Д. М. Лила

МЕХАНИЗМ ПОТЕРИ УСТОЙЧИВОСТИ ВРАЩАЮЩЕГОСЯ СОСТАВНОГО ПЛОСКОГО КРУГОВОГО ДИСКА

Предложен способ исследования методом малого параметра механизма потери устойчивости вращающегося составного плоского кругового диска. Получено в первом приближении характеристическое уравнение относительно критического радиуса пластической зоны. Численно найдены значения критической угловой скорости вращения при различных параметрах диска.

Введение. Приближенный аналитический метод малого параметра [7], имеющий определенную аналогию с одним из вариантов эффективного в целом ряде задач механики сплошных сред [2] метода возмущения формы границы [3], нашел применение в работе [10] о неустойчивости [13] простейших упругих [8] радиально неоднородных быстро вращающихся сплошных дисков [1, 17, 18]. Полученные здесь в первом приближении решения позволяют рассчитать характерные критические величины (радиус пластической зоны [4-6, 9-12, 14, 16] и угловую скорость вращения), сопровождающие переход двухсекционного плоского кругового диска, неоднородного по материалу, в одно из неустойчивых состояний: приобретение новой плоской эксцентричной формы с пластическим состоянием в центре исследуемого диска или приобретение самоуравновешенной плоской формы с центральной пластической круговой зоной либо кольцевой пластической зоной, примыкающей к границе раздела секций диска, или совокупностью двух указанных пластических зон. Открытой проблемой остается выяснение конкретного механизма развития неустойчивости диска, геометрические и физические параметры которого известны. В связи с этим не менее актуальной является и задача установления контрольных (бифуркационных) значений изменяемого управляющего параметра - точек качественного изменения сверхскоростной динамики вращающихся дисков с учетом их упругопластических свойств.

Целью данной работы является обоснованное построение общей схемы исследования сценариев неустойчивости вращающегося составного диска и определение соответствующих исходной конфигурации параметров данной механической системы критических величин. Предложенный алгоритм апробирован на конкретных числовых примерах в п. 4.

1. Постановка задачи. Объектом исследования является быстро вращающийся составной плоский круговой диск *D*. Возрастающие с увеличением скорости вращения диска центробежные нагрузки влекут значительное его радиальное растяжение. Это приводит к появлению и значительному росту пластических зон вплоть до критических размеров, при которых диск принимает новую плоскую равновесную форму.

Диск \mathcal{D} выполнен в виде единого целого диска путем жесткого соединения однородного и изотропного сплошного кругового диска \mathcal{D}_1 радиуса a и однородного изотропного кругового кольцевого диска [15] \mathcal{D}_2 с внутренним радиусом a и внешним радиусом b. Предел текучести материала диска \mathcal{D}_1 обозначим через σ_{s1} , модуль упругости – E_1 , плотность – γ_1 , коэффициент Пуассона – v_1 . Одноименные параметры материала диска \mathcal{D}_2 обозначим соответственно через σ_{s2} , E_2 , γ_2 и v_2 . Обозначения σ_s , E и v, употребляемые безотносительно к номеру дисковой секции, будем использовать без указания каких-либо индексов.

Остановимся на эксцентричной (и мало отличающейся от круговой) форме потери устойчивости диска \mathcal{D} , когда уравнение внешней его границы с точностью до бесконечно малых первого порядка представимо в виде

 $r = b + d\cos\theta, \qquad d = \mathrm{const},$

или

 $\rho = 1 + \delta \cos \theta \,,$

и самоуравновешенной (также мало отличающейся от круговой) форме потери устойчивости

 $r = b + d \cos n\theta, \qquad n \ge 2,$

или

 $\rho = 1 + \delta \cos n\theta \,,$

где $\rho = r/b$ — безразмерный текущий радиус; δ — малый параметр; $n \in \mathbb{N}$; θ — полярный угол. Предмет исследований составляет механизм развития неустойчивости. Из результатов работы [10] очевидно, что он может реализоваться по таким сценариям:

- 1°) D_{1(e)}D_{2(e)} эксцентричная форма неустойчивости, развивающаяся при появлении пластического состояния в центре исследуемого диска (рис. 1);
- **2°**) $\mathcal{D}_{1(pe)}\mathcal{D}_{2(e)}$ центральная круговая область радиуса $r_{01*} < a$ диска \mathcal{D}_1 пластическая, а внешняя кольцевая область диска \mathcal{D}_1 и весь диск \mathcal{D}_2 в момент потери устойчивости пребывают в упругом состоянии (рис. 2);
- **3°**) $\mathcal{D}_{1(e)}\mathcal{D}_{2(pe)}$ кольцевая пластическая зона радиуса $r_{02*} > a$ примыкает в \mathcal{D}_2 к окружности r = a, а диск \mathcal{D}_1 полностью упругий (рис. 3);
- **4°**) $\mathcal{D}_{1(pe)}\mathcal{D}_{2(pe)}$ две пластические зоны соответствующих радиусов (рис. 4).

Постоянную угловую скорость вращения диска \mathcal{D} обозначим через ω , а текущий радиус пластической зоны невозмущенного диска – r_{01} или/и r_{02} . Считая параметры исследуемого диска заданными, требуется, указав однозначно конкретный механизм перехода \mathcal{D} в неустойчивое состояние (из 1°-4°), определить критический радиус $r_0 = r_{0*}$ пластической зоны и соответствующую величину критической угловой скорости вращения $\omega = \omega_*$.

2. Невозмущенное упругое состояние. При небольших значениях угловой скорости ω объемные силы вызывают умеренное радиальное растяжение вращающегося диска. При этом как \mathcal{D}_1 , так и \mathcal{D}_2 пребывают в упругом состоянии. Определим напряженное состояние, чтобы далее иметь возможность зафиксировать момент появления пластического состояния и установить его локализацию.

В диске \mathcal{D}_1 от
несенные к пределу текучести σ_{s2} касательное и радиальное
 напряжения имеют вид

$$\sigma_{\theta\theta} = C_1 - \frac{\sigma_1(3\nu_1 + 1)}{8\sigma_{s2}}\rho^2, \qquad (1)$$

$$\sigma_{rr} = C_1 - \frac{\sigma_1(v_1 + 3)}{8\sigma_{s2}}\rho^2,$$
(2)

где $\sigma_1 = \gamma_1 b^2 \omega^2$, а постоянная C_1 подлежит определению. Для диска \mathcal{D}_2 аналоги соотношений (1), (2) таковы:

$$\sigma_{\theta\theta} = C_2 \left(1 + \frac{1}{\rho^2} \right) + \frac{\sigma_2(\nu_2 + 3)}{8\sigma_{s2}} - \frac{\sigma_2(3\nu_2 + 1)}{8\sigma_{s2}} \rho^2 , \qquad (3)$$

$$\sigma_{rr} = C_2 \left(1 - \frac{1}{\rho^2} \right) + \frac{\sigma_2 (\nu_2 + 3)}{8 \sigma_{s2}} (1 - \rho^2), \tag{4}$$

где $\sigma_2 = \gamma_2 b^2 \omega^2$, а C_2 – неизвестная постоянная. Найти константы C_1 и C_2 можно из условий сопряжения на окружности $\rho = \beta = a / b$: непрерывности радиального усилия (в исследуемом случае плоского диска – радиального напряжения σ_{rr}) и радиального смещения $u = \sigma_s \rho(\sigma_{\theta\theta} - v\sigma_{rr})/E$ (отнесенного к b), т. е. из условий

$$\sigma_{rr}(\beta+0) = \sigma_{rr}(\beta-0), \qquad (5)$$

$$\sigma_{\theta\theta}(\beta+0) = \varepsilon \sigma_{\theta\theta}(\beta-0) + k \sigma_{rr}(\beta-0), \qquad (6)$$

где $\varepsilon = E_2/E_1$; $k = v_2 - \varepsilon v_1$. Применив соотношения (5), (6) к зависимостям (1)-(4), из получившейся системы уравнений находим

$$C_{1} = \frac{b_{1}(1+\beta^{2}) + b_{2}(1-\beta^{2})}{1+\beta^{2} + (\varepsilon+k)(1-\beta^{2})}, \qquad C_{2} = \frac{(b_{1}(\varepsilon+k) - b_{2})\beta^{2}}{1+\beta^{2} + (\varepsilon+k)(1-\beta^{2})}, \tag{7}$$

где

$$\begin{split} b_1 &= \left\{ \sigma_1(\nu_1 + 3)\beta^2 + \sigma_2(\nu_2 + 3)(1 - \beta^2) \right\} / (8\sigma_{s2}) \,, \\ b_2 &= \left\{ \sigma_1 \left(\epsilon(3\nu_1 + 1) + k(\nu_1 + 3) \right) \beta^2 + \sigma_2 \left(\nu_2 + 3 - (3\nu_2 + 1)\beta^2 \right) \right\} / (8\sigma_{s2}) \,. \end{split}$$

Теперь с учетом (7) на основании (1) и (3) нетрудно получить необходимые в дальнейшем для сравнения с единицей и фиксации момента рождения пластических зон величины

$$T_1 = s^{-1} \sigma_{\theta \theta}(0) = s^{-1} C_1' x', \qquad (8)$$

$$T_2 = \sigma_{\theta\theta}(\beta + 0) = (C'_2(1 + \beta^{-2}) + \nu_2 + 3 - (3\nu_2 + 1)\beta^2)x', \qquad (9)$$

где

$$C_1' = \frac{b_1'(1+\beta^2) + b_2'(1-\beta^2)}{1+\beta^2 + (\varepsilon+k)(1-\beta^2)}, \qquad C_2' = \frac{(b_1'(\varepsilon+k) - b_2')\beta^2}{1+\beta^2 + (\varepsilon+k)(1-\beta^2)},$$

113

$$\begin{split} x' &= \frac{\omega^2}{8q_2^2}, \qquad q_2 = \frac{1}{b}\sqrt{\frac{\sigma_{s_2}}{\gamma_2}}, \qquad s = \frac{\sigma_{s_1}}{\sigma_{s_2}}, \\ b'_1 &= \Gamma(\nu_1 + 3)\beta^2 + (\nu_2 + 3)(1 - \beta^2), \qquad \Gamma = \frac{\gamma_1}{\gamma_2}, \\ b'_2 &= \Gamma[\varepsilon(3\nu_1 + 1) + k(\nu_1 + 3)]\beta^2 + [\nu_2 + 3 - (3\nu_2 + 1)\beta^2]. \end{split}$$

3. Основной результат. Предположим, что имеем возможность медленно увеличивать скорость вращения диска \mathcal{D} . Вместе с ней будет возрастать переменная x' – квадрат обезразмеренной угловой скорости, $x' = \frac{\omega^2}{8q_2^2}$. Соответственно будут возрастать и T_1 , T_2 . Зафиксировав значение $\omega = \omega_0$, при котором одно из неравенств

$$T_1 < 1, T_2 < 1$$
 (10)

превратится в равенство, следующим осуществим шаг, предписанный ветвлением рассматриваемой схемы.

Пусть, к примеру,

$$T_1 = 1.$$
 (11)

Это означает появление пластического состояния в центре диска \mathcal{D} (рис. 1). Известно [4, 7, 9], прежде всего, что в таком случае ($\beta_{0*} = 0$) может реализоваться механизм **1**° потери устойчивости исследуемого диска по эксцентричной форме с

$$\begin{split} &\omega_0^2 = \omega_*^2 = -24sq_2^2 \{1+\beta^2+(\epsilon+k)(1-\beta^2)\} \{m(1+\beta^2)+\ell(1-\beta^2)\}^{-1}, \\ &\ell = -\{v_2+3+\beta^2 \{\Gamma[\epsilon(3v_1+1)+k(v_1+3)]-(3v_2+1)\}\}, \\ &m = -3\{v_2+3+\beta^2[\Gamma(v_1+3)-(v_2+3)]\}. \end{split}$$

Если действительно произойдет потеря устойчивости таким образом, то критической следует считать скорость ω_0 . Вместе с этим ввиду того, что достижение контрольного значения ω_0 скорости вращения опасно только для дисков с появившимся при изготовлении или насадке на вал эксцентриситетом [4, 5] либо другими, не учтенными в модели факторами, в общем случае сохраняется возможность увеличивать ω до больших цифр. В предлагаемой схеме это целесообразно делать, увеличивая от нулевого значения текущий радиус β_0 пластической зоны $\mathcal{D}_{1(p)}$ и ожидая реализации механизмов **2°** (рис. 2) или **4°** (рис. 4) самоуравновешенной формы потери устойчивости (см., например, [4, 5]). Для этого, медленно меняя β_0 , следует зафиксировать значение

$$\begin{split} \omega^2 &= \omega_1^2 = -24sq_2^2 \big\{ 1 + \beta^2 + (\epsilon + k)(1 - \beta^2) \big\} \times \\ &\times \big\{ (1 + \beta^2) \big[m + \Gamma(3\nu_1 + 1)(2 - \beta^{-2}\beta_0^2)\beta_0^2 \big] + \\ &+ (1 - \beta^2) \big[\ell + \Gamma(3\nu_1 + 1) \big\{ 2(\epsilon + k) + \beta^{-2}(\epsilon - k)\beta_0^2 \big\} \beta_0^2 \big] \big\}^{-1}, \end{split}$$

при достижении которого превратится в тождество характеристическое уравнение

$$\tilde{\Delta}(\beta_0) = 0, \qquad (12)$$

в котором $\tilde{\Delta}(eta_0)$ — определитель матрицы $(a_{ij})_{i,j=1}^4$ с

$$\begin{split} a_{11} &= 1 + A_1 d_I^{**}(\beta, 1) \sigma_{s2}/E_2, \qquad a_{12} &= A_1 d_{II}^{**}(\beta, 1) \sigma_{s2}/E_2, \\ a_{13} &= A_1 d_{III}^{**}(\beta, 1) \sigma_{s2}/E_2, \qquad a_{14} &= A_1 d_{IV}^{**}(\beta, 1) \sigma_{s2}/E_2, \\ a_{21} &= nA_2 d_I^{**}(\beta, 1) \sigma_{s2}/E_2, \qquad a_{22} &= nA_2 d_{II}^{**}(\beta, 1) \sigma_{s2}/E_2, \\ a_{23} &= 1 + nA_2 d_{III}^{**}(\beta, 1) \sigma_{s2}/E_2, \qquad a_{24} &= nA_2 d_{IV}^{**}(\beta, 1) \sigma_{s2}/E_2, \\ a_{31} &= q_1', \qquad a_{32} &= q_2', \qquad a_{33} &= q_3', \qquad a_{34} &= q_4', \\ a_{41} &= q_5', \qquad a_{42} &= q_6', \qquad a_{43} &= q_7', \qquad a_{44} &= q_8' \end{split}$$

и известными из работы [10] величинами A_1 , A_2 , $d_I^{**}, \dots, d_{IV}^{**}$, q_1', \dots, q_8' , либо превратится в равенство

$$T_2' = 1$$
 (13)

неравенство $T_2' < 1$ с

$$\begin{split} T_2' &= C_3'(1+\beta^{-2}) + \left(\nu_2 + 3 - (3\nu_2 + 1)\beta^2\right)x', \\ C_3' &= \left\{s + \left[m + \Gamma(3\nu_1 + 1)(2-\beta^{-2}\beta_0^2)\beta_0^2\right]x'/3\right\}\left\{1-\beta^{-2}\right\}^{-1}, \quad x' = \omega_1^2/(8q_2^2). \end{split}$$

Первый случай, т. е. выполнение тождества $\tilde{\Delta}(\beta_0) \equiv 0$, определяет потерю диском \mathcal{D} устойчивости по сценарию **2°** с $\beta_{0*} := \beta_0$ и $\omega_* := \omega_1$. Во втором случае, т. е. при выполнении равенства (13), диск \mathcal{D} теряет устойчивость по сценарию **4°**. Остается, медленно увеличивая радиус кольцевой пластической зоны $\mathcal{D}_{2(p)}$, обозначаемый опять через β_0 , $\beta \leq \beta_0 < 1$, зафиксировать то его значение $\beta_{0*} := \beta_0$, которое удовлетворяет уравнению (12) с

$$\begin{split} a_{11} &= 1 + A_1 d_I^{**}(\beta_0, 1) \sigma_{s2}/E_2, & a_{12} &= A_1 d_{II}^{**}(\beta_0, 1) \sigma_{s2}/E_2, \\ a_{13} &= A_1 d_{III}^{**}(\beta_0, 1) \sigma_{s2}/E_2, & a_{14} &= A_1 d_{IV}^{**}(\beta_0, 1) \sigma_{s2}/E_2, \\ a_{21} &= nA_2 d_I^{**}(\beta_0, 1) \sigma_{s2}/E_2, & a_{22} &= nA_2 d_{II}^{**}(\beta_0, 1) \sigma_{s2}/E_2, \\ a_{23} &= 1 + nA_2 d_{III}^{**}(\beta_0, 1) \sigma_{s2}/E_2, & a_{24} &= nA_2 d_{IV}^{**}(\beta_0, 1) \sigma_{s2}/E_2, \\ a_{31} &= 0, & a_{32} &= 1, & a_{33} &= 0, & a_{34} &= 0, \\ a_{41} &= 0, & a_{42} &= 0, & a_{43} &= 0, & a_{44} &= 1 \end{split}$$

(см. [10]) и позволяет найти соответствующие значения критического радиуса пластической зоны $\mathcal{D}_{1(p)}$:

$$\beta_{01*}^2 = \frac{-c_2 \pm \sqrt{c_2^2 - 4c_1c_3}}{2c_1},$$

и критической скорости

$$\begin{split} \omega_*^2 &= \omega_2^2 = \left\{ 24q_2^2\Gamma^{-1}[1-s(\varepsilon+k)] \right\} \times \\ &\times \left\{ (3\nu_1+1)[2(\varepsilon+k)+(\varepsilon-k)\beta^{-2}\beta_{01*}^2]\beta_{01*}^2 - \right. \\ &\left. - 3\beta^2 \big[\varepsilon(3\nu_1+1)+k(\nu_1+3)] \big\}^{-1}, \end{split}$$

где

$$\begin{split} c_1 &= -\beta^2 \Gamma(3\nu_1 + 1) \big\{ [1 - 2\varepsilon s + \varepsilon - k](1 + \beta_0^2) - 2(\varepsilon - k)\beta^{-1}\beta_0 \big\} \,, \\ c_2 &= 2\Gamma(3\nu_1 + 1) \big\{ [1 - (\varepsilon + k)](1 + \beta_0^2) + 2(\varepsilon + k)\beta^{-1}\beta_0 \big\} \,, \\ c_3 &= 3\beta^2 \Gamma \left[\varepsilon(3\nu_1 + 1) + k(\nu_1 + 3) \right] \big\{ (1 - s)(1 + \beta_0^2) - 2\beta^{-1}\beta_0 \big\} \,+ \\ &\quad + [1 - s(\varepsilon + k)] \big\{ \beta^2 (8 - 3\Gamma(\nu_1 + 3))(1 + \beta_0^2) - \\ &\quad - 2\beta^{-1}\beta_0 \big[3(\nu_2 + 3) - (3\nu_2 + 1)(2 - \beta_0^2)\beta_0^2 \big] \big\} \,. \end{split}$$

Третий (особый) случай развития неустойчивости предоставляется тогда, когда ни одно из условий (12), (13) не выполнено, и диск \mathcal{D}_1 переходит полностью в пластическое состояние. Ввиду различной пластичности материалов секций \mathcal{D}_1 и \mathcal{D}_2 и имеющегося разрыва касательного напряжения величины β_0 и ω в некотором диапазоне угловой скорости остаются независимыми. Дальнейшее увеличение скорости вращения не обязательно влечет за собой появление пластического состояния вдоль окружности $\rho = \beta$ в \mathcal{D}_2 , но изменяет при этом значения

$$\begin{split} A_1 &= 2C_3'' - 2(\nu_2 + 3)x', \\ A_2 &= A_1 + 8x', \\ C_3'' &= \left\{ s - [8\beta^2\Gamma + 3(\nu_2 + 3)(1 - \beta^2)]x'/3 \right\} \left\{ 1 - \beta^{-2} \right\}^{-1} \end{split}$$

коэффициентов характеристического уравнения [10].

Если характеристическое уравнение превратится в тождество $\tilde{\Delta}(\beta_0) \equiv 0$ еще до выполнения условия

$$T_2'' = C_3''(1+\beta^{-2}) + (\nu_2 + 3 - (3\nu_2 + 1)\beta^2)x' = 1,$$
(14)

будем говорить об особом случае **01°**: $\mathcal{D}_{1(p)}\mathcal{D}_{2(e)}$ – потери устойчивости с соответствующим критическим значением $\omega_* := \omega_3$ угловой скорости и критическим значением $\beta_{0*} := \beta$ радиуса пластической зоны (рис. 5).

И, наоборот, если при достижении скорости вращения ω_3 неравенство $T_2'' < 1$ превратится в равенство (14), потеря устойчивости исследуемого диска \mathcal{D} произойдет по сценарию **02°**: $\mathcal{D}_{1(p)}\mathcal{D}_{2(pe)}$ (рис. 6). В этом особом случае в характеристическом уравнении $\tilde{\Delta}(\beta_0) = 0$, $\beta_0 > \beta$, имеем

$$C_3'' = \left\{1 - \left[\nu_2 + 3 - (3\nu_2 + 1)\beta_0^2\right]x'\right\} \left\{1 + \beta_0^{-2}\right\}^{-1},$$

116

$$\begin{split} \omega_*^2 &= \omega_4^2 = 24q_2^2 \left\{ 2 + \beta\beta_0^{-1}(s-1)(1+\beta_0^2) \right\} \left\{ 3 \left[\nu_2 + 3 - (3\nu_2 + 1)\beta_0^2\right](1-\beta_0^2) + \right. \\ &\left. + \left[3(\nu_2 + 3) - (3\nu_2 + 1)\beta_0^2 + 8\beta^3\beta_0^{-1}(\Gamma - 1) \right] \left(1+\beta_0^2\right) \right\}^{-1} \end{split}$$

при $\beta_{01*} := \beta$ и $\beta_{0*} := \beta_0$.

Пусть теперь

$$T_2 = 1$$
 (15)

(см. (9), (10)). Это означает появление пластического состояния вдоль окружности $\rho = \beta$ в кольцевой области \mathcal{D}_2 . В таком случае следует ожидать самоуравновешенной формы потери устойчивости **3°** (рис. 3) или **4°** (рис. 4). Сценарий **3°** будет реализован в том случае, когда при возрастании радиуса β_0 пластической зоны $\mathcal{D}_{2(p)}$ первым превратится в тождество соответствующее характеристическое уравнение (12) $\tilde{\Delta}(\beta_0) = 0$ [10]. При этом $\beta_{0*} := \beta_0$ и

$$\begin{split} \omega_*^2 &= \omega_5^2 = 24q_2^2 \big\{ \epsilon + k + \beta(1 - (\epsilon + k))(1 + \beta_0^2)\beta_0^{-1}/2 \big\} \big\{ (\epsilon + k) \big[3(\nu_2 + 3) - (3\nu_2 + 1)(2 - \beta_0^2)\beta_0^2 \big] - \beta^3 [4(\epsilon + k) - 3\Gamma\epsilon(1 - \nu_1)](1 + \beta_0^2)\beta_0^{-1} \big\}^{-1} \end{split}$$

Если же при очередном возросшем значении β_0 выполнено условие, следующее за соотношением (13), устойчивость диска будет потеряна по сценарию **4**° при соответствующих значениях β_{0*} , β_{01*} и ω_* .

4. Числовые примеры и обсуждение результатов. Далее реализуем приведенный выше алгоритм для изучения потери устойчивости конкретных составных круговых дисков \mathcal{D}_I , \mathcal{D}_{II} , \mathcal{D}_{III} . Параметры n = 2, $\beta = 1/2$, $v_1 = 0.3$, $v_2 = 0.2$, $\varepsilon = 1.2$, s = 1.1 и $\sigma_{s2}/E_2 = 0.01$ диска \mathcal{D}_I зафиксируем, а $\Gamma = \gamma_1/\gamma_2$ будем варьировать, иллюстрируя характерными числовыми данными возможные пути развития неустойчивости (см. табл. 1). Тот факт, что неустойчивость 4° наступает после рождения и развития круговой пластической зоны $\mathcal{D}_{1(p)}$ с последующим появлением и ростом кольцевой пластической зоны $\mathcal{D}_{2(p)}$ (первая ветка, определяемая условием (11)), дополнительно обозначен в таблице указанием критического значения относительной угловой скорости эксцентричной формы неустойчивости 1° . Если же вначале появилась зона $\mathcal{D}_{2(p)}$, а потом – $\mathcal{D}_{1(p)}$ (вторая ветка, определяемая условием (15)), приводятся, естественно, только искомые критические значения самоуравновешенной формы потери устойчивости 4° .

Таблица 1. Значения относительной критической скорости и критического радиуса в зависимости от $\Gamma = \gamma_1/\gamma_2$ для диска \mathcal{D}_I .

	\sum_{Γ}	0.5	0.8	0.85	0.9	1	1.1	2	3
1°	ω_*/q_2					1.6629	1.6457	1.5114	1.3950
3°	β_{0*}	0.7083	0.7106	0.7110					
	ω_* / q_2	1.7521	1.7310	1.7276					
4°	β_{01*}				0.0750	0.1889	0.2448	0.4064	0.4506
	β_{0*}				0.7114	0.7112	0.7099	0.6689	0.5395
	ω_* / q_2				1.7243	1.7262	1.7381	2.1358	3.6865

Диск \mathcal{D}_{II} выбирали с такими параметрами: n = 2, $\beta = 0.1$, $\nu_1 = 0.4$, $\nu_2 = 0.3$, $\Gamma = 1$, $s = \sigma_{s1}/\sigma_{s2} = 0.8$ и $\sigma_{s2}/E_2 = 0.01$. Изменяющимся параметром для исследования в этом случае является $\varepsilon = E_2/E_1$ (см. табл. 2).

Таблица 2. Значения относительной критической скорости и критического радиуса в зависимости от $\,\epsilon=E_2/E_1\,$ для диска $\,{\it D}_{II}$.

/	μ	0.5	1	1.5	1.75	2
1°	ω_*/q_2	1.2474	1.3576	1.4594		
3°	β_{0*}				0.7172	0.7179
	ω_*/q_2				1.6626	1.6561
02°	β_{01*}	0.1	0.1	0.1		
	β_{0*}	0.7167	0.7167	0.7167		
	ω_* / q_2	1.6674	1.6674	1.6674		

Табл. 3 содержит характерные критические величины для диска \mathcal{D}_{III} с параметрами n = 2, $\beta = 0.7$, $\nu_1 = 0.5$, $\nu_2 = 0.5$, $\Gamma = 1$, $\varepsilon = E_2/E_1 = 1$, $\sigma_{s2}/E_2 = 0.01$ при изменяющемся параметре $s = \sigma_{s1}/\sigma_{s2}$.

Таблица 3. Значения относительной критической скорости и критического радиуса в зависимости от $s = \sigma_{s1}/\sigma_{s2}$

для диска ${\it D}_{III}$.

/	\sim	0.5	1	1.1	1.2	1.5
1°	ω_*/q_2	1.0690	1.5118	1.5856	1.6561	1.8516
2°	β_{0*}				0.6989	0.6792
	ω_*/q_2				1.8242	2.0312
01°	β_{0*}			0.7		
	ω_*/q_2			1.8512		
02°	β_{01*}	0.7	0.7			
	β_{0*}	0.7540	0.7144			
	ω_* / q_2	1.3427	1.6706			

Об эффективности изложенного в статье подхода к исследованию неустойчивости простейших вращающихся составных дисков, пребывающих в упругопластическом состоянии, свидетельствуют качественно и количественно правдоподобные полученные результаты: для дисков, физические свойства составляющих \mathcal{D}_1 и \mathcal{D}_2 которых в определенной степени близки, превалирует присущий однородным дискам механизм развития неустойчивости. Он осуществляется по одному из рассмотренных сценариев в зависимости от радиуса *а*. Если значения *а* небольшие по сравнению с критическим радиусом пластической области сплошного однородного диска, то, скорее всего, еще до потери устойчивости диска \mathcal{D} пластическое состояние успеет распространится на значительную кольцевую область $\mathcal{D}_{2(p)}$ в \mathcal{D}_2 , «заметя» предварительно весь круг \mathcal{D}_1 (табл. 2, 3). В этой связи примечательно, что при s = 1 для диска \mathcal{D}_{III} получено решение, в точности совпадающее (в терминах и обозначениях настоящей схемы) с решением для однородного диска (ср. с [4, 5, 7, 11]). В противоположность сказанному, узкая кольцевая секция \mathcal{D}_2 в составе диска \mathcal{D} вряд ли существенно повлияет на ожидаемые критические значения, гарантируя с большой вероятностью развитие сценария 2° .

В случае использования в \mathcal{D}_2 более пластичного материала, чем в \mathcal{D}_1 , неустойчивость наступит за счет значительной потери «запаса упругости» во внешней секции даже при упругом состоянии внутренней секции (см. табл. 1, 2). Варьирование упругих характеристик и размеров составляющих дисков \mathcal{D}_1 и \mathcal{D}_2 дает возможность почти всегда осуществить промежуточный вариант развития неустойчивости по сценарию 4° с образованием пластического состояния, локализированного в центре и вдоль окружности r = a. Этим, с одной стороны, можно добиться устойчивого сверхскоростного «разгона» реального (не обязательно плоского) диска, а, с другой, – подвергнуть перегрузкам те опасные его участки (ступица – тело диска, тело диска – ободок, зоны локализации отверстий и пустот, контур с насаженными лопатками и пр.), которые и являются носителями отличающихся приведенных значений упомянутых параметров.

- 1. Бицено К. Б., Граммель Р. Техническая динамика: В 2 т. Москва-Ленинград: Гостехтеориздат, 1952. – Т. 2. – 640 с.
- 2. Гузь А. Н., Бабич И. Ю. Трехмерная теория устойчивости деформируемых тел. - Киев: Наук. думка, 1985. - 280 с.
- 3. *Гузъ А. Н., Немиш Ю. Н.* Метод возмущения формы границы в механике сплошных сред. Киев: Вища шк., 1989. 352 с.
- 4. *Ершов Л. В., Ивлев Д. Д.* О потере устойчивости вращающихся дисков // Изв. АН СССР. Отдел. техн. наук. 1958. № 1. С. 124–125.
- 5. *Ивлев Д. Д.* Механика пластических сред: В 2 т. Т. 2: Общие вопросы. Жесткопластическое и упругопластическое состояние тел. Упрочнение. Деформационные теории. Сложные среды. – Москва: Физматлит, 2002. – 448 с.
- 6. Ивлев Д. Д. О потере несущей способности вращающихся дисков, близких к круговому // Изв. АН СССР. Отдел. техн. наук. 1957. № 1. С. 141–144.
- 7. *Ивлев Д. Д., Ершов Л. В.* Метод возмущений в теории упругопластического тела. Москва: Наука, 1978. 208 с.
- 8. *Кравчишин О. З., Чекурін В. Ф.* Ітераційний метод розв'язування початковокрайової задачі поширення пружного збурення у неоднорідно деформованому тілі // Мат. методи та фіз.-мех. поля. – 2009. – **52**, № 3. – С. 133–139.
 - Te came: Kravchyshyn O. Z., Chekurin V. F. An iterative method for the solution of the initial boundary-value problem of propagation of elastic disturbances in an inhomogeneously strained body // J. Math. Sci. 2010. 171, No. 5. P. 587-595.
- 9. Лила Д. М. Эксцентричная форма потери устойчивости вращающегося упругопластического диска // Доп. НАН України. – 2011. – № 2. – С. 49–53.
- Лила Д. М., Мартынюк А. А. О неустойчивости вращающегося упругопластического составного плоского кругового диска // Мат. методи та фіз.-мех. поля. – 2012. – 55, № 1. – С. 145–158.
- 11. Лила Д. М., Мартынюк А. А. О потере устойчивости вращающегося упругопластического кругового диска // Доп. НАН України. – 2011. – № 1. – С. 44–51.
- 12. Надаи А. Пластичность и разрушение твердых тел: В 2 т. Москва: Изд-во иностр. лит., 1954. Т. 1. 648 с.
- Прокопович І. Б. Загальний підхід до розробки математичних моделей неруйнівного контролю напружень. П. Фізична модель і рівняння локального зв'язку між напруженнями та їх початковим розподілом // Мат. методи та фіз.-мех. поля. 2010. 53, № 4. С. 87–95.
 - Te came: Prokopovych I. B. General approach to the development of mathematical models of nondestructive stress testing. II. Physical model and equations of local relation between stresses and their initial distribution // J. Math. Sci. -2012. -181, No. 3. -P. 401-410.

- 14. Соколовский В. В. Теория пластичности. Москва: Высш. шк., 1969. 608 с.
- Токовий Ю. В., Ханг К.-М., Ма Ч.-Ч. Визначення напружень і переміщень у тонкому кільцевому диску під дією діаметрального стиску // Мат. методи та фіз.мех. поля. – 2008. – 51, № 3. – С. 152–162. Те саме: Tokovyy Yu. V., Hung K.-M., Ma C.-C. Determination of stresses and displacements in a thin annulan diale subjected to disperture compression (// I
 - displacements in a thin annular disk subjected to diametral compression // J. Math. Sci. - 2010. - 165, No. 3. - P. 342-354.
- Lila D. M., Martynyuk A. A. Stability loss of rotating elastoplastic discs of the specific form // Appl. Math. – 2011. – 2, No. 5. – P. 579–585.
- Mazière M., Besson J., Forest S., Tanguy B., Chalons H., Vogel F. Overspeed burst of elastoviscoplastic rotating disks - Part I: Analytical and numerical stability analyses // Eur. J. Mech. A/Solid. - 2009. - 28, No. 1. - P. 36-44.
- Mazière M., Besson J., Forest S., Tanguy B., Chalons H., Vogel F. Overspeed burst of elastoviscoplastic rotating disks: Part II – Burst of a superalloy turbine disk // Eur. J. Mech. A/Solid. – 2009. – 28, No. 3. – P. 428–432.

МЕХАНІЗМ ВТРАТИ СТІЙКОСТІ СКЛАДЕНОГО ПЛОСКОГО КРУГОВОГО ДИСКА, ЩО ОБЕРТАЄТЬСЯ

Запропоновано спосіб дослідження методом малого параметра механізму втрати стійкості складеного плоского кругового диска, що обертається. Одержано у першому наближенні характеристичне рівняння відносно критичного радіуса пластичної зони. Чисельно знайдено значення критичної кутової швидкості обертання при різних параметрах диска.

STABILITY LOSS MECHANISM OF ROTATING COMPOSITE PLANE CIRCULAR DISC

A way of investigation of a possible stability loss of rotating elastoplastic composite plane circular disc is suggested with the help of small parameter method. A characteristic equation for a critical radius of a plastic zone is obtained as the first approximation. The values of critical angular rotational velocity of at different parameters of the disc are found numerically.

Черкасский нац. ун-т им. Б. Хмельницкого, Черкассы Получено 02.12.11