Г. Л. Горынин¹, Ю. В. Немировский²

МЕТОД ЖЕСТКОСТНЫХ ФУНКЦИЙ В ЗАДАЧАХ РАСЧЕТА МНОГОСЛОЙНЫХ СТЕРЖНЕЙ ПРИ ТЕМПЕРАТУРНЫХ НАГРУЗКАХ

Рассмотрен метод решения пространственной задачи термоупругости о деформировании слоистого анизотропного стержня. Выведены обыкновенные дифференциальные уравнения термоупругого изгиба. Получены условия отсутствия кромочного эффекта в стержне при сезонных изменениях температуры.

Сфера использования композитных слоистых стержней в качестве несущих конструкций под действием механических и температурных нагрузок постоянно расширяется. Основная особенность слоистых стержней состоит в том, что в результате взаимодействия слоев напряженное состояние стержня имеет существенно пространственный характер, т.е. заранее до расчета нельзя пренебречь какими-то компонентами тензора напряжений, все шесть компонент в общем случае могут вносить равновеликий вклад в напряженное состояние и тем самым способствовать нарушению того или иного условия прочности. Эта особенность с особой очевидностью проявляется в явлении расслоения слоистых конструкций вследствие кромочного эффекта, т.е. концентрации касательных и нормальных напряжений вблизи продольных кромок композитов.

Целью настоящей работы является разработка метода решения пространственной задачи термоупругости об изгибе слоистого стержня без введения каких-либо упрощающих гипотез о допустимости пренебрежения какими-либо компонентами тензора напряжений или вектора перемещений.

Постановка задачи. Рассмотрим стержень с неизменным по длине по-

перечным сечением, имеющим произвольное очертание и состоящим из произвольного числа упругих слоев, выполненных из различных анизотропных материалов (рис. 1). Граница между слоями в сечении не обязательно прямолинейна, а может быть произвольной кривой, в том числе и замкнутой. Для краткости изложения упругие продольные стержни, посредством которых осуществлено армирование, также будем называть слоями.

Выберем начало координат на верхней поверхности стержня. Слои нумеруем сверху вниз: *i* – номер текущего слоя, *s* –

число слоев. На боковой поверхности стержня действуют распределенные поперечные нагрузки q_x , q_y соответственно в направлениях осей Ox и Oy. Пусть $(u_x)_i, (u_y)_i, (u_z)_i$ – перемещения точек стержня в направлениях осей Ox, Oy, Oz соответственно; $(\sigma_{\alpha\beta})_i$ – компоненты тензора напряжения на *i*-м слое; $[\sigma_{\alpha\alpha}]_i^j$ – скачок контактных напряжений, действующих на границу раздела *i*-го и *j*-го слоев в направлении α , $\alpha \in \{x, y, z\}$; n_x , n_y – компоненты вектора единичной нормали к поверхности стержня либо к границе раздела слоев.

Пусть h – высота стержня (линейный размер вдоль оси x) и L – его длина, \tilde{E} – характерное значение модуля упругости. Будем рассматривать

только такие стержни, для которых величина $\varepsilon = h/L$ является малым параметром. Перейдем к безразмерным переменным и величинам, для простоты не меняя их обозначения:

$$\begin{aligned} x \leftrightarrow \frac{x}{h}, \quad y \leftrightarrow \frac{y}{h}, \quad z \leftrightarrow \frac{z}{L}, \quad u_{\alpha} \leftrightarrow \frac{u_{\alpha}}{h}, \quad (E_{\alpha\beta\phi\psi})_{i} \leftrightarrow (E_{\alpha\beta\phi\psi})_{i} \frac{1}{\tilde{E}}, \\ (\sigma_{\alpha\beta})_{i} \leftrightarrow (\sigma_{\alpha\beta})_{i} \frac{1}{\tilde{E}}, \quad q_{\alpha} \leftrightarrow q_{\alpha} \frac{1}{\tilde{E}}, \quad P \leftrightarrow \frac{P}{\tilde{E}}, \quad \{\alpha, \beta, \phi, \psi\} \subset \{x, y, z\}. \ (1) \end{aligned}$$

Требуем выполнения уравнений равновесия внутри стержня и на его поверхности всюду, за исключением торцов:

$$\frac{\partial(\sigma_{\alpha x})_{i}}{\partial x} + \frac{\partial(\sigma_{\alpha y})_{i}}{\partial y} + \varepsilon \frac{\partial(\sigma_{\alpha z})_{i}}{\partial z} = 0, \qquad \alpha \in \{x, y, z\},$$
(2)

$$(\sigma_{\alpha x})_i n_x + (\sigma_{\alpha y})_i n_y = q_\alpha, \qquad \alpha \in \{x, y, z\}, \qquad q_z = 0.$$
(3)

На границе между слоями стержня должны быть непрерывны перемещения и контактные напряжения:

$$[(\sigma_{\alpha n})_i]_i^j = 0, \quad (u_{\alpha})_j = (u_{\alpha})_i, \quad \{i, j\} \subset \{1, \dots, s\}, \quad \alpha \in \{x, y, z\}.$$
(4)

Считаем, что материал каждого слоя является анизотропным упругим материалом. Закон Дюамеля – Неймана зависимости напряжений от деформаций и температуры Ψ для *i*-го слоя содержит 21 независимую упругую константу ($E_{\alpha\beta\phi\psi}$)_{*i*} и 6 констант линейного температурного расширения

 $(\alpha_{\phi\psi})_i$ и имеет вид [2]:

$$(\sigma_{\alpha\beta})_i = \sum_{\{\varphi,\Psi\}\subset\{x,y,z\}} (E_{\alpha\beta\varphi\Psi})_i ((e_{\varphi\Psi})_i - (\alpha_{\varphi\Psi})_i \Psi), \quad \{\alpha,\beta\}\subset\{x,y,z\}.$$
(5)

Задача (2)-(5) является полукраевой, так как на торцах стержня краевые условия не заданы [1, 5]. Если к уравнениям (2)-(5) добавить условия на торцах стержня, заданные как интегральные характеристики, либо в перемещениях, либо в напряжениях, то получим пространственную краевую задачу термоупругости в постановке Сен-Венана.

Считаем, что поверхностные нагрузки, действующие на стержень в поперечном направлении, имеют расщепленный вид, а продольная нагрузка равна нулю:

$$q_{\alpha}(\Gamma, z) = f_{\alpha}(\Gamma)p_{\alpha}(z), \qquad \oint_{\Gamma} f_{\alpha}(\Gamma) \, d\Gamma = 1, \qquad \alpha \in \{x, y\}, \qquad q_z = 0, \qquad (6)$$

где Γ – множество граничных точек поперечного сечения балки; $f_{\alpha}(\Gamma)$ – функции распределения нагрузки по периметру сечения; $p_{\alpha}(z)$ – суммарные нагрузки в поперечном сечении, для них, как это следует из формул (6), справедливы равенства

$$p_{\alpha}(z) = \oint_{\Gamma} q_{\alpha} d\Gamma, \qquad \alpha \in \{x, y\}$$

Считаем, что температура внутри стержня также имеет расщепленный вид:

$$\Psi(x,y,z) = \Theta(x,y)T(z), \qquad \frac{1}{F}\int_{F}\Theta(x,y)\,dF = 1\,, \tag{7}$$

где $\Theta(x, y)$ — функция распределения температуры по площади сечения F; T(z) — средняя температура в поперечном сечении, для нее, как это следует из формулы (7), справедливо равенство

$$T(z) = \frac{1}{F} \int_{F} \Psi(x, y, z) \, dF \,. \tag{8}$$

Процедура расщепления в общем виде. Примем, в соответствии с общей идеей метода жесткостных функций (другое название метода - метод асимптотического расщепления) [1], что перемещения и напряжения точек стержня являются линейной комбинацией дифференциальных операторов, действующих в продольном направлении z:

$$(u_{z}^{\eta})_{i}^{(n)} = \sum_{k=0}^{n+1} (U_{z}^{\eta})_{i}^{(k)} \frac{d^{k} \eta^{(n)}}{dz^{k}} \varepsilon^{k} ,$$

$$(u_{\alpha}^{\eta})_{i}^{(n)} = \sum_{k=0}^{n+2} (U_{\alpha}^{\eta})_{i}^{(k)} \frac{d^{k} \eta^{(n)}}{dz^{k}} \varepsilon^{k} , \qquad \alpha \in \{x, y\} ,$$

$$(\sigma_{zz}^{\eta})_{i}^{(n)} = \sum_{k=0}^{n} (\tau_{zz}^{\eta})_{i}^{(k)} \frac{d^{k} \eta^{(n)}}{dz^{k}} \varepsilon^{k} ,$$

$$(\sigma_{z\alpha}^{\eta})_{i}^{(n)} = \sum_{k=0}^{n+1} (\tau_{z\alpha}^{\eta})_{i}^{(k)} \frac{d^{k} \eta^{(n)}}{dz^{k}} \varepsilon^{k} ,$$

$$(\sigma_{\alpha\beta}^{\eta})_{i}^{(n)} = \sum_{k=0}^{n+2} (\tau_{\alpha\beta}^{\eta})_{i}^{(k)} \frac{d^{k} \eta^{(n)}}{dz^{k}} \varepsilon^{k} ,$$

$$(10)$$

где $\eta^{(n)}(z)$ – некоторая функция, зависящая от продольной переменной z; $(U^{\eta}_{\alpha})^{(k)}_i$, $(\tau^{\eta}_{\alpha\beta})^{(k)}_i$ – жесткостные функции вектора перемещения и тензора напряжений, зависящие только от переменных поперечного сечения x и $y\,;\,k$ – жесткостной номер, n– номер асимптотического приближения.

Кроме того, предположим, что для средней температуры, также справедливо представление в виде суммы дифференциальных операторов, аналогичное (9) и (10):

$$T(z) = \sum_{k=0}^{n+2} T_{\eta}^{(k)} \, \frac{d^k \eta^{(n)}}{dz^k} \, \varepsilon^k \, . \tag{11}$$

Из равенства (10) для компонент $(\sigma_{\alpha\beta})_i^{(n)},$ формул (6) и соотношений на поверхности (3) следует, что выполняются дифференциальные равенства, связывающие суммарные поперечные нагрузки и функцию $\eta^{(n)}$:

$$p_{\alpha} = \sum_{k=0}^{n+2} (B_{\alpha}^{\eta})^{(k)} \frac{d^k \eta^{(n)}}{dz^k} \varepsilon^k, \qquad \alpha \in \{x, y\},$$

$$(12)$$

где $(B^{\eta}_{\alpha})^{(k)}$ – некоторые константы.

В формулах (10) использованы жесткостные функции тензора напряжения, связанные с жесткостными функциями вектора перемещения следующим образом:

(7.)

Краевые задачи в сечении стержня. Подставим формулы (10) в уравнения равновесия (2) и приравняем нулю коэффициенты при одинаковых степенях малого параметра:

$$\frac{\partial (\tau_{\alpha x}^{\eta})_{i}^{(k)}}{\partial x} + \frac{\partial (\tau_{\alpha y}^{\eta})_{i}^{(k)}}{\partial y} + (\tau_{\alpha z}^{\eta})_{i}^{(k-1)} = 0, \qquad \alpha \in \{x, y, z\}.$$
(14)

Точно также, подставляя формулы (9) в условия (3) на боковой поверхности стержня и приравнивая нулю коэффициенты при одинаковых производных функции $\eta_0^{(n)}$, получим условия для жесткостных функций на границе поперечного сечения стержня:

$$(\tau_{\alpha x}^{\eta})_{i}^{(k)}n_{x} + (\tau_{\alpha y}^{\eta})_{i}^{(k)}n_{y} = (B_{\alpha}^{\eta})^{(k)}f_{\alpha}(\Gamma), \quad \alpha \in \{x, y, z\}, \quad (B_{z}^{\eta})^{(k)} = 0.$$
 (15)

Кроме того, подставив формулы (9), (10) в условия сопряжения слоев (4), получим условия сопряжения жесткостных функций на границах между слоями стержня

$$(\tau_{\alpha x}^{\eta})_{i}^{(k)} n_{x} + (\tau_{\alpha y}^{\eta})_{i}^{(k)} n_{y} = (\tau_{\alpha x}^{\eta})_{j}^{(k)} n_{x} + (\tau_{\alpha y}^{\eta})_{j}^{(k)} n_{y} ,$$

$$(U_{\alpha}^{\eta})_{i}^{(k)} = (U_{\alpha}^{\eta})_{i}^{(k)}, \qquad \{i, j\} \subset \{1, \dots, s\} .$$

$$(16)$$

Уравнения (14) совместно с условиями (15), (16) и равенствами (13) образуют систему рекуррентных краевых задач для жесткостных функций $(U^{\eta}_{\alpha})^{(k)}_{i}$. Проинтегрировав каждое из уравнений (14) по сечению стержня и используя условия (15), (16), получим необходимые условия разрешимости краевых задач (13)–(16):

$$(B^{\eta}_{\alpha})^{(k)} = -\sum_{i=1}^{s} \int_{F_{i}} (\tau^{\eta}_{\alpha z})_{i}^{(k-1)} dF, \qquad \alpha \in \{x, y\},$$
(17)

$$\sum_{i=1}^{s} \int_{F_{i}} (\tau_{zz}^{\eta})_{i}^{(k-1)} dF = 0, \qquad (18)$$

где F_i – площадь *i*-го слоя. В дальнейшем величины $(B^{\eta}_{\alpha})^{(k)}$ будем называть жесткостями сечения слоистой балки, а величины $T^{(k)}_{\eta}$ – температурными жесткостями этого сечения. Если формулу (13) подставить в равенство (18), то получим выражение для вычисления температурной жесткости через интегралы от жесткостных функций. Краевые задачи (13)–(16) образуют систему рекуррентных краевых задач: сначала решаем задачу при k = 0, затем на основе ее решения – при k = 1 и т.д.

Краевые задачи в сечении стержня при k = 0. Рассмотрим задачу (13)-(16) при жесткостном номере k = 0. Для этого выпишем все уравнения системы (14) и учтем, что индекс k не может быть отрицательным. В результате получим систему уравнений

$$\frac{\partial(\tau_{\alpha x}^{\eta})_{i}^{(0)}}{\partial x} + \frac{\partial(\tau_{\alpha y}^{\eta})_{i}^{(0)}}{\partial y} = 0, \qquad \alpha \in \{x, y, z\}, \qquad i \in \{1, \dots, s\}.$$
(19)

Из формулы (17) следует, что константы $(B^{\eta}_{\alpha})^{(0)}$ тождественно равны нулю, с учетом этого равенство (15) при k = 0 принимает вид

$$(\tau_{\alpha x}^{\eta})_{i}^{(0)}n_{x} + (\tau_{\alpha y}^{\eta})_{i}^{(0)}n_{y} = 0, \qquad \alpha \in \{x, y, z\}, \qquad i \in \{1, \dots, s\}.$$
(20)

Равенства (16) и (13) остаются неизменными:

$$\begin{aligned} (\tau_{\alpha x}^{\eta})_{i}^{(0)} n_{x} + (\tau_{\alpha y}^{\eta})_{i}^{(0)} n_{y} &= (\tau_{\alpha x}^{\eta})_{j}^{(0)} n_{x} + (\tau_{\alpha y}^{\eta})_{j}^{(0)} n_{y}, \\ (U_{\alpha}^{\eta})_{i}^{(0)} &= (U_{\alpha}^{\eta})_{j}^{(0)(0)} \qquad \{i, j\} \subset \{1, \dots, s\}, \end{aligned}$$
(21)
$$(\tau_{\alpha \beta}^{\eta})_{i}^{(0)} &= \sum_{\{\varphi, \psi\} \subset \{x, y\}} (E_{\alpha \beta \varphi \psi})_{i} \left(\frac{1}{2} \left(\frac{\partial (U_{\varphi}^{\eta})_{i}^{(0)}}{\partial \psi} + \frac{\partial (U_{\psi}^{\eta})_{i}^{(0)}}{\partial \varphi} \right) - (\alpha_{\varphi \psi})_{i} \Theta T_{\eta}^{(0)} \right) + \\ &+ (E_{\alpha \beta z z})_{i} ((U_{z}^{\eta})_{i}^{(k-1)} - (\alpha_{z z})_{i} \Theta T_{\eta}^{(k)}) + \\ &+ \sum_{\psi \in \{x, y\}} (E_{\alpha \beta \psi z})_{i} \left(\frac{1}{2} \frac{\partial (U_{z}^{\eta})_{i}^{(0)}}{\partial \psi} - (\alpha_{\psi z})_{i} \Theta T_{\eta}^{(0)} \right), \\ &\{\alpha, \beta\} \subset \{x, y, z\}. \end{aligned}$$

Краевая задача (19)-(22) имеет три независимых решения, каждому из этих решений соответствует своя функция η, поэтому для этих функций вводим особые обозначения:

$$\begin{split} \eta &= v_x : \quad (U_x^{v_x})_i^{(0)} = 1, \qquad (U_y^{v_x})_i^{(0)} = 0, \qquad (U_z^{v_x})_i^{(0)} = 0, \qquad (\tau_{\alpha\beta}^{v_x})_i^{(0)} = 0, \\ T_{v_x}^{(0)} &= 0, \qquad \{\alpha, \beta\} \subset \{x, y, z\} ; \\ \eta &= v_y : \qquad (U_x^{v_y})_i^{(0)} = 0, \qquad (U_y^{v_y})_i^{(0)} = 1, \qquad (U_z^{v_y})_i^{(0)} = 0, \qquad (\tau_{\alpha\beta}^{v_y})_i^{(0)} = 0, \\ T_{v_y}^{(0)} &= 0, \qquad \{\alpha, \beta\} \subset \{x, y, z\} ; \\ \eta &= v_z : \qquad (U_x^{v_z})_i^{(0)} = 0, \qquad (U_y^{v_z})_i^{(0)} = 0, \qquad (U_z^{v_z})_i^{(0)} = 1, \qquad (\tau_{\alpha\beta}^{v_z})_i^{(0)} = 0, \\ T_{v_z}^{(0)} &= 0. \qquad (23) \end{split}$$

Из равенств (23) и (17) следует равенство нулю констант:

$$(B_{\alpha}^{v_{\phi}})^{(1)} = 0, \qquad (B_{\alpha}^{v_{\phi}})^{(2)} = 0, \qquad \{\alpha, \phi\} \subset \{x, y, z\}.$$
(24)

При $k \geq 1\,$ решение краевых задач (13)–(16) определено с точностью до константы, поэтому введем условие нормировки

$$\sum_{i=1}^{s} \int_{F_{i}} (U_{\alpha}^{v_{\varphi}})_{i}^{(k)} dF = 0, \quad \{\alpha, \varphi\} \subset \{x, y, z\}, \quad k \ge 1.$$
(25)

Продолжая решать краевые задачи (13)–(16) при k = 1, получим, что

$$(U_z^{\nu_{\beta}})_i^{(1)} = -(\beta - a_{\beta}), \qquad \beta \in \{x, y\}, \qquad k \ge 1.$$
(26)

Подставляя результаты в формулы (9), (10), получим следующие выражения для напряжений и перемещений:

$$\begin{split} (u_{\alpha}^{v_{\varphi}})_{i}^{(n)} &= v_{\varphi}^{(n)} \delta_{\alpha}^{\varphi} + \sum_{k=1}^{n+2} (U_{\alpha}^{v_{\varphi}})_{i}^{(k)} \frac{d^{k} v_{\varphi}^{(n)}}{dz^{k}} \varepsilon^{k} , \\ (u_{z}^{v_{\beta}})_{i}^{(n)} &= -(\beta - a_{\beta}) \frac{dv_{\beta}^{(n)}}{dz} \varepsilon + \sum_{k=2}^{n+1} (U_{z}^{v_{\beta}})_{i}^{(k)} \frac{d^{k} v_{\beta}^{(n)}}{dz^{k}} \varepsilon^{k} , \\ (u_{z}^{v_{z}})_{i}^{(n)} &= v_{z}^{(n)} + \sum_{k=1}^{n+1} (U_{z}^{v_{z}})_{i}^{(k)} \frac{d^{k} v_{z}^{(n)}}{dz^{k}} \varepsilon^{k} , \end{split}$$

$$\begin{aligned} (\sigma_{zz}^{v_{\phi}})_{i}^{(n)} &= \sum_{k=2}^{n} (\tau_{zz}^{v_{\phi}})_{i}^{(k)} \frac{d^{k} v_{\phi}^{(n)}}{dz^{k}} \varepsilon^{k} ,\\ (\sigma_{z\alpha}^{v_{\phi}})_{i}^{(n)} &= \sum_{k=2}^{n+1} (\tau_{z\alpha}^{v_{\phi}})_{i}^{(k)} \frac{d^{k} v_{\phi}^{(n)}}{dz^{k}} \varepsilon^{k} ,\\ (\sigma_{\alpha\beta}^{v_{\phi}})_{i}^{(n)} &= \sum_{k=2}^{n+2} (\tau_{\alpha\beta}^{v_{\phi}})_{i}^{(k)} \frac{d^{k} v_{\phi}^{(n)}}{dz^{k}} \varepsilon^{k} , \quad \phi \in \{x, y, z\}, \quad \{\alpha, \beta\} \subset \{x, y\} , \end{aligned}$$
(27)

здесь δ_x^{φ} — символ Кронекера. Исходная пространственная задача теории термоупругости является линейной, поэтому будем считать, что напряжения и перемещения являются суммой трех найденных типов решений:

$$(\sigma_{\alpha\beta})_{i}^{(n)} = \sum_{\varphi \in \{x, y, z\}} (\sigma_{\alpha\beta}^{v_{\varphi}})_{i}^{(n)} ,$$

$$(u_{\alpha})_{i}^{(n)} = \sum_{\varphi \in \{x, y, z\}} (u_{\alpha}^{v_{\varphi}})_{i}^{(n)} , \qquad \{\alpha, \beta\} \subset \{x, y, z\}, \qquad i \in \{1, \dots, s\}.$$
(28)

Уравнения термо-поперечного изгиба слоистого анизотропного стержня. Из равенств (11), (12), (27), (28) следует, что три неизвестные функции $v_x^{(n)}$, $v_y^{(n)}$, $v_z^{(n)}$ подчиняются системе трех обыкновенных дифференциальных уравнений термо-поперечного изгиба:

$$\begin{split} \sum_{k=4}^{n+2} & \left((B_{\alpha}^{v_x})^{(k)} \frac{d^k v_x^{(n)}}{dz^k} + (B_{\alpha}^{v_y})^{(k)} \frac{d^k v_y^{(n)}}{dz^k} \right) \varepsilon^k + \sum_{k=3}^{n+2} (B_{\alpha}^{v_z})^{(k)} \frac{d^k v_z^{(n)}}{dz^k} \varepsilon^k = p_{\alpha}(z) \,, \\ & \alpha \in \{x, y\} \,, \end{split}$$

$$\sum_{k=2}^{n+2} \left(T_{v_x}^{(k)} \frac{d^k v_x^{(n)}}{dz^k} + T_{v_y}^{(k)} \frac{d^k v_y^{(n)}}{dz^k} \right) \varepsilon^k + \sum_{k=1}^{n+2} T_{v_z}^{(k)} \frac{d^k v_z^{(n)}}{dz^k} \varepsilon^k = T(z) \,. \tag{29}$$

Эти функции $v_x^{(n)}$, $v_y^{(n)}$, $v_z^{(n)}$ в соответствии с равенствами (26) и (28) обладают таким физическим смыслом: они являются средними перемещениями вдоль координатных осей точек поперечного сечения, т.е. являются перемещениями поперечного сечения как единого целого в продольном и поперечных направлениях:

$$v_{\alpha}^{(n)} = \frac{1}{F} \sum_{i=1}^{s} \int_{F_{i}} (u_{\alpha})_{i}^{(n)} dF, \qquad \alpha \in \{x, y, z\}.$$
(30)

Коэффициенты системы (29) в соответствии с формулами (17), (18) являются интегральными характеристиками жесткостных функций. Таким образом, они определяются на основе решений краевых задач в сечении стержня (13)-(16).

Порядок системы (29) зависит от номера асимптотического приближения n и равен 3n + 8, однако в работе [1] исследовались подобные системы и было показано, что в действительности физически значимыми являются не все решения, а только решения, регулярно зависящие от параметра ε , их количество для данной системы равняется 10. Поэтому, несмотря на формальный рост порядка дифференциальных уравнений с ростом асимптотического приближения, количество краевых условий на торцах, требуемых для замыкания задачи, остается неизменным и равняется десяти. Следует отметить, что первое слагаемое для продольных перемещений $(u_z^{v_x})_i^{(n)}$, $(u_z^{v_y})_i^{(n)}$ в формулах (27) соответствует гипотезе плоских сечений Бернулли – Эйлера, на основе которой строится классическая теория изгиба однородных изотропных стержней. Эти слагаемые содержат первые степени малого параметра ε , поэтому можно говорить, что на основе пространственной теории упругости получено обоснование гипотезы Бернулли – Эйлера как первого асимптотического приближения для закона деформирования многослойного анизотропного стержня с произвольным расположением слоев при температурных нагрузках.

Представленный подход позволяет заменить решение пространственной задачи теории термоупругости для слоистых балок (2)–(5) на решение системы трех обыкновенных уравнений (29) и краевых задач в сечении балки.

Ортотропный материал. Рассмотрим стержень, состоящий из ортотропных слоев, причем оси ортотропии для каждого из слоев стержня параллельны осям системы координат *Oxyz*, где ось *Oz* – продольная ось стержня. В этом случае закон Дюамеля – Неймана (5) принимает вид

$$(\sigma_{\lambda\lambda})_{i} = \sum_{\eta \in \{x, y, z\}} (E_{\lambda\eta})_{i} ((e_{\eta\eta})_{i} - (\alpha_{\eta})_{i} \Psi), \qquad i \in \{1, \dots, s\},$$

$$(\sigma_{\lambda\beta})_{i} = 2(\mu_{\lambda\beta})_{i} (e_{\lambda\beta})_{i}, \qquad \{\lambda, \beta\} \subset \{x, y, z\}, \qquad \lambda \neq \beta,$$
(31)

где $(E_{\lambda\lambda})_i$, $(E_{z\beta})_i$, $(E_{xy})_i$, $(\mu_{xy})_i$, $(\mu_{z\beta})_i$, $(\alpha_{\eta})_i$ – девять независимых упругих констант и три коэффициента температурного расширения. Выражение для коэффициентов температурных напряжений принимает следующий вид:

$$(\chi_{\lambda})_{i} = \left((E_{\lambda x})_{i} (\alpha_{x})_{i} + (E_{\lambda y})_{i} (\alpha_{y})_{i} + (E_{\lambda z})_{i} (\alpha_{z})_{i} \right), \qquad \lambda \in \{x, y, z\}.$$
(32)

Формулы для жесткостных функций (13) в соответствии с равенствами (31) и (32) запишем так:

$$\begin{aligned} (\tau_{xy}^{v_{\varphi}})_{i}^{(k)} &= (\mu_{xy})_{i} \left(\frac{\partial (U_{x}^{v_{\varphi}})_{i}^{(k)}}{\partial y} + \frac{\partial (U_{y}^{v_{\varphi}})_{i}^{(k)}}{\partial x} \right), \\ (\tau_{z\beta}^{v_{\varphi}})_{i}^{(k)} &= (\mu_{z\beta})_{i} \left(\frac{\partial (U_{z}^{v_{\varphi}})_{i}^{(k)}}{\partial \beta} + (U_{\beta}^{v_{\varphi}})_{i}^{(k-1)} \right), \\ (\tau_{\lambda\lambda}^{v_{\varphi}})_{i}^{(k)} &= \sum_{\beta \in \{x,y\}} (E_{\lambda\beta})_{i} \frac{\partial (U_{\beta}^{v_{\varphi}})_{i}^{(k)}}{\partial \beta} + (E_{\lambda z})_{i} (U_{z}^{v_{\varphi}})_{i}^{(k-1)} - (\chi_{\lambda})_{i} \Theta T_{v_{\varphi}}^{(k)}, \\ &\{\lambda, \varphi\} \subset \{x, y, z\}, \qquad \beta \in \{x, y\}. \end{aligned}$$

С учетом структуры равенств (33) краевая задача (19)–(22) в сечении для каждого характеристического номера $k \ge 1$ распадается на две краевые задачи.

Первая краевая задача в сечении:

- система уравнений

$$\frac{\partial (\tau_{\alpha x}^{v_{\varphi}})_{i}^{(k)}}{\partial x} + \frac{\partial (\tau_{\alpha y}^{v_{\varphi}})_{i}^{(k)}}{\partial y} + (\tau_{\alpha z}^{v_{\varphi}})_{i}^{(k-1)} = 0, \qquad \alpha \in \{x, y\};$$
(34)

- условия на боковой поверхности стержня

$$(\tau_{\alpha x}^{v_{\phi}})_{i}^{(k)}n_{x} + (\tau_{\alpha y}^{v_{\phi}})_{i}^{(k)}n_{y} = (B_{\alpha}^{v_{\phi}})^{(k)}f_{\alpha}^{q}(\Gamma), \qquad \alpha \in \{x, y\};$$
(35)

 условия сопряжения характеристических функций на границах между слоями плиты

$$(\tau_{\alpha x}^{v_{\varphi}})_{i}^{(k)}n_{x} + (\tau_{\alpha y}^{v_{\varphi}})_{i}^{(k)}n_{y} = (\tau_{\alpha x}^{v_{\varphi}})_{j}^{(k)}n_{x} + (\tau_{\alpha y}^{v_{\varphi}})_{j}^{(k)}n_{y},$$

$$(U_{\alpha}^{v_{\varphi}})_{i}^{(k)} = (U_{\alpha}^{v_{\varphi}})_{j}^{(k)}, \qquad \{i,j\} \subset \{1,\dots,s\}.$$
(36)

Необходимые условия разрешимости краевой задачи (34)-(36):

$$(B_{\alpha}^{v_{\varphi}})^{(k)} = -\sum_{i=1}^{s} \int_{F_{i}} (\tau_{\alpha z}^{v_{\varphi}})_{i}^{(k-1)} dF = \sum_{i=1}^{s} \int_{F_{i}} \alpha(\tau_{z z}^{v_{\varphi}})_{i}^{(k-2)} dF, \quad \alpha \in \{x, y\}.$$
(37)

Вторая краевая задача в сечении:

– уравнение

$$\frac{\partial (\tau_{zx}^{v_{\phi}})_{i}^{(k)}}{\partial x} + \frac{\partial (\tau_{zy}^{v_{\phi}})_{i}^{(k)}}{\partial y} + (\tau_{zz}^{v_{\phi}})_{i}^{(k-1)} = 0 ; \qquad (38)$$

- условия на боковой поверхности стержня

$$(\tau_{zx}^{v_{\phi}})_{i}^{(k)}n_{x} + (\tau_{zy}^{v_{\phi}})_{i}^{(k)}n_{y} = 0; \qquad (39)$$

 условия сопряжения характеристических функций на границах между слоями плиты

$$(\tau_{zx}^{v_{\phi}})_{i}^{(k)}n_{x} + (\tau_{zy}^{v_{\phi}})_{i}^{(k)}n_{y} = (\tau_{zx}^{v_{\phi}})_{j}^{(k)}n_{x} + (\tau_{zy}^{v_{\phi}})_{j}^{(k)}n_{y},$$

$$(U_{z}^{v_{\phi}})_{i}^{(k)} = (U_{z}^{v_{\phi}})_{j}^{(k)}, \qquad \{i, j\} \subset \{1, \dots, s\}.$$
(40)

Необходимое условие разрешимости краевой задачи (38)-(40):

$$\sum_{i=1}^{s} \int_{F_i} (\tau_{zz}^{v_{\varphi}})_i^{(k)} dF = 0.$$
(41)

Жесткостные функции компонент тензора напряжений и вектора перемещений связаны между собой формулами (33). Краевая задача (33)–(37) – задача на нахождение неизвестных функций $(U_x^{v_{\phi}})_i^{(k)}$, $(U_y^{v_{\phi}})_i^{(k)}$. Краевая задача (38)–(41), (33) – задача на нахождение неизвестных функций $(U_z^{v_{\phi}})_i^{(k)}$. Продолжая рассматривать первую и вторую краевые задачи при больших значениях характеристических чисел k, можно установить, что следующие жесткостные функции и жесткости тождественно равны нулю

при нечетных числах k:

$$\begin{split} (\tau_{\alpha\beta}^{v_{\phi}})_{i}^{(k)} &= (\tau_{zz}^{v_{\phi}})_{i}^{(k)} = (U_{\alpha}^{v_{\phi}})_{i}^{(k)} = 0, \qquad (\tau_{\alpha z}^{v_{z}})_{i}^{(k)} = (U_{z}^{v_{z}})_{i}^{(k)} = 0, \\ (B_{\alpha}^{v_{\phi}})^{(k)} &= (B_{z}^{v_{z}})^{(k)} = 0, \qquad \{\alpha, \beta, \phi\} \subset \{x, y\}; \end{split}$$

при четных числах k:

$$(\tau_{\alpha z}^{v_{\phi}})_{i}^{(k)} = (U_{z}^{v_{\phi}})_{i}^{(k)} = (\tau_{\alpha \beta}^{v_{z}})_{i}^{(k)} = (\tau_{z z}^{v_{z}})_{i}^{(k)} = (U_{\alpha}^{v_{z}})_{i}^{(k)} = 0 , (B_{z}^{v_{\phi}})^{(k)} = (B_{\alpha}^{v_{z}})^{(k)} = 0, \qquad \{\alpha, \phi\} \subset \{x, y\} .$$

$$(42)$$

Уравнения термо-поперечного изгиба (29) для ортотропных слоистых стержней с учетом равенств (42) принимают вид

$$\sum_{r=2}^{N+1} \left((B_{\alpha}^{v_{x}})^{(2r)} \frac{d^{2r} v_{x}^{(N)}}{dz^{2r}} + (B_{\alpha}^{v_{y}})^{(2r)} \frac{d^{2r} v_{y}^{(N)}}{dz^{2r}} \right) \varepsilon^{2r} + \sum_{r=2}^{N+1} (B_{\alpha}^{v_{z}})^{(2r-1)} \frac{d^{2r-1} v_{z}^{(N)}}{dz^{2r-1}} \varepsilon^{2r-1} = p_{\alpha}, \quad \alpha \in \{x, y\},$$

$$151$$

$$\sum_{r=1}^{N+1} \left(T_{v_x}^{(2r)} \frac{d^{2r} v_x^{(N)}}{dz^{2r}} + T_{v_y}^{(2r)} \frac{d^{2r} v_y^{(N)}}{dz^{2r}} \right) \varepsilon^{2r} + \sum_{r=1}^{N+1} T_{v_z}^{(2r-1)} \frac{d^{2r-1} v_z^{(N)}}{dz^{2r-1}} \varepsilon^{2r-1} = T(z).$$
(43)

Задача о сезонных изменениях температуры. Рассмотрим слоистый стержень с сечением, симметричным относительно оси Ox (рис. 1). Выясним вопрос о величине и характере напряжений, возникающих в нем при сезонных изменениях температуры. Для этого будем считать, что поверхностные и сосредоточенные силы отсутствуют, а температура стержня изменилась во всех его точках на величину Ψ_0 относительно недеформированного состояния. Тогда в соответствии с формулами (7) получаем

$$T(z) = T_0 = \Psi_0, \qquad \Theta(x, y) = 1.$$
 (44)

В силу симметрии сечения стержня и температуры в сечении уравнение (43) при $\alpha = y$ выродится в тождественный нуль. Из общей теории таких задач [1], известно что при постоянной нагрузке (поверхностной и температурной) первое асимптотическое приближение является точным решением задачи (2)–(5). Поэтому рассмотрим приближение N = 1. Тогда система (43) принимает такой вид (верхний индекс для обозначения номера приближения в дальнейшем опускаем):

4

$$(B_x^{v_x})^{(4)} \frac{d^4 v_x}{dz^4} \varepsilon^4 + (B_x^{v_z})^{(3)} \frac{d^3 v_z}{dz^3} \varepsilon^3 = 0,$$

$$\sum_{r=1}^2 T_{v_x}^{(2r)} \frac{d^{2r} v_x}{dz^{2r}} \varepsilon^{2r} + \sum_{r=1}^2 T_{v_z}^{(2r-1)} \frac{d^{2r-1} v_z}{dz^{2r-1}} \varepsilon^{2r-1} = T_0.$$
 (45)

Среди всех возможных решений системы (45) физически значимыми являются только решения, регулярно зависящие от малого параметра ε [1]. Поэтому система (45) может быть проинтегрирована и сведена к следующей системе уравнений:

$$(B_{x}^{v_{x}})^{(4)} \frac{d^{2}v_{x}}{dz^{2}} \varepsilon^{2} + (B_{x}^{v_{z}})^{(3)} \frac{dv_{z}}{dz} \varepsilon = 0,$$

$$T_{v_{x}}^{(2)} \frac{d^{2}v_{x}}{dz^{2}} \varepsilon^{2} + T_{v_{z}}^{(1)} \frac{dv_{z}}{dz} \varepsilon = T_{0},$$

$$\frac{d^{2}v_{x}}{dz^{2}} \varepsilon^{2} = -\frac{(B_{x}^{v_{z}})^{(3)}T_{0}}{(B_{x}^{v_{x}})^{(4)}T_{v_{z}}^{(1)} - (B_{x}^{v_{z}})^{(3)}T_{v_{x}}^{(2)}},$$

$$dv_{x} = (B^{v_{x}})^{(4)}T_{0}$$
(46)

$$\frac{dv_z}{dz} \varepsilon = \frac{(B_x^{v_x})^{(1)} T_0^0}{(B_x^{v_x})^{(4)} T_{v_z}^{(1)} - (B_x^{v_z})^{(3)} T_{v_x}^{(2)}}.$$
(47)

Формулы (27), (28) совместно с выражениями (42) при N=1 дают такие выражения для напряжений:

$$(\sigma_{\alpha\beta})_{i} = (\tau_{\alpha\beta}^{v_{x}})_{i}^{(2)} \frac{d^{2}v_{x}}{dz^{2}} \varepsilon^{2} + (\tau_{\alpha\beta}^{v_{z}})_{i}^{(1)} \frac{dv_{z}}{dz} \varepsilon,$$

$$(\sigma_{\alphaz})_{i} = 0, \qquad \{\alpha, \beta\} \subset \{x, y\},$$
(48)

$$(\sigma_{zz})_i = (\tau_{zz}^{v_x})_i^{(2)} \frac{d^2 v_x}{dz^2} \varepsilon^2 + (\tau_{zz}^{v_z})_i^{(1)} \frac{d v_z}{dz} \varepsilon.$$
(49)

Формулы для напряжений (48), (49) справедливы для любого слоистого стержня с симметричным сечением относительно вертикальной оси Ox, состоящего из ортотропных материалов. Они дают точное решение пространственной задачи термоупругости в постановке Сен-Венана, но для того чтобы ими воспользоваться, необходимо решить две краевые задачи в сечении (33)-(37): одну задачу – при k = 2 и $\varphi = x$, вторую задачу – при k = 1 и $\varphi = z$. В общем случае эти задачи не имеют аналитических решений и требуют численного счета. Рассмотрим особый случай, когда компоненты контактных напряжений ($\sigma_{\alpha\beta}$)_{*i*} при { α,β } \subset {x,y} равны нулю. Для этого в соответствии с формулами (48) потребуем выполнения равенств

$$(\tau_{xx}^{v_{\varphi}})_{i}^{(k)} = 0, \qquad (\tau_{yy}^{v_{\varphi}})_{i}^{(k)} = 0, \qquad (\tau_{xy}^{v_{\varphi}})_{i}^{(k)} = 0.$$
(50)

Из первых двух равенств (50) и формул (33) следует выполнение таких двух равенств:

$$\frac{\partial (U_{\lambda}^{v_{\varphi}})_{i}^{(k)}}{\partial \lambda} = -(v_{\lambda z})_{i} (U_{z}^{v_{\varphi}})_{i}^{(k-1)} + ((\alpha_{\lambda})_{i} + (v_{\lambda z})_{i} (\alpha_{z})_{i}) T_{v_{\varphi}}^{(k)}, \quad \lambda \in \{x, y\} .$$
(51)

Проинтегрируем эти равенства и потребуем условия непрерывности жесткостных функций на межслойных границах (36). Это условие в общем случае не может быть выполнено, оно выполняется при условии равенства следующих упругих и термоупругих констант для всех слоев слоистой балки:

$$\mathbf{v}_{xz} = (\mathbf{v}_{xz})_i, \qquad \mathbf{v}_{yz} = (\mathbf{v}_{yz})_i, \qquad i \in \{1, \dots, s\},$$
 (52)

и

$$\xi_x = (\xi_x)_i, \qquad \xi_y = (\xi_y)_i, \qquad i \in \{1, \dots, s\},$$
(53)

где использованы следующие обозначения:

(4)

$$(\xi_{\lambda})_{i} = (\alpha_{\lambda})_{i} + (v_{\lambda z})_{i} (\alpha_{z})_{i}, \qquad \lambda \in \{x, y\}.$$
(54)

Интегралы от равенства (51) в этом случае будут иметь вид

$$\begin{aligned} (U_{\lambda}^{v_{z}})_{i}^{(1)} &= (-v_{\lambda z} + \xi_{\lambda} T_{v_{z}}^{(1)})\lambda, \qquad \lambda \in \{x, y\}, \\ (U_{y}^{v_{x}})_{i}^{(2)} &= v_{yz} y(x - a_{x}) + \zeta_{yx} T_{v_{x}}^{(2)} y, \\ (U_{x}^{v_{x}})_{i}^{(2)} &= 0.5(-v_{yz} y^{2} + v_{xz} (x - a_{x})^{2}) + \zeta_{x} T_{v_{x}}^{(2)} (x - a_{x}), \quad i \in \{1, \dots, s\}.$$
(55)

Из функций (55) с учетом формул (33) следует, что третье равенство (50) выполняется тождественно.

Условия (52) и (53) равносильны отсутствию напряжений контактных напряжений между слоями слоистой балки. Для стержней, поперечное сечение которых вытянуто в направлении, параллельном слоям, известно явление кромочного эффекта, когда уровень контактных напряжений вблизи кромок сечения принимает большое значение и поэтому возможно кромочное расслоение. При выполнении условий (52) и (53) такие напряжения отсутствуют и, следовательно, отсутствует кромочный эффект. В работе [6] условие (52) было также получено при чисто механическом нагружении и было названо условием кромочной совместимости слоев. По аналогии условия (52) и (53), взятые вместе, могут быть названы условиями кромочной термосовместимости слоев при сезонных изменениях температур.

Может показаться, что условие (53) носит тривиальный характер, а именно: оно сводится при выполнении условия (52) к равенству коэффициентов температурного расширения $(\alpha_{\beta})_i$, $\beta \in \{x, y, z\}$, для всех слоев. Но

важно иметь в виду, что и условие (52), и условие (53) в точности для разных материалов никогда не выполняются, всегда приближенно с некоторой точностью. Мера нарушения этих условий – это отличие от нуля разности между величинами $(\xi_{\lambda})_i$ для соседних слоев, и может оказаться, что эта разность существенно меньше, чем разность между самими коэффициентами температурного расширения, т.е. может оказаться, что материалы в большей степени совместимы, чем это могло показаться из рассмотрения только их коэффициентов температурного расширения (α_{β}).

Подставив равенства (51) в равенства (33) при $\alpha = \beta = z$ при условиях (52) и (53), получим следующие формулы для нахождения жесткостных функций:

$$(\tau_{zz}^{v_x})_i^{(2)} = -(E_z)_i ((x - a_x) + (\alpha_z)_i T_{v_x}^{(2)}),$$

$$(\tau_{zz}^{v_z})_i^{(1)} = (E_z)_i (1 - (\alpha_z)_i T_{v_z}^{(1)}), \qquad i \in \{1, \dots, s\}.$$
(56)

Подставим равенства (56) в условие (18) и получим выражение для вычисления температурных жесткостей:

$$T_{v_x}^{(2)} = -\frac{\sum_{i=1}^{s} \int_{F_i} (E_z)_i (x - a_x) dF}{\sum_{i=1}^{s} \int_{F_i} (E_z)_i (\alpha_z)_i dF}, \qquad T_{v_z}^{(1)} = \frac{\sum_{i=1}^{s} \int_{F_i} (E_z)_i dF}{\sum_{i=1}^{s} \int_{F_i} (E_z)_i (\alpha_z)_i dF}.$$
 (57)

Окончательно формулы (48), (49) совместно с формулами (37), (47), (50), (52), (53), (56), (57) и позволяют определить все напряжения в слоистом стержне произвольного сечения с произвольным расположением слоев при сезонном изменении температуры в явном виде.

Если же условия кромочной термосовместимости (52), (53) не выполнены, то формулы (48), (49) остаются справедливыми, но для нахождения жесткостных функций $(\tau_{\alpha\beta}^{v_z})_i^{(1)}$, $(\tau_{\alpha\beta}^{v_x})_i^{(2)}$ и температурных жесткостей $T_{v_x}^{(2)}$, $T_{v_z}^{(1)}$ потребуется численно решить две краевых задачи (33)–(37): одну задачу – при k = 2 и $\varphi = x$, другую задачу – при k = 1 и $\varphi = z$.

Выводы. Представленный метод жесткостных функций позволяет решать пространственную задачу теории термоупругости для слоистых балок (2)-(5) в постановке Сен-Венана путем замены исходной задачи в частных производных на задачу решения системы трех обыкновенных уравнений термо-поперечного изгиба (29) (для ортотропных материалов – система (45)) и краевых задач в сечении балки. Метод имеет и практическое, и теоретическое значение, в частности, на его основе получено условие кромочной термосовместимости слоев балки при сезонных изменениях температуры. Данный подход принципиально отличается от традиционных подходов к решению задач термоупругости, изложенных, например, в классических работах [2, 3] и современных работах [4, 7-9].

- 1. Горынин Г. Л., Немировский Ю. В. Пространственные задачи изгиба и кручения слоистых конструкций. Метод асимптотического расщепления. Новосибирск: Наука, 2004. 408 с.
- 2. Новацкий В. Теория упругости. Москва: Мир, 1975. 872 с.
- Подстригач Я. С., Ломакин В. А., Коляно Ю. М. Термоупругость тел неоднородной структуры. – Москва: Наука, 1984. – 368 с.
- Aghalovyan L. A. On the classes of deformable one-layer and multilayer thin bodies solvable by the asymptotic method // Mech. Compos. Mater. - 2011. - 47, No. 1. - P. 59-72.

То же: Агаловян Л. А. О классах задач для деформируемых однослойных и многослойных тонких тел, решаемых асимптотическим методом // Механика композитных материалов. – 2011. – **47**, № 1. – С. 85–102.

- Gorynin G. L., Nemirovskii Yu. V. Deformation of laminated anisotropic bars in the three-dimensional statement. 1. Transverse-longitudinal bending and edge compatibility condition // Mech. Compos. Mater. 2009. 45, No. 3. P. 257-280. То же: Горынин Г. Л., Немировский Ю. В. Деформирование слоистых анизо-тропных стержней в пространственной постановке. 1. Продольно-поперечный изгиб и условие кромочной совместимости // Механика композитных материалов. 2009. 45, № 3. С. 379-410.
 Gorynin G. L., Nemirovskii Yu. V. Deformation of laminated anisotropic bars in
- Gorynin G. L., Nemirovskii Yu. V. Deformation of laminated anisotropic bars in the three-dimensional statement. 2. Effect of edge boundary layers on the stressstrain properties of the composite // Mech. Compos. Mater. - 2010. - 46, No. 1. -P. 130-143.

То же: Горынин Г. Л., Немировский Ю. В. Деформирование слоистых анизотропных стержней в пространственной постановке. **2.** Влияние кромочных пограничных слоев на напряженно-деформационные свойства композита // Механика композитных материалов. – 2009. – **46**, № 1. – С. 130–143.

- Kulkarni M. R., Brady R. P. A model of global thermal conductivity of laminated carbon/carbon composities // Compos. Sci. Technol. - 1997. - 57, No. 2. -P. 277-285.
- Mall S., Conley D. S. Modeling and validation of composite patch repair to cracked thick and thin metalling panels // Composites. A. - 2009. - 40, No. 9. -P. 1331-1339.
- Muddasani Maithru, Savan Sourah, Multiana Anastasia. Thermo-viscoelastic response of multilayered polymer composites. Experimental and numerical studies // Compos. Struct. - 2010. - 92, No. 11. - P. 2641-2652.

МЕТОД ЖОРСТКІСНИХ ФУНКЦІЙ В ЗАДАЧАХ РОЗРАХУНКУ БАГАТОШАРОВИХ СТЕРЖНІВ ПРИ ТЕМПЕРАТУРНИХ НАВАНТАЖЕННЯХ

Розглянуто метод розв'язання просторової задачі термопружності про деформування шаруватого анізотропного стержня. Виведено звичайні диференціальні рівняння термопружного згину. Отримано умови відсутності крайового ефекту в стержні при сезонних змінах температури.

METHOD OF RIGIDITY FUNCTIONS IN PROBLEMS OF CALCULATION OF MULTILAYERED BARS AT TEMPERATURE LOADINGS

The method of the solution of spatial thermoelasticity problem on deformation of a layered anisotropic bar is considered. The ordinary differential equations of thermoelastic bending are deduced. The conditions of edge effect absence in a bar are obtained at seasonal changes of temperature.

¹ Сургут. гос. ун-т, Сургут, Россия,	
² Ин-т теорет. и прикл. механики	Получено
им. С. А. Христиановича СО РАН, Новосибирск, Россия	20.03.12