О. З. Галішин¹, О. О. Золочевський², С. М. Склепус³

ДОСЛІДЖЕННЯ ПОВЗУЧОСТІ ТА ПОШКОДЖУВАНОСТІ ПОРОЖНИСТОГО ЦИЛІНДРА НА ОСНОВІ ПРОСТОРОВОЇ ТА УТОЧНЕНОЇ ОБОЛОНКОВОЇ МОДЕЛЕЙ

Розглянуто осесиметричну задачу повзучості та пошкоджуваності внаслідок повзучості порожнистого циліндра. Розроблено чисельно-аналітичний метод розв'язання нелінійної початково-крайової задачі повзучості та пошкоджуваності. Наведено приклад розрахунку повзучості та часу до руйнування циліндра, навантаженого внутрішнім тиском. Проведено співставлення результатів, отриманих на основі просторової моделі, з результатами, отриманими на основі уточненої моделі теорії оболонок.

Стан проблеми. Задачі розрахунку напружено-деформованого стану та міцності циліндричних тіл та оболонок досить широко представлені у вітчизняних та іноземних публікаціях. Аналіз сучасної літератури показує, що кількість робіт, присвячених дослідженню меж застосування спрощених оболонкових моделей у задачах повзучості та пошкоджуваності циліндричних тіл вельми обмежена. Раніше, у роботі [8], авторами були досліджені повзучість і пошкоджуваність порожнистого циліндра з алюмінієвого сплаву АК4-1Т, навантаженого зовнішнім тиском. Дослідження проводились в рамках осесимметричної просторової постановки та на основі класичної теорії оболонок Кірхгофа – Лява з урахуванням різної поведінки сплаву АК4-1Т при розтягу та стиску в умовах повзучості. Було виконано співставлення параметрів напружено-деформованого стану в центрі, на внутрішній і зовнішній поверхнях циліндра, а також часу до руйнування. На відміну від попереднього, метою цієї роботи є:

- розробка методів дослідження повзучості, пошкоджуваності та тривалої міцності порожнистого циліндра скінченних розмірів; дослідження ведуться на основі осесиметричної просторової моделі та уточненої оболонкової моделі, що ґрунтується на гіпотезах прямолінійного елемента;
- співставлення отриманих на основі цих моделей результатів розрахунків параметрів напружено-деформованого стану та часу завершення прихованого руйнування;
- дослідження впливу співвідношення геометричних розмірів циліндра на похибку оболонкового розв'язку відносно просторового розв'язку.

1. Постановка і метод розв'язання початково-крайової задачі повзучості в просторовій моделі. Розглянемо круговий осесиметрично навантажений ізотропний порожнистий циліндр у циліндричній системі координат *Ог*φ*z*. Вісь *Oz* співпадає з віссю симетрії. Температура є сталою.

Компоненти тензора швидкостей повних деформацій $\dot{\boldsymbol{\epsilon}}_{ij}$ складаються з

компонентів пружних деформацій $\dot{\varepsilon}_{ij}^e$ та компонентів незворотних деформацій повзучості \dot{p}_{ii} :

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^e + \dot{p}_{ij}, \qquad i, j = 1, 2, 3.$$

Визначальні співвідношення повзучості для початково ізотропних матеріалів і кінетичне рівняння для параметра пошкоджуваності при ізотропному характері пошкоджуваності в загальному випадку можуть бути записані у вигляді

$$\dot{p}_{ij} = f_{ij}(\sigma_{ij}, \sigma_{e}, \psi), \qquad \dot{\psi} = g(\sigma_{e1}, \psi),$$

116

ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2016. – 59, № 2. – С. 116-124.

де f_{ij} – деяка тензор-функція зазначених аргументів; σ_{ij} – компоненти тензора напружень Коші; $\sigma_{\rm e}$, $\sigma_{\rm e1}$ – еквівалентні напруження, що містять ті чи інші базові інваріанти тензора напружень; ψ – скалярний параметр пошкоджуваності.

У циліндричній системі координат маємо

$$\begin{split} \dot{\varepsilon}_{rr}(r,z,t) &= \dot{\varepsilon}_{rr}^{e}(r,z,t) + \dot{p}_{rr}(r,z,t), \\ \dot{\varepsilon}_{zz}(r,z,t) &= \dot{\varepsilon}_{zz}^{e}(r,z,t) + p_{zz}(r,z,t), \\ \dot{\varepsilon}_{\phi\phi}(r,z,t) &= \dot{\varepsilon}_{\phi\phi}^{e}(r,z,t) + \dot{p}_{\phi\phi}(r,z,t), \\ \dot{\varepsilon}_{rz}(r,z,t) &= \dot{\varepsilon}_{rz}^{e}(r,z,t) + \dot{p}_{rz}(r,z,t). \end{split}$$

Тут крапка над символом означає повну похідну за часом t.

Основні невідомі задачі повзучості та пошкоджуваності внаслідок повзучості у довільній точці циліндра можна знайти із розв'язку задачі Коші за часом для системи звичайних диференціальних рівнянь [8]

$$\begin{aligned} \frac{du_r}{dt} &= \dot{u}_r, \qquad \frac{du_z}{dt} = \dot{u}_z, \\ \frac{d\varepsilon_{rr}}{dt} &= \dot{u}_{r,r}, \qquad \frac{d\varepsilon_{zz}}{dt} = \dot{u}_{z,z}, \qquad \frac{d\varepsilon_{\phi\phi}}{dt} = \frac{\dot{u}_r}{r}, \\ \frac{d\gamma_{rz}}{dt} &= 2\frac{d\varepsilon_{rz}}{dt} = \dot{u}_{r,z} + \dot{u}_{z,r}, \\ \frac{d\sigma_{rr}}{dt} &= \lambda(\dot{\varepsilon}_{zz} + \dot{\varepsilon}_{\phi\phi} - \dot{p}_{zz} - \dot{p}_{\phi\phi}) + \lambda_1(\dot{\varepsilon}_{rr} - \dot{p}_{rr}), \\ \frac{d\sigma_{zz}}{dt} &= \lambda(\dot{\varepsilon}_{rr} + \dot{\varepsilon}_{\phi\phi} - \dot{p}_{rr} - \dot{p}_{\phi}) + \lambda_1(\dot{\varepsilon}_{zz} - \dot{p}_{zz}), \\ \frac{d\sigma_{\phi\phi}}{dt} &= \lambda(\dot{\varepsilon}_{rr} + \dot{\varepsilon}_{zz} - \dot{p}_{rr} - \dot{p}_{zz}) + \lambda_1(\dot{\varepsilon}_{\phi\phi} - \dot{p}_{\phi\phi}), \\ \frac{d\sigma_{rz}}{dt} &= G(\dot{\gamma}_{rz} - 2\dot{p}_{rz}), \\ \frac{dp_{rr}}{dt} &= \dot{p}_{rr}, \qquad \frac{dp_{zz}}{dt} = \dot{p}_{zz}, \qquad \frac{dp_{\phi\phi}}{dt} = \dot{p}_{\phi\phi}, \qquad \frac{dp_{rz}}{dt} = \dot{p}_{rz}, \qquad \frac{d\psi}{dt} = \dot{\psi}. \end{aligned}$$

Тут $u_r(r,z,t)$, $u_z(r,z,t)$ – переміцення уздовж осей Or та Oz відповідно; ε_{rr} , ε_{zz} , $\varepsilon_{\phi\phi}$, ε_{rz} – компоненти тензора повних деформацій; σ_{rr} , σ_{zz} , $\sigma_{\phi\phi}$, σ_{rz} – компоненти тензора напружень; p_{rr} , p_{zz} , $p_{\phi\phi}$, p_{rz} – компоненти тензора деформацій повзучості.

У початковий момент часу t = 0 деформації повзучості та параметр пошкоджуваності дорівнюють нулеві: $p_{rr} = p_{zz} = p_{\phi\phi} = p_{rz} = \psi = 0$. Початкові умови для решти шуканих функцій знаходимо із розв'язку задачі пружного деформування.

Розв'язання початкової задачі для системи рівнянь (1) проводимо методом Рунґе – Кутта – Мерсона (РКМ) з автоматичним вибором часового кроку. Праві частини рівнянь (1) у фіксовані моменти часу $t \neq 0$, які відповідають схемі РКМ, знаходимо за допомогою розв'язку варіаційної задачі для функціонала у формі Лагранжа для осесиметрично навантаженого тіла

обертання скінченної довжини [4 (с. 570), 8]

$$\begin{split} \Lambda(\dot{\mathbf{U}}) &= 0.5 \iint_{\Omega} \left[\lambda_1 \left(\dot{u}_{r,r}^2 + \dot{u}_{z,z}^2 + \frac{\dot{u}_r^2}{r^2} \right) + G(\dot{u}_{r,z} + \dot{u}_{z,r})^2 + \right. \\ &+ 2\lambda \left(\dot{u}_{r,r} \dot{u}_{z,z} + \frac{\dot{u}_r (\dot{u}_{r,r} + \dot{u}_{z,z})}{r} \right) \right] r \, dr \, dz - \\ &- \iint_{\Omega} \left[\dot{u}_{r,r} \dot{N}_r^c + \dot{u}_{z,z} \dot{N}_z^c + \frac{\dot{u}_r \dot{N}_{\theta}^c}{r} + \dot{N}_{rz}^c (\dot{u}_{r,z} + \dot{u}_{z,r}) \right] r \, dr \, dz - \\ &- \int_{\partial \Omega_p} \left(\dot{P}_n^0 \dot{u}_n + \dot{P}_{\tau}^0 \dot{u}_{\tau} \right) d \, \partial \Omega \,. \end{split}$$

Тут $\dot{\mathbf{U}} = (\dot{u}_r(r,z,t), \dot{u}_z(r,z,t))$ – вектор кінематично можливих швидкостей переміщень; Ω – меридіанний переріз циліндра; $\partial \Omega_p$ – частина контуру $\partial \Omega$, де прикладені зовнішні сили; \dot{P}_n^0 , \dot{P}_τ^0 – швидкості нормальної і дотичної складових зовнішніх сил; \mathbf{n} , $\boldsymbol{\tau}$ – зовнішня нормаль та дотична до контуру $\partial \Omega$; $\dot{u}_n = \dot{u}_r n_r + \dot{u}_z n_z$, $\dot{u}_\tau = \dot{u}_z n_r - \dot{u}_r n_z$; n_r , n_z – напрямні косинуси нормалі \mathbf{n} ; $\lambda = \frac{Ev}{(1-2v)(1+v)}$, $\lambda_1 = \lambda + 2G$, $G = \frac{E}{2(1+v)}$, E, v – пружні характеристики матеріалу. Швидкості «фіктивних» сил, зумовлених деформаціями повзучості, обчислюються за формулами

$$\begin{split} N_r^c &= \left[\lambda_1 \dot{p}_{rr} + \lambda (\dot{p}_{zz} + \dot{p}_{\phi\phi})\right], \qquad N_z^c = \left[\lambda_1 \dot{p}_{zz} + \lambda (\dot{p}_{rr} + \dot{p}_{\phi\phi})\right], \\ \dot{N}_{\theta}^c &= \left[\lambda_1 \dot{p}_{\phi\phi} + \lambda (\dot{p}_{rr} + \dot{p}_{zz})\right], \qquad N_{rz}^c = 2G\dot{p}_{rz}. \end{split}$$

Швидкості деформацій повзучості у функціоналі (2) вважаються відомими і не варіюються.

Варіаційні задачі для функціонала (2) розв'язуються методом Рітца у комбінації з методом R-функцій [5, 6]. Метод R-функцій дозволяє точно враховувати геометричну форму та граничні умови найбільш загального вигляду. При цьому наближений розв'язок крайової задачі подається у вигляді формули – структури розв'язку, яка точно задовольняє усі граничні умови (загальна структура розв'язку) або їх частину (часткова структура розв'язку) і є інваріантною стосовно геометричної форми області Ω .

2. Постановка і метод розв'язання задачі на основі уточненої оболонкової моделі. Розглядаючи осесиметрично навантажений порожнистий циліндр у рамках теорії оболонок, припускаємо, що виконуються гіпотези прямолінійного елемента [3, с. 15]. Згідно з цими гіпотезами зв'язок осьових u_z і нормальних u_{ζ} переміщень довільної точки оболонки з відповідними переміщеннями точки серединної поверхні u, w має вигляд

$$u_{z} = u + \zeta \psi_{z}, \qquad u_{r} = w, \qquad \psi_{z} = -w' + \gamma_{z}, \qquad (3)$$

де ζ – координата, яка відраховується по нормалі до серединної поверхні з радіусом r = R; ψ_z , γ_z – відповідно повний кут прямолінійного елемента і кут, зумовлений поперечним зсувом; штрихом позначаємо похідну за координатою z. Використовуючи (3) і співвідношення Коші, зв'язок між компонентами тензора деформації ε_{zz} , $\varepsilon_{\phi\phi}$, $\varepsilon_{z\varsigma}$ у довільній точці оболонки, компонентами деформації серединної поверхні ε_z , ε_{ϕ} , параметром зміни її кривини x_z і кутом зсуву γ_z подамо у вигляді [7]

118

$$\varepsilon_{zz} = \varepsilon_{z} + \zeta x_{z}, \qquad \varepsilon_{\varphi\varphi} = \varepsilon_{\varphi}, \qquad 2\varepsilon_{z\zeta} = \gamma_{z},$$

$$\varepsilon_{z} = u', \qquad \varepsilon_{\varphi} = \frac{w}{R}, \qquad x_{z} = \psi'_{z}.$$
(4)

Співвідношення (4) записані у припущенні, що величиною ζ/R можна знехтувати порівняно з одиницею. Компоненти напружень визначаються рівностями

$$\begin{split} \sigma_{zz} &= B_{11}\varepsilon_{zz} + B_{12}\varepsilon_{\phi\phi} - \sigma_{zz}^{a}, \qquad \sigma_{\phi\phi} = B_{12}\varepsilon_{zz} + B_{22}\varepsilon_{\phi\phi} - \sigma_{\phi\phi}^{a}, \\ \sigma_{z\zeta} &= B_{33}\varepsilon_{z\zeta} - \sigma_{z\zeta}^{a}, \end{split}$$

де *B_{ij}* – коефіцієнти жорсткості [1], індексом «*a* » відмічено величини додаткових напружень:

$$\sigma_{zz}^a = B_{11}(p_{zz} + \nu p_{\varphi\varphi}), \quad \sigma_{\varphi\varphi}^a = B_{22}(p_{\varphi\varphi} + \nu p_{zz}), \quad \sigma_{z\zeta}^a = B_{33}p_{z\zeta}.$$

Тут p_{zz} , $p_{\phi\phi}$, $p_{z\zeta}$ – компоненти деформацій повзучості, які залежать від напружень, параметрів повзучості та від параметра пошкоджуваності матеріалу і визначаються шляхом чисельного інтегрування фізичних рівнянь. Як і у випадку просторової задачі, це інтегрування здійснюється методом РКМ.

Вводячи до розгляду інтегральні характеристики напруженого стану: радіальне N_r , осьове N_z зусилля й осьовий згинаючий момент M_z , і використовуючи рівняння рівноваги, наведені, наприклад, у [7], кінематичні (4), фізичні і статичні рівняння зведемо до системи звичайних диференційних рівнянь шостого порядку:

$$\mathbf{Y}' = P(z)\mathbf{Y} + \mathbf{f}, \qquad \mathbf{Y} = \left\{N_r, N_z, M_z, u_r, u_z, \psi_z\right\},\tag{5}$$

де P(z) – матриця системи, що залежить від пружних констант матеріалу; **f** – вектор вільних членів, який також залежить від деформацій повзучості. Розв'язок системи (5) повинен задовольняти граничні умови на торцях циліндра. Вирази для компонент матриці P(z) і вектора **f** при певних спрощеннях можемо отримати з відповідних виразів з праці [1], у якій розглянуто осесиметричний термов'язкопружнопластичний стан оболонок обертання. На кожному часовому кроці крайову задачу (5) розв'язуємо методом Рунге – Кутта з дискретною ортогоналізацією за С. К. Годуновим.

3. Числові результати. Розглянемо повзучість порожнистого циліндра з алюмінієвого сплаву АК4-1Т при температурі 473 К, навантаженого внутрішнім тиском інтенсивністю $P_{\rm inn}$. При такому навантаженні в циліндрі будуть переважати напруження розтягу.

Геометричні розміри циліндра: довжина L = 0.1 м, радіус серединної поверхні R = 0.1 м, товщина h = 0.01 м. З позиції теорії оболонок розглядається оболонка середньої товщини (h = 0.1R). Пружні константи: E = 60 ГПа, v = 0.35.

Візьмемо спрощену модель повзучості, побудовану тільки на експериментальних даних, отриманих при розтягу. У цьому випадку визначальні співвідношення для швидкостей деформацій повзучості будуть мати вигляд [4, с. 497]

$$\dot{p}_{k\ell} = \sigma_{\rm e}^m \psi^{-\beta} \left(\frac{\psi_*}{\psi_* - \psi}\right)^q \sqrt{\frac{3}{2}C} \frac{s_{k\ell}}{\sigma_i}, \qquad k, \ell = 1, 2, 3, \qquad (6)$$

де $\sigma_e = \sqrt{\frac{2}{3}C} \sigma_i$ – еквівалентне напруження; $\sigma_i = \sqrt{\frac{3}{2}s_{k\ell}s_{k\ell}}$ – інтенсивність

напружень, $s_{k\ell}=\sigma_{k\ell}-rac{1}{3}\delta_{k\ell}(\sigma_{kk})$ — компоненти девіатора напружень; $\delta_{k\ell}$ символ Кронекера.

Якщо за скалярний параметр пошкоджуваності у взяти питому енергію, розсіяну в процесі повзучості $\psi = \int_{0}^{t} W dt = \int_{0}^{t} \sigma_{ij} \dot{p}_{ij} dt$, то для ψ отримасмо таке кінетичне рівняння [4, с. 494]:

$$\dot{\Psi} = \sigma_{\rm e}^{m+1} \Psi^{-\beta} \left(\frac{\Psi_*}{\Psi_* - \Psi} \right)^q. \tag{7}$$

Початкове значення $\psi = 0$ відповідає непошкодженому стану при t = 0, а критичне значення $\psi_* = \int_{0}^{t_*} W \, dt$ відповідає часу завершення прихованого

руйнування $t = t_*$.

Параметри матеріалу в рівняннях (6), (7) [2, 4 (ч. 3, гл. 2)] є такими:

$$C = 1.69631 \cdot 10^{-5} (M\Pi a)^{-2m/(m+1)} \cdot (год)^{-2/(m+1)}$$

 $m = 8, \quad \beta = 0, \quad q = 3, \quad \psi_* = 10 \text{ MДж/м}^3.$

Торці циліндра вільні від навантаження і закріплені таким чином, що радіальні переміщення дорівнюють нулеві. Тоді граничні умови запишуться у вигляді

$$\begin{split} \dot{u}_r &= 0, \quad \dot{\sigma}_z = \dot{\sigma}_{rz} = 0, \qquad z = \pm \frac{L}{2}, \\ \dot{\sigma}_r &= -\dot{P}_{\rm inn} = 0, \quad \dot{\sigma}_{zr} = 0, \qquad r = r_{\rm inn} = R - \frac{h}{2}, \\ \dot{\sigma}_r &= \dot{\sigma}_{zr} = 0, \qquad r = r_{\rm out} = R + \frac{h}{2}. \end{split}$$

Інтенсивність внутрішнього тиску $P_{\rm inn}$ знаходили з формули $P_{\rm inn}$ = $=\frac{P_0R}{r_{\rm inn}}$, де $P_0=13.0~{
m M\Pi a}$ — тиск, віднесений до серединної поверхні (r=R) циліндра.

Можна показати, що часткова структура розв'язку, яка задовольняє кінематичні граничні умови для швидкостей переміщень, має вигляд:

$$\dot{u}_r = \omega \Phi_1, \qquad \dot{u}_z = z \Phi_2,$$

де Φ_1 , Φ_2 – невизначені компоненти структури розв'язку; $\omega = \frac{1}{L} \left(\frac{L^2}{4} - z^2 \right) \ge$ ≥ 0 – смуга Ω , укладена між лініями $z=-rac{L}{2}$ та $z=rac{L}{2}$ ($\omega=0$, $\omega_{,n}=-1$ на межі $\partial \Omega$, $\omega > 0$ всередині смуги). При чисельній реалізації невизначені компоненти структури розв'язку $\Phi_1, \ \Phi_2$ подаємо у вигляді скінченних рядів

$$egin{aligned} \Phi_1(r,z,t) &= \sum_{n=1}^{N_1} C_n^{(1)}(t) f_n^{(1)}(r,z)\,, \ \Phi_2(r,z,t) &= \sum_{n=1}^{N_2} C_n^{(2)}(t) f_n^{(2)}(r,z)\,. \end{aligned}$$

120

Тут $C_n^{(1)}$, $C_n^{(2)}$ – невизначені коефіцієнти, які на кожному часовому кроці знаходимо методом Рітца; t – деякий фіксований момент часової дискретизації схеми РКМ або дискретизації за часом для видачі результатів обчислень; $\{f_n^{(1)}\}$, $\{f_n^{(2)}\}$ – системи лінійно незалежних функцій. У цій роботі $\{f_n^{(1)}\}$, $\{f_n^{(2)}\}$ вибирали у вигляді бікубічних сплайнів Шенберга. Системи сплайнів будували на регулярній сітці $N_r \times N_z$, де N_r , N_z – кількість відрізків дискретизації уздовж осей Or та Oz відповідно.

Наближений розв'язок задачі повзучості циліндра, сформульованої у рамках просторової постановки, отримано при таких параметрах просторової і часової дискретизації: $N_r = 5$, $N_z = 10$, початковий крок за часом $\Delta t_0 = 10^{-3}$ год, задана похибка обчислень у методі РКМ $\delta = 10^{-4}$. При чисельних розрахунках критерієм зупинки процесу розв'язування і знаходження часу до руйнування t_* було виконання у будь-якій точці просторової дискретизації умови $\psi \ge 0.9\psi_*$.

При розв'язуванні задачі в рамках уточненої оболонкової моделі на меридіанний перетин наносили рівномірну сітку зі 101 точки вздовж осі z і 11 точок по товщині r. Інші параметри дискретизації приймали значення: $\Delta t_0 = 10^{-5}$ год, $\delta = 10^{-6}$. Граничні умови формулювали у такому вигляді:

$$\begin{split} N_r &= u_z = \psi_z = 0 \;, \qquad z = 0 \;, \\ N_z &= M_z = u_r = 0 \;, \qquad z = \frac{L}{2} \;. \end{split}$$

У результаті обчислень встановлено, що руйнування починається в центрі циліндра на внутрішній його поверхні. Час до руйнування, отриманий за просторовою моделлю, склав $t_{*1} = 4291$ год, а за оболонковою – $t_{*2} =$ = 5461год, відносна похибка $\Delta = 27 \%$. Деякі результати розрахунків наведено на рис. 1 – 6 і у табл. 1. Криві, позначені цифрою 1, отримано у початковий момент часу t = 0, цифрою 2 – при t = 2000год, а цифрою 3 – при $t = t_*$. Лінії з маркерами відповідають результатам просторового розв'язку. На рис. 1 подано графіки зміни радіальних переміщень серединної поверхні w вздовж осі циліндра. На рис. 2, рис. 3 показано графіки розподілу колових напружень $\sigma_{\phi\phi}$ та колових деформацій повзучості $p_{\phi\phi}$ на внутрішній поверхні циліндра. На рис. 4, рис. 5 зображено такі ж графіки для зовнішньої поверхні. Рис. 6 ілюструє зміну в часі параметра пошкоджуваності ψ колових напружень $\sigma_{\phi\phi}$ у центрі циліндра на внутрішній поверхні, де починається руйнування.

У табл. 1 наведено порівняння результатів в різні моменти часу для радіальних переміщень серединної поверхні w, колових напружень $\sigma_{\phi\phi}$, параметра пошкоджуваності ψ і колових деформацій повзучості $p_{\phi\phi}$, отриманих у рамках просторової постановки (над рискою) і на основі теорії оболонок (під рискою) в центрі циліндра. Індексами «–» і «+» позначено величини на внутрішній і зовнішній поверхнях циліндра. Таблиця 1

	Таблисьт						
<i>t</i> , год	$w\cdot 10^4$, M	$\sigma^{-}_{\phi\phi},$ ΜΠа	$\sigma^{\scriptscriptstyle +}_{\phi\phi},$ MПa	ψ ⁻ , МДж/м ³	$\psi^+,$ МДж/м ³	$p^{\phi\phi}$, $\%$	$p^{\scriptscriptstyle +}_{\scriptscriptstyle \phi\phi}$, $\%$
0	$\frac{2.46}{2.41}$	$\frac{132}{125}$	$\frac{158}{165}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$
2000	$\frac{16.3}{13.0}$	$\frac{64.7}{68.0}$	$\frac{150}{148}$	$\frac{2.37}{1.74}$	$\frac{2.05}{1.68}$	$\frac{1.58}{1.14}$	$\frac{1.30}{1.10}$
$\frac{t_{*1} = 4291}{t_{*2} = 5461}$	$\frac{61.9}{63.8}$	$\frac{22.9}{28.4}$	$\frac{114}{96.8}$	$\frac{9.00}{9.01}$	$\frac{8.46}{8.99}$	$\frac{6.51}{6.29}$	$\frac{5.52}{6.26}$

Аналізуючи наведені дані, приходимо до висновку, що в момент початку руйнування результати добре узгоджуються між собою. Наприклад, в області максимальних значень напруження відрізняються лише на 15%, а деформації повзучості – на 13%.

Для порівняння з наведеними вище результатами були проведені обчислення для інших значень товщини циліндра: h = 0.09R та h = 0.11R при тому ж значенні діючого навантаження. Встановлено, що для h = 0.09R час до руйнування, отриманий за просторовою моделлю, склав $t_{*1} = 1561$ год, а за оболонковою – $t_{*2} = 1941$ год, відповідна відносна похибка $\Delta = 24$ %. Для h = 0.11R отримано: $t_{*1} = 10795$ год, $t_{*2} = 14004$ год, $\Delta = 30$ %. У табл. 2 і в табл. 3 наведено результати розрахунків, аналогічні до табл. 1, відповідно для h = 0.09R та h = 0.11R.

Таблиця 2

<i>t</i> , год	$w\cdot 10^4$, M	σ_ _{φφ} , ΜΠa	$\sigma^{\scriptscriptstyle +}_{\phi\phi}, \ M\Pi a$	ψ ⁻ , МДж/м ³	$\psi^+, \ \mathrm{M} \mathcal{J} arkappa / \mathrm{m}^3$	$p^{ m \phi \phi}$, $\%$	$p^{\scriptscriptstyle +}_{\scriptscriptstyle \phi\phi}$, $\%$
0	$\frac{2.76}{2.70}$	$\frac{152}{143}$	$\frac{174}{181}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$
1000	$\frac{21.7}{17.1}$	$\frac{76.2}{81.6}$	$\frac{166}{164}$	$\frac{3.46}{2.53}$	$\frac{3.05}{2.47}$	$\frac{2.12}{1.53}$	$\frac{1.79}{1.48}$
$\frac{t_{*1} = 1561}{t_{*2} = 1941}$	$\frac{56.9}{58.8}$	$\frac{31.3}{35.9}$	$\frac{129}{111}$	$\frac{9.01}{9.01}$	$\frac{8.44}{8.99}$	$\frac{5.93}{5.78}$	$\frac{5.10}{5.74}$

Таблиця 3

<i>t</i> , год	$w\cdot 10^4$, M	σ _{φφ} , ΜΠa	$\sigma^{\scriptscriptstyle +}_{\phi\phi},$ MПa	ψ ⁻ , МДж/м ³	$\psi^+, \ \mathrm{M} \mathcal{J} \mathfrak{K} / \mathrm{M}^3$	$p^{_{\phi\phi}}$, $\%$	$p^{\scriptscriptstyle +}_{\scriptscriptstyle \phi \phi}$, $\%$
0	$\frac{2.22}{2.17}$	$\frac{117}{109}$	$\frac{144}{151}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$
5000	$\frac{17.1}{13.4}$	$\frac{52.4}{55.8}$	$\frac{135}{133}$	$\frac{2.36}{1.71}$	$\frac{2.05}{1.66}$	$\frac{1.70}{1.20}$	$\frac{1.38}{1.16}$
$\frac{t_{*1} = 10795}{t_{*2} = 14004}$	$\frac{66.5}{68.5}$	$\frac{16.5}{22.3}$	$\frac{101}{85.4}$	$\frac{9.03}{9.01}$	$\frac{8.45}{9.00}$	$\frac{7.05}{6.78}$	$\frac{5.99}{6.74}$

Дані у таблицях свідчать, що час до руйнування, отриманий за оболонковою моделлю, перевищує час до руйнування, отриманий за просторовою моделлю. Зі зростанням відносної товщини циліндра збільшується похибка обчислення компонент напружено-деформованого стану і часу до руйнування.

Висновок. У розглянутих прикладах розв'язок, отриманий у рамках уточненої оболонкової моделі, забезпечує задовільне співпадіння з розв'язком, отриманим за допомогою просторової моделі.

- 1. Галишин А. З. Расчет осесимметричного термовязкоупругопластического состояния слоистых ортотропных оболочек вращения с разветвленным меридианом // Прикл. механика. 1993. **29**, № 1. С. 61–69.
 - Te саме: Galishin A. Z. Axisymmetric thermoviscoelastoplastic state of laminar orthotropic shells of revolution with a branched meridian // Int. Appl. Mech. 1993. 29, No. 1. Р. 53–60.
- 2. Горев Б. В., Рубанов В. В., Соснин О. В. О ползучести материалов с разными свойствами при растяжении и сжатии // Проблемы прочности. 1979. № 7. С. 62–67.
 - Te саме: Gorev B. V., Rubanov V. V., Sosnin O. V. Creep of materials with different properties in tension and compression // Strength Mater. 1979. 11, No. 7. P. 735-740.
- 3. Григоренко Я. М., Василенко А. Т., Голуб Г. П. Статика анизотропных оболочек с конечной сдвиговой жесткостью. Киев: Наук. думка, 1987. 216 с.
- Золочевский А. А., Склепус А. Н., Склепус С. Н. Нелинейная механика деформируемого твердого тела. – Харьков: Бизнес Инвестор Групп, 2011. – 720 с.
- 5. *Рвачев В. Л.* Теория *R*-функций и некоторые ее приложения. Киев: Наук. думка, 1982. 552 с.
- Rvachev V. L., Sheiko T. I. R -functions in boundary-value problems in mechanics // Appl. Mech. Rev. - 1995. - 48, No. 4. - P. 151-188.
 Zolochevsky A., Galishin A., Sklepus S., Voyiadjis G. Z. Analysis of creep deforma-
- Zolochevsky A., Galishin A., Sklepus S., Voyiadjis G. Z. Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression // Int. J. Solids Struct. - 2007. - 44, No. 16. - P. 5075-5100.

http://www.sciencedirect.com/science/article/pii/S0020768306005440

Zolochevsky A., Sklepus S., Galishin A., Kühhorn A., Kober M. A comparison between the 3D and the Kirchhoff-Love solutions for cylinders under creep-damage conditions // Technische Mechanik. - 2014. - 34, No. 2. - P. 104-113.

ИССЛЕДОВАНИЕ ПОЛЗУЧЕСТИ И ПОВРЕЖДАЕМОСТИ ПОЛОГО ЦИЛИНДРА НА ОСНОВЕ ПРОСТРАНСТВЕННОЙ И УТОЧНЕННОЙ ОБОЛОЧЕЧНОЙ МОДЕЛЕЙ

Рассмотрена осесимметричная задача ползучести и повреждаемости вследствие ползучести полого цилиндра. Разработан численно-аналитический метод решения нелинейной начально-краевой задачи ползучести и повреждаемости. Приведен пример расчета ползучести и времени до разрушения цилиндра, нагруженного внутренним давлением. Проведено сопоставление результатов, полученных на основе пространственной модели с результатами, полученными на основе уточненной модели теории оболочек.

INVESTIGATION OF CREEP AND CREEP-DAMAGE OF THE HOLLOW CYLINDER BASED ON THE SPATIAL AND REFINED SHELL MODELS

The axisymmetric problem of creep and creep-damage for hollow cylinder is considered. A numerical-analytic method for solving of nonlinear initial boundary value problem of creep and creep-damage is developed. An example of calculating the creep and the failure initiation time of cylinder under internal pressure is presented. A comparison of the results obtained on the basis of the spatial model with the results obtained on the basis of the refined model of the theory of shells is made.

- ¹ Ін-т механіки ім. С. П. Тимошенка
- , НАН України, Київ,
- ² Нац. техн. ун-т «ХПІ», Харків,

³ Ін-т проблем машинобудування ім. А. М. Підгорного НАН України, Харків

Одержано 13.11.15