### В. Б. Охотский

Национальная металлургическая академия Украины, Днепропетровск

# Всплески жидких фаз при верхней кислородной продувке

Составлена модель всплескообразования при верхней кислородной продувке, соответствующая экспериментальным данным.

Ключевые слова: конвертер, кислород, всплески

в конвертере являются значительным осложнением процесса, их изучали в технологиях сначала донной, а затем боковой и верхней продувки. Механизм их возникновения может иметь химическую и физическую (механическую) природу. В первом случае они связаны со степенью окисленности металла и шлака, а во втором — с механическим воздействием дутья на ванну, вызывающим всплески жидких фаз.

Так сложилось, что механизм всплескообразования изучали преимущественно японские исследователи как на холодных моделях [1-3], так и в тиглях с жидким металлом [4], обобщив экспериментальные данные выражениями размерного и безразмерного вида. В работе [5] на основе законов сохранения массы и энергии предоставлены экспериментальные данные о всплескообразовании, полученные на кислородных конвертерах (КК) верхнего дутья различной садки. Целесообразно проанализировать процесс с позиций теории волн ускорения [6].

#### Модель

Когда струя газа плотностью  $\rho_{\text{ex}}$ , истекающая со скоростью  $W_{\rm ex}$  из вынесенного над ванной на высоту  $h_c$  сопла диаметром  $d_{ex}$ , ударяется о поверхность жидкости плотностью  $\rho_{\scriptscriptstyle 1}$ , происходит всплеск, после чего возникающая волна ускорения  $\lambda_a$  вколачивает его назад в ванну со скоростью  $u_a = (a\lambda a / 2\pi) (a$ ускорение волны, которое зависит от параметров струи по [6], в течение времени движения  $\tau_{_{DB}}$ ). Это вызывает рост нового всплеска высотой  $h_{S1} = \lambda_a / \pi$ в течение времени  $\tau_{\text{рост}}$  [6] от дна зоны взаимодействия глубиной L, а при глубине ванны  $h_b < L$  – от днища конвертера. В конце этого роста струя распадается на капли, которые со скоростью  $u_a$  поднимаются еще на высоту  $h_{\mathbb{S}\,2} = u_a^2 \ / \ 2g \ \ (g-$  гравитационное ускорение), если пренебречь сопротивлением среды, например, газовой фазы в конвертере. Таким образом, формируется всплеск высотой

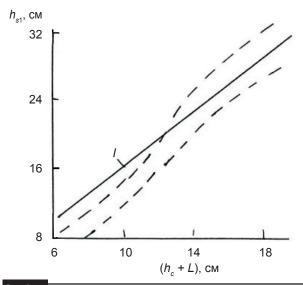
$$h_{s} = h_{s1} + h_{s2} . {1}$$

Используя закономерности теории волн ускорения [6], после подстановки и преобразований можно получить

$$h_s = \pi^{1/2} (h_c + x) n^{1/4} / c_D^{1/2} \cos \alpha + c_D^{1/2} \cos \alpha (\rho w^2)_{ex} / 2\pi^{1/2} g \rho_1 h^{3/4},$$
 (2)

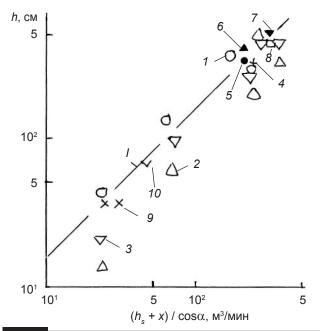
где x — меньшая из двух величин: L или  $h_{_{b}},\ n$  и  $C_{_{D}}-n_{_{0}}$  [6].

### Холодное моделирование


Холодное моделирование осуществляли вдуванием кислорода через сопло диаметром 0,80 мм под давлением 2-12 атм из баллона, расположенного на высоте  $\overline{h}_c$  = 0-60 калибров, в водяную ванну вместимостью 30 л. При этом фиксировали глубину зоны взаимодействия L и высоту сплошного всплеска  $h_{\rm st}$ . На рис. 1 показано, что область экспериментальных данных (обведено пунктиром) близка или совпадает с линией I, отвечающей высоте сплошного всплеска (первое слагаемое) в модели (2).

#### Горячее моделирование

В экспериментальных данных работы [5] выделены случаи, когда всплеск состоял: только из шлака – его высота номинировалась как  $h_{_{\rm ш}}$ ; из шлака и металла – высота которых составляла  $h_{_{\rm шм}}$  и  $h_{_{\rm мш}}$ ; чисто металлический  $h_{_{\rm m}}$  (из-за сворачивания шлака). Глубину зоны взаимодействия рассчитывали по [5].


На рис. 2 представлены точки усредненных по абсциссе и ординате данных для 50-кг (A), 1- (Б), 28-50- (В) и 120-тонных (Г) конвертеров.

Для лабораторного конвертера (A) случаев чисто металлических всплесков не было, так как шлак формировался только за счет окисления примесей чугуна и не сворачивался благодаря высокой концентрации оксидов железа. Чисто металлических всплесков не было и тогда, когда глубина ванны  $h_{\rm B}$  была меньше рассчитываемой величины L. Для



ис. 1. Парамет

Параметры всплесков при холодном моделировании

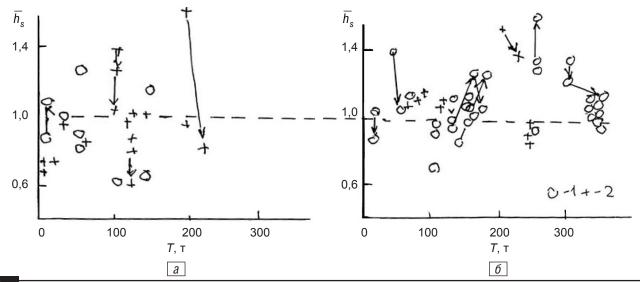


**РІС. 2.** Параметры всплесков при горячем моделировании: 1-4 –  $h_{\rm ui}$ ,  $h_{\rm min}$ ,  $h_{\rm$ 

остальных конвертеров высота чисто металлических всплесков  $h_{_{\rm M}}$  была максимальной из-за отсутствия сопротивления шлаковой фазы при сворачивании шлака. Для всех конвертеров высота чисто шлаковых всплесков  $h_{_{\rm M}}$  была несколько больше, чем  $h_{_{\rm MM}}$  и  $h_{_{\rm MM}}$  из-за вспенивания шлака. Изменение числа сопел в фурме 120-тонных конвертеров (3-5) не вызывало принципиальных отличий в расположении опытных точек.

Высота всплесков, в зависимости от их фазового состава, была несколько выше рассчитанной по первому слагаемому уравнения (2) линии I ( $h_{_{\rm II}}$ ,  $h_{_{\rm M}}$ ) или ниже ее ( $h_{_{\rm IIM}}$ ,  $h_{_{\rm MID}}$ ), однако соответствие составленной модели экспериментальным данным можно считать удовлетворительным.

На рис. 2 нанесены величины высоты всплесков, вызвавших заметалливание фурм 28-35- и

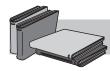

120-тонных конвертеров, которые также соответствуют рассчитанной линии *I*. Экспериментальные данные высоты всплесков металла при продувке чугуна кислородом в лабораторном конвертере [4] близки к данным 50-кг конвертера и отвечают модели (2). Ей соответствуют и данные о высоте всплесков при продувке кислородом мартеновской ванны.

Высота конвертера верхнего кислородного дутья  $H_{_{\rm K}}$  должна быть достаточной для того, чтобы возникающие при продувке всплески не вылетали за его пределы.

Для отечественных и зарубежных конвертеров по модели (2) рассчитали величины  $h_{\rm s}$  и отношение  $\overline{h_{\rm s}} \equiv h_{\rm s}$  /  $H_{\rm k}$ , которые представлены на рис. 3, в зависимости от садки конвертера T. В тех случаях, когда можно было проследить эволюцию в параметрах работы конвертера, соответствующие точки соединены линиями, а стрелки указывают направление изменений.

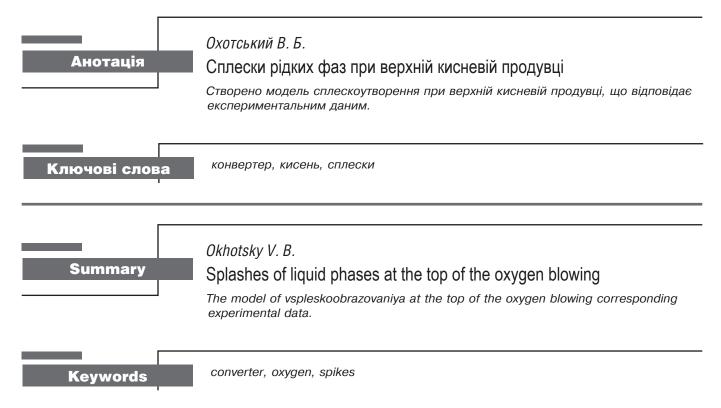
При использовании одноканальных фурм ( $n_c=1$ ) в 50-х начале 60-х годов прошлого века и позже для конвертеров T<10 т (рис. 3, a) заметна тенденция перехода от значительных величин  $\overline{h}_s$ , когда всплески вылетали за пределы конвертера к  $\overline{h}_s\leq 1$ . Только в особых случаях передела фосфористых чугунов (даже при  $\overline{h}_s<1$ ) наблюдается ее дальнейшее уменьшение.

В отечественной практике в 80-х годах прошлого века в процессе применения многоканальных фурм (рис. 3,  $\delta$ ), вызванном стремлением максимизировать их производительность, наряду с такой же тенденцией ( $\overline{h_s} \to 1$ ) для конвертеров средней садки (100-200 т) после периода уменьшения  $\overline{h_s}$  отмечен ее рост с одновременным увеличением садки. На сегодняшний день, в условиях избытка металла на внешних рынках и ограниченной загруженности производственных возможностей, эта тенденция, вызывающая увеличение потерь металла, очевидно, требует пересмотра. Для отечественных 350-тонных конвертеров величиной  $\overline{h_s}$  учтены эти обстоятельства так же, как для зарубежных 250-тонных.




Соотношение  $\bar{h}_s$  при одноканальных (а) и многоканальных (б) фурмах: 1, 2 — отечественные и зарубежные кислородные конвертеры

В целом, модель (2) можно использовать как для анализа существующей технологии, так и оценки новых проектных решений.


#### Выводы

Составлена модель образования всплесков жидких фаз при верхней кислородной продувке.



# ЛИТЕРАТУРА

- 1. Shimada M. et al. // TtH. 1958. V. 44, № 9. S. 1056-1058.
- 2. Ishikawa H., Mizoguchi S., Segawa K. // TtH. 1972. V. 58, № 1. S. 76-84.
- 3. Nakao Y., Mimura M., Takeda Y. et al. // Trans. iSi Jap. 1982. V. 22, № 12. S. 384.
- 4. Kitamura S., Okohira K. // TtH. 1990. V. 76, № 2. S. 199-206.
- 5. Охотский В. Б. // Изв. вузов. Чер. металлургия. 1977. № 6. С. 26-32.
- 6. Adelberg M. // AIAA J. 1967. V. 5, № 8. P. 1408-1415.



Поступила 05.02.13

## К сведению читателей и подписчиков!

## Телефон редакции

журнала «Металл и литье Украины»:

(044) 424-04-10