/5V + CO_2$; $11 - 1/3VO + CO = 1/3VC + 2/3CO_2$; $12 - 1/2V_2O_4 + CO = VO + CO_2$; $13 - 2VC + CO_2 = V_2C + 2CO$; $14 - 1/3V_2O_5 + CO = 2/3VO + CO_2$; $15 - V_2O_4 + CO = V_2O_3 + CO_2$; $16 - 1/2V_2O_5 + CO = 1/2V_2O_3 + CO_2$; $17 - V_2O_5 + CO = V_2O_4 + CO_2$

и температуре, чем с образованием V₂C и ванадия. Анализ диаграммы (рис. 3) дополняет и хорошо согласовывается с проведенными выше термодинамическими расчетами (рис. 1, 2) и указывает на более высокую вероятность первоочередного образования карбида VC при углеродотермическом восстановлении по сравнению с V₂C. Появление же ванадия свободного в системе V-O-C в рассмотренном температурном интервале без параллельного присутствия карбидных фаз маловероятно.

С целью подтверждения термодинамических расчетов была проведена серия экспериментов по углеродотермическому восстановлению ванадийсодержащих таблеток на основе технически чистого оксида V_2O_5 в температурном интервале 1073-1473 К. Участки дифрактограмм полученных образцов приведены на рис. 4.

По результатам фазового анализа выявлено соединение, которое проявляет себя сильными дифракционными максимумами, наиболее интенсивные из которых имеют значения *d_{nki}*: 3,10; 1,91; 1,63.

Таблица 1 Количественное соотношение основных фаз (Si, Ca) V_xO_2 , V_2O_3 , VC в образцах, восстановленных при разных температурах

.	Температура, К						
Фазы, %	1073	1173	1273	1373	1473		
(Si, Ca)V _x O _z	84,2	66,1	14,8	0,0	0,0		
V ₂ O ₃	10,5	25,6	0,0	0,0	0,0		
VC	0,0	5,2	85,2 100,0		100,0		
С	5,3	3,1	0,0	0,0	0,0		

Пользуясь приведенными выше справочными источниками однозначно идентифицировать данное соединение не удалось. На основе результатов проведенных исследований и накопленного опыта выдвинуто предположение, что при относительно низких температурах в результате углеродотермического восстановления наряду с переходом V₂O₅ в V₂O₃ возникают условия для образования комплексного соединения оксида ванадия с кремний- и кальцийсодержащими примесями. Данное соединение далее условно обозначено формулой (Si, Ca)V₂O₅.

Из дифрактограмм (рис. 4) и соответствующей табл. 1 с результатами количественного анализа образца, восстановленного при 1073 К присутствия V₂O₅ не выявлено. Основой выступает (Si, Ca)V₂O₅ с 10,5 % V_2O_3 и 5,3 % С, что свидетельствует о достаточной температуре для протекания реакций понижения V2O5 до V2O3. Остаточный углерод указывает на необходимость повышения температуры для более полного восстановления. Созданные условия в большей мере благоприятны для образования оксидного соединения (Si, Ca)V_xO_z. С повышением температуры до 1173 К содержание V2O3 увеличивается до 25,6 % в продуктах восстановления с понижением концентрации (Si, Ca)V_vO_v и появляются карбиды ванадия в количестве 5,2 %. Данные изменения вместе со снижением содержания остаточного углерода до 3,1 % свидетельствуют о дальнейшем развитии процессов восстановления. В большей мере карбидообразование активизируется при 1273 К с повышением содержания в образцах карбидов ванадия до 85,2 % при уменьшении концентрации (Si, Ca) V_xO_z до 14,8 %. Пики, характеризующие углерод и V2O3, обнаружены не были. В образцах, подвергнутых углеродотермическому восстановлению при 1373 и 1473 К, прослеживается практически полный переход оксидов ванадия в карбиды ванадия. После тепловой обработки образцов при температурах от 1073 до 1473 К ванадий в несвязанном виде выявлен не был. Фазовый анализ подтверждает вышеприведенные термодинамические расчеты и указывает на большую склонность оксидов ванадия к карбидизации, чем металлизации и более благоприятные условия образования карбидов ванадия, чем V₂C при углеродотермическом восстановлении в исследуемом температурном интервале.

Фрактограммы и результаты рентгеновского микроанализа, полученные на растровом электронном

Рис. 5. Фрактограммы изломов образцов: ×3000 (а), ×4000 (б), ×1000 (в), ×5000 (а), восстановленных при температурах: 1073 К (а); 1273 К (б); 1473 К (в, а)

микроскопе (рис. 5, табл. 2) подтверждают вышеприведенные исследования. После восстановления при 1073 К структура образцов (рис. 4, *a*) слабоспеченная и состоит из дисперсных разупорядочено расположенных частичек разной формы. Наряду с ванадием в полученных спектрах *36-39* обнаружены примеси кремния и кальция. О неполном восстановлении свидетельствует остаточный кислород в количестве 12,18-14,77 %. Фрактограмма образца, восстановленного при 1273 К (рис. 5, *б*) свидетельствует о большей степени спекания. Наблюдается начало зарождения округлых частичек восстановленной ва-

Таблица 2

Результаты р	ентгеновского	микроанализа	образ-
цов, подвергн	иутых углеродо [.]	термическому	восста-
новлению при	различных тем	пературах	

Спектр	С	0	F	AI	Si	Са	V	Итого	
1073 K									
36	0,94	12,18	0,0	0,0	28,20	1,05	57,70	100,0	
37	1,85	14,77	0,0	0,0	30,20	2,39	50,80	100,0	
38	1,31	12,27	0,0	0,0	77,40	3,21	55,90	100,0	
39	2,83	13,87	0,0	0,0	73,60	1,08	8,61	100,0	
1273 K									
25	0,69	17,26	2,77	1,14	22,51	40,85	14,78	100,0	
26	1,45	12,57	1,30	0,82	14,04	9,81	60,00	100,0	
27	0,95	20,91	4,06	0,41	22,19	39,99	11,48	100,0	
28	1,71	10,16	0,82	0,86	12,67	7,80	65,97	100,0	
1473 K									
1	1,41	43,84	0,0	52,16	0,0	0,12	2,47	100,0	
2	3,89	5,89	15,33	0,31	1,19	6,82	66,57	100,0	
3	3,30	33,79	0,0	0,0	52,68	0,11	10,12	100,0	
5	0,93	2,13	0,0	0,0	0,24	0,21	96,49	100,0	
Примечание: данные по углероду приведены в сравнительных целях									

надийсодержащей фазы (области 26, 28). Частицы примесей имеют размытые очертания, что вызвано их спеканием и образованием более плотной и однородной структуры. В образце, восстановленном при 1473 К (рис. 5, в) обнаружены четко выраженные зоны восстановленной ванадийсодержащей фазы (спектры 2, 5). На дальнейшее развитие процессов восстановления указывает относительно невысокое содержание остаточного кислорода в точках 2 и 5 - 5,89 и 2,13 % соответственно. Фрактограмма ×5000 (рис. 5, г) позволяет более детально изучить геометрию данной структуры. Форма частиц - округлая, округлопродолговатая, размеры в среднем 0,3-0,7 мкм. Закрепляясь между собой, частицы образуют микропористую структуру. Также в образце были обнаружены частицы, преимущественно состоящие из сопутствующих примесей (спектры 1, 3).

Исследованиями установлено, что при углеродотермическом восстановлении оксидов ванадия реакции карбидообразования более вероятны, чем восстановлении до ванадия металлического (рис. 1-3), а вероятность получения безуглеродистого продукта в гетерогенной системе в интервале 300-2000 К ничтожно мала. Это также подтверждено проведенным качественным и количественным фазовыми анализами ванадийсодержащих таблеток, которые свидетельствуют о начале активной карбидизации при 1273 К и практически полном переходе оксидной составляющей в карбид ванадия после тепловой обработки при 1373 и 1473 К (рис. 4, табл. 1).

Определен механизм фазовых превращений при углеродотермичеком восстановлении ванадийсодержащих таблеток на основе V₂O₅. Экспериментально подтверждено, что процессы понижения оксидов и карбидообразования опережают металлизацию и проходят с повышением температуры по схеме

$$\begin{array}{c} {}^{1073 \text{ K}}_{2}\text{O}_{5} \rightarrow (\text{Si, Ca})\text{V}_{x}\text{O}_{z} + \text{V}_{2}\text{O}_{3} \rightarrow (\text{Si, Ca})\text{V}_{x}\text{O}_{z} + \text{V}_{2}\text{O}_{3} + \\ {}^{1273 \text{ K}}_{2} + \text{VC} \rightarrow \text{VC} + (\text{Si, Ca})\text{V}_{x}\text{O}_{z} \rightarrow \text{VC}. \end{array}$$

Проведенные исследования микроструктуры с использованием рентгеновского микроанализа также указывают на прохождение карбидообразования и не исключают присутствия выделений ванадия металлического как самостоятельной фазы (рис. 4, *e*; табл. 2, спектр 5).

Следовательно, углеродотермическое восстановление оксидного ванадийсодержащего сырья в исследуемом температурном интервале дает возможность перевести основную часть оксидов ванадия в карбидные соединения, обладающие повышенным восстановительным потенциалом и не склонные к сублимации. Присутствие остаточного углерода позволяет пройти довосстановление оксидной ванадийсодержащей составляющей непосредственно в жидкой ванне в процессе легирования, обеспечивая при этом дополнительную защиту от вторичного окисления, в то время как пористое «губчатое» строение полученного карбидизированного материала при использовании его в качестве легирующей добавки увеличивает поверхность контакта с жидким металлом, способствуя более быстрому растворению и снижению угара ванадия и других легирующих элементов [13]. Вместе с этим уменьшение времени легирования приводит к сокращению продолжительности плавки, и как следствие, экономии электроэнергии, повышая при этом степень усвоения ценных легирующих элементов и выход годного.

Выводы

Термодинамический анализ системы V-O-C и построение диаграмм равновесия влияния парциального давления монооксида углерода и CO₂ на ход реакций в температурном интервале 300-2000 К позволил выявить высокую вероятность повышения температуры первоочередного карбидообразования по отношению к процессам металлизации в гетеро-генной системе.

Восстановление оксидного ванадийсодержащего сырья углеродом в температурном интервале 1073-1473 К сопровождается образованием соединений (Si, Ca)V_xO_z, V₂O₃ и карбида VC, который впоследствии вместе со свободным углеродом и монооксидом углерода принимает активное участие в реакциях восстановления оксидов ванадия. Целевой продукт имеет пористое «губчатое» строение и состоит из карбида VC и сопутствующих примесей.

Проведенные исследования получили развитие в разработке технических решений по сокращению потерь ванадия и других легирующих элементов в результате угара. Так, при выплавке стали марки Р6М5Ф3-МП присадка 45-70 кг/т нового легирующего материала на основе окалины быстрорежущей стали привела к снижению массового расхода, (%): хрома на 2-3, молибдена – 3-4, вольфрама – 30-36 и ванадия 7-8 [14].

- 1. Острик П. Н., Гасик М. М., Пирог В. Д. Металлургия губчатых и порошковых лигатур. Киев: Техника, 1992. 128 с.
- 2. Использование нетрадиционных восстановителей в производстве металлизированных брикетов / В. В. Ожогин, О. В. Жерлицина, А. П. Бочек и др. // Сталь. – 2007. – № 1. – С. 96-99.
- 3. Григорьев С. М., Коляда В. П. Термодинамический анализ и математическое моделирование применительно к технологии получения губчатого ферромолибдена // Сталь. 1996. № 12. С. 32-36.
- Григорьев С. М., Григорьев Д. С., Карпунина М. С. Термодинамические особенности восстановления вольфрама и математическая модель в системе W-O-C применительно к технологии получения губчатого ферровольфрама // Чер. металлы. – 2006. – № 2. – С. 49-55.
- 5. Петрищев А. С., Григор'єв С. М. Термодинамічна рівновага в системі V-O-C металізації ванадієвмісної металооксидної сировини // Нові матеріали і технології в металургії та машинобудуванні. – 2010. – № 1. – С. 109-113.
- 6. Киреев В. А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. 492 с.
- Физико-химические свойства окислов / Г. В. Самсонов, А. Л. Борисова, Т. Л. Жидкова и др. М.: Металлургия, 1978. – 472 с.
- 8. Самсонов Г. В., Виницкий И. М. Тугоплавкие соединения. М.: Металлургия, 1976. 560 с.
- Горелик С. С., Расторгуев Л. Н., Скаков Ю. А. Рентгенографический и электронно-оптический анализ. М.: Металлургия, 1970. – 366 с.
- 10. *Миркин Л. И.* Справочник по рентгеноструктурному анализу поликристаллов. М.: Государственное издательство физико-математической литературы, 1961. 863 с.
- 11. Нарита К. Кристаллическая структура неметаллических включений в стали. М.: Металлургия, 1969. 166 с.
- 12. Практическая растровая электронная микроскопия / Под. ред. Дж. Гоулдстейна, Х. Яковица. М.: Мир, 1978. 656 с.
- 13. Григорьев С. М. Механизм некоторых фазовых и вещественных превращений при углеродотермическом восстановлении окалины быстрорежущей стали // Сталь. 1996. № 3. С. 65-69.
- 14. *Григорьев С. М.* Повышение эффективности утилизации легирующих элементов в производстве специальных сталей // Металлургия. 2001. № 4. С. 32-36.

Григор'єв С. М., Петрищев А. С.

Деякі фізико-хімічні закономірності вуглецевотермічного відновлення ванадію

Проведено термодинамічний аналіз вірогідності протікання реакцій в системі Cr-O-C в температурному інтервалі 300-2000 К. Досліджено фазові перетворення в процесі вуглецевотермічного відновлення оксида хрому Cr₂O₃. Виявлено високу вірогідність паралельного карбідоутворення поряд із металізацією. Фрактограми і результати рентгенівського мікроаналіза підтвердили та уточнили картину фазових перетворень. На основі комплекса досліджень побудовано схему перетворень в системі Cr-O-C в температурному інтервалі 1073-1473 К.

