O. V. Gutik, K. M. Maksymyk

ON SEMITOPOLOGICAL BICYCLIC EXTENSIONS OF LINEARLY ORDERED GROUPS

For a linearly ordered group G let us define a subset $A \subseteq G$ to be a shift-set if for any $x, y, z \in A$ with $y<x$ we get $x \cdot y^{-1} \cdot z \in A$. We describe the natural partial order and solutions of equations on the semigroup $B(A)$ of shifts of positive cones of A. We study topologizations of the semigroup $B(A)$. In particular, we show that, for an arbitrary countable linearly ordered group G and a non-empty shift-set A of G, every Baire shift-continuous T_{1}-topology τ on $B(A)$ is discrete. Also we prove that, for an arbitrary linearly non-densely ordered group G and a non-empty shift-set A of G, every shift-continuous Hausdorff topology τ on the semigroup $B(A)$ is discrete.

Introduction and preliminaries. We shall follow the terminology of [17, 21, 23, 27, 36, 43, 44].

A semigroup is a non-empty set with a binary associative operation. A semigroup S is called inverse if for any $x \in S$ there exists a unique $y \in S$ such that $x \cdot y \cdot x=x$ and $y \cdot x \cdot y=y$. Such an element y in S is called the inverse of x and denoted by x^{-1}. The map defined on an inverse semigroup S which maps every element x of S to its inverse x^{-1} is called the inversion.

For a semigroup S by $E(S)$ we denote the set of idempotents in S. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ as the band of S. A semilattice is a commutative semigroup of idempotents.

Let \Im_{X} denote the set of all partial one-to-one transformations of an infinite set X together with the following semigroup operation: $x(\alpha \beta)=(x \alpha) \beta$ if $x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha \mid y \alpha \in \operatorname{dom} \beta\}$, for $\alpha, \beta \in \mathfrak{J}_{X}$. The semigroup \mathfrak{J}_{X} is called the symmetric inverse semigroup over the set X (see [21].). The symmetric inverse semigroup was introduced by Wagner [1] and it plays a major role in the theory of semigroups.

The bicyclic monoid $C(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition $p q=1$. The bicyclic monoid is a combinatorial bisimple F-inverse semigroup and it plays an important role in the algebraic theory of semigroups and in the theory of topological semigroups. For example the well-known Andersen's result [9] states that a ($0-$) simple semigroup is completely ($0-$) simple if and only if it does not contain the bicyclic monoid. The bicyclic monoid does not embed into stable semigroups [38].

Recall from [27] that a partially-ordered group is a group (G, \cdot) equipped with a translation-invariant partial order \leq; in other words, the binary relation \leq has the property that, for all $a, b, g \in G$, if $a \leq b$ then $a \cdot g \leq b \cdot g$ and $g \cdot a \leq g \cdot b$.

By e we denote the identity of a group G. The set $G^{+}=\{x \in G: e \leq x\}$ in a partially ordered group G is called the positive cone of G and satisfies the properties:
$\left.1^{\circ}\right) G^{+} \cdot G^{+} \subseteq G^{+}$;
$\left.2^{\circ}\right) G^{+} \cap\left(G^{+}\right)^{-1}=\{e\}$;
$\left.3^{\circ}\right) x^{-1} \cdot G^{+} \cdot x \subseteq G^{+}$for each $x \in G$.
Any subset P of a group G that satisfies the conditions $1^{\circ}-3^{\circ}$ induces a partial order on $G\left(x \leq y\right.$ if and only if $\left.x^{-1} \cdot y \in P\right)$ for which P is the positive cone. An elements of the set $G^{+} \backslash\{e\}$ is called positive.

A linearly ordered or totally ordered group is an ordered group G whose order relation $« \leq »$ is total (see [16] and [20]).

From now on we shall assume that G is a non-trivial linearly ordered group.

For every $g \in G$ the set

$$
G^{+}(g)=\{x \in G: g \leq x\} .
$$

is called the positive cone on element g in G.
For arbitrary elements $g, h \in G$ we consider a partial map $\alpha_{h}^{g}: G \rightarrow G$ defined by the formula

$$
(x) \alpha_{h}^{g}=x \cdot g^{-1} \cdot h, \quad \text { for } \quad x \in G^{+}(g) .
$$

We observe that Lemma XIII. 1 from [16] implies that for such partial map $\alpha_{h}^{g}: G \rightarrow G$ the restriction $\alpha_{h}^{g}: G^{+}(g) \rightarrow G^{+}(h)$ is a bijective map.

We consider the semigroups

$$
\begin{aligned}
& B(G)=\left\{\alpha_{h}^{g}: G \rightarrow G: g, h \in G\right\}, \\
& B^{+}(G)=\left\{\alpha_{h}^{g}: G \rightarrow G: g, h \in G^{+}\right\},
\end{aligned}
$$

endowed with the operation of the composition of partial maps. Simple verifications show that

$$
\begin{equation*}
\alpha_{h}^{g} \cdot \alpha_{\ell}^{k}=\alpha_{b}^{a}, \quad \text { where } a=(h \vee k) \cdot h^{-1} \cdot g \text { and } b=(h \vee k) \cdot k^{-1} \cdot \ell, \tag{1}
\end{equation*}
$$

for $g, h, k, \ell \in G$, where by $h \vee k$ we denote the join of h and k in the linearly ordered set (G, \leq). Therefore, property 1° of the positive cone and condition (1) imply that $B(G)$ and $B^{+}(G)$ are subsemigroups of \mathfrak{I}_{G}.

By Proposition 1.2 from [31] for a linearly ordered group G the following assertions hold:
(i) elements α_{h}^{g} and α_{g}^{h} are inverse of each other in $B(G)$ for all $g, h \in G$ (respectively, $B^{+}(G)$ for all $g, h \in G^{+}$);
(ii) an element α_{h}^{g} of the semigroup $B(G)$ (respectively, $B^{+}(G)$) is an idempotent if and only if $g=h$;
(iii) $B(G)$ and $B^{+}(G)$ are inverse subsemigroups of \mathfrak{I}_{G};
(iv) the semigroup $B(G)$ (respectively, $B^{+}(G)$) is isomorphic to the set $S_{G}=G \times G$ (respectively, $S_{G}^{+}=G^{+} \times G^{+}$) with the following semigroup operation:
$(a, b)(c, d)= \begin{cases}\left(c \cdot b^{-1} \cdot a, d\right), & b<c, \\ (a, d), & b=c, \\ \left(a, b \cdot c^{-1} \cdot d\right), & b>c,\end{cases}$
where $a, b, c, d \in G$ (respectively, $a, b, c, d \in G^{+}$).
It is obvious that:
$\mathbf{1}^{\circ}$) if G is isomorphic to the additive group of integers $(\mathbb{Z},+)$ with usual linear order \leq, then the semigroup $B^{+}(G)$ is isomorphic to the bicyclic monoid $C(p, q)$ and the semigroup $B^{+}(G)$ is isomorphic to the extended bicyclic semigroup $C_{\mathbb{Z}}$ (see [24]);
2°) if G is the additive group of real numbers ($\mathbb{R},+$) with usual linear order \leq, then the semigroup $B(G)$ is isomorphic to $B_{(-\infty, \infty)}^{2}$ (see $[40,39]$) and the semigroup $B^{+}(G)$ is isomorphic to $B_{[0, \infty)}^{1}$ (see [4-8]);
3°) the semigroup $B^{+}(G)$ is isomorphic to the semigroup $S(G)$ which is defined in [25, 26].

In the paper [31] semigroups $B(G)$ and $B^{+}(G)$ are studied for a linearly ordered group G. That paper describes Green's relations on $B(G)$ and $B^{+}(G)$ and their bands and shows that these semigroups are bisimple. Also in [31] it is proved that, for a commutative linearly ordered group G, all non-trivial congruences on the semigroups $B(G)$ and $B^{+}(G)$ are group congruences if and only if the group G is Archimedean; and the structure of group congruences on the semigroups $B(G)$ and $B^{+}(G)$ is described.

In this paper we present a more general construction than the semigroups $B(G)$ and $B^{+}(G)$. Namely, for a linearly ordered group G let us define a subset $A \subseteq G$ to be a shift-set if for any $x, y, z \in A$ with $y<x$ we get $x \cdot y^{-1} \cdot z \in A$. For any shift-set $A \subseteq G$ let

$$
B(A)=\left\{\alpha_{b}^{a}: G^{+}(a) \rightarrow G^{+}(b): a, b \in A\right\}
$$

be the semigroup of partial bijections defined by the formula

$$
(x) \alpha_{b}^{a}=x \cdot a^{-1} \cdot b \quad \text { for } x \in G^{+}(a)
$$

The semigroup $B(A)$ is isomorphic to the semigroup $S_{A}=A \times A$ endowed with the binary operation defined by formula (2). For $A=G$ the semigroup $B(A)$ coincides with $B(G)$ and for $A=G^{+}$it coincides with the semigroup $B^{+}(G)$.

Later in this paper for a non-empty shift-set $A \subseteq G$ we identify the semigroup $B(A)$ with the semigroup S_{A} endowed with the multiplication defined by formula (2). We observe that $B(A)$ is an inverse subsemigroup of $B(G)$ for any non-empty shift-set A of a linearly ordered group G. Moreover, the results of [31] imply that an element (a, b) of $B(A)$ is an idempotent iff $a=b$, and (b, a) is inverse of (a, b) in $B(G)$.

We recall that a topological space X is said to be

- locally compact, if every point $x \in X$ has an open neighbourhood with the compact closure;
- Čech-complete, if X is Tychonoff and X is a G_{δ}-set in its Čech Stone compactification βX;
- Baire, if, for each sequence $\left(U_{i}\right)_{i=1}^{\infty}$ of open dense subsets of X, the intersection $\bigcap_{i=1}^{\infty} U_{i}$ is a dense subset in X.

Every Hausdorff locally compact space is Čech-complete, and every Čech-complete space is Baire (see [23]).

A semitopological (topological) semigroup is a topological space with a separately continuous (jointly continuous) semigroup operation.

A topology τ on a semigroup S is called:

- semigroup if (S, τ) is a topological semigroup;
- shift-continuous if (S, τ) is a semitopological semigroup.

The bicyclic monoid admits only the discrete semigroup Hausdorff topology and if a topological semigroup S contains it as a dense subsemigroup then $C(p, q)$ is an open subset of S [22]. We observe that the openness of $C(p, q)$ in its closure easily follows from the non-topologizability of the bicyclic monoid, because the discrete subspace D is open in its closure \bar{D} in any T_{1}-space containing D. Bertman and West in [15] extend this result for the case of Hausdorff semitopological semigroups. Stable and Γ-compact topological semigroups do not contain the bicyclic monoid [10, 37]. The problem of an embedding of the bicyclic monoid into compact-like topological semigroups studied in [11, 12, 33]. Independently Taimanov in [3] constructed a semigroup $\mathfrak{A}_{\mathfrak{x}}$ of cardinality \mathfrak{x} which admits only the discrete semigroup topology. Also, Taimanov [2] gave sufficient conditions on a commutative semigroup to have a non-discrete semigroup topology. In the paper [29] it was shown that for the Taimanov semigroup $\mathfrak{A}_{\mathfrak{x}}$ from [3] the following conditions hold: every T_{1}-topology τ on the semigroup $\mathfrak{A}_{\mathfrak{x}}$ such that $\left(\mathfrak{A}_{x}, \tau\right)$ is a topological semigroup is discrete; for every T_{1}-topological semigroup which contains $\mathfrak{A}_{\mathfrak{x}}$ as a subsemigroup, $\mathfrak{A}_{\mathfrak{x}}$ is a closed subsemigroup of S; and every homomorphic non-isomorphic image of $\mathfrak{A}_{\mathfrak{x}}$ is a zero-semigroup. Also in the paper [24] it is proved that the discrete topology is the unique shift-continuous Hausdorff topology on the extended bicyclic semigroup $C_{\mathbb{Z}}$. Also, for many ($0-$) bisimple semigroups of transformations S the following statement holds: every shift-continuous Hausdorff Baire (in particular locally compact) topology S is discrete (see [18, 19, 32, 34, 35]). In the paper [42] Mesyan, Mitchell, Morayne and Péresse showed that if E is a finite graph, then the only locally compact Hausdorff semigroup topology on the graph inverse semigroup $G(E)$ is the discrete topology. In [14] it was proved that the conclusion of this statement also holds for graphs E consisting of one vertex and infinitely many loops (i.e., infinite-ly-generated polycyclic monoids). A surprising dichotomy for the bicyclic monoid with adjoined zero $C^{0}=C(p, q) \amalg\{0\}$ was proved in [28]: every Hausdorff locally compact semitopological bicyclic monoid C^{0} with adjoined zero is either compact or discrete. The above dichotomy was extended by Bardyla in [13] to locally compact λ-polycyclic semitopological monoids and to locally compact semitopological interassociates of the bicyclic monoid [30].

For a linearly ordered group G and a non-empty shift-set A of G, the natural partial order and solutions of equations on the semigroup $B(A)$ are described. We study topologizations of the semigroups $B(A)$. In particular, we show that for an arbitrary countable linearly ordered group G and a nonempty shift-set A of G, every Baire shift-continuous T_{1}-topology τ on $B(A)$ is discrete. We also prove that for an arbitrary linearly non-densely ordered group G and a non-empty shift-set A of G, every shift-continuous Hausdorff topology τ on the semigroup $B(A)$ is discrete, and hence $(B(A), \tau)$ is a discrete subspace of any Hausdorff semitopological semigroup which contains $B(A)$ as a subsemigroup.

1. Solutions of some equations and the natural partial order on the semigroup $B(A)$. It is well known that every inverse semigroup S admits the natural partial order:

$$
s \preceq t \quad \text { if and only if } \quad s=e t \quad \text { for some } \quad e \in E(S) .
$$

This order induces the natural partial order on the semilattice $E(S)$, and for arbitrary $s, t \in S$ the following conditions are equivalent:

$$
\begin{equation*}
(\boldsymbol{\alpha}): \quad s \preceq t ; \quad(\boldsymbol{\beta}): \quad s=s s^{-1} t ; \quad(\gamma): \quad s=t s^{-1} s \tag{3}
\end{equation*}
$$

(see [41, Chap. 3]).
Proposition 1. Let G be a linearly ordered group and A be a non-empty shift-set in G. Then the following assertions hold:
(i) if $(g, g),(h, h) \in E(B(A))$ then $(g, g) \preceq(h, h)$ if and only if $g \geq h$ in A;
(ii) the semilattice $E(B(A)$) is isomorphic to A considered as \vee-semilattice under the isomorphism $i: E(B(A)) \rightarrow A, i:(g, g) \rightarrow g ;$
(iii) $(g, h) \mathcal{R}(k, \ell)$ in $B(A)$ if and only if $g=k$ in A;
(iv) $(g, h) \mathcal{L}(k, \ell)$ in $B(A)$ if and only if $h=\ell$ in A;
(v) $(g, h) \mathcal{H}(k, \ell)$ in $B(A)$ if and only if $g=k$ and $h=\ell$ in A, and hence every \mathcal{H}-class in $B(A)$ is a singleton;
(vi) $B(A)$ is a bisimple semigroup and hence it is simple;

Proof. Assertions (i) and (ii) are trivial, (iii)-(v) follow from Proposition 2.1 from [31] and Proposition 3.2.11 from [41], and (vi) follows from Proposition 3.2.5 from [41].

Later we need the following lemma, which describes the natural partial order on the semigroup $B(A)$.

Lemma 1. Let G be a linearly ordered group and A be a non-empty shift-set in G. Then for arbitrary elements $(a, b),(c, d) \in B(A)$ the following conditions are equivalent:
(i) $(a, b) \preceq(c, d)$ in $B(A)$;
(ii) $a^{-1} \cdot b=c^{-1} \cdot d$ and $a \geq c$ in A;
(iii) $\quad b^{-1 \cdot} \cdot a=d^{-1} \cdot b$ and $b \geq d$ in A.

P r o o f. $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$. The equivalence of conditions $(\boldsymbol{\alpha})$ and ($\boldsymbol{\beta}$) in (3) implies that $(a, b) \preceq(c, d)$ in $B(A)$ if and only if $(a, b)=(a, b)(a, b)^{-1}(c, d)$. Therefore we have that

$$
\begin{aligned}
& (a, b)=(a, b)(a, b)^{-1}(c, d)=(a, b)(b, a)(c, d)=(a, a)(c, d)= \\
& \quad= \begin{cases}\left(c \cdot a^{-1} \cdot a, d\right), & a<c, \\
(c, d), & a=c, \\
\left(a, a \cdot c^{-1} \cdot d\right), & a>c .\end{cases}
\end{aligned}
$$

This implies that

$$
(a, b)= \begin{cases}(c, d), & a<c \\ (c, d), & a=c \\ \left(a, a \cdot c^{-1} \cdot d\right), & a>c\end{cases}
$$

and hence the condition $(a, b) \preceq(c, d)$ in $B(A)$ implies that $a^{-1} \cdot b=c^{-1} \cdot d$ and $a \geq c$ in A.
$(i i) \Rightarrow(i)$. Fix arbitrary $(a, b),(c, d) \in B(A)$ such that $a^{-1} \cdot b=c^{-1} \cdot d$ and $a \geq c$ in A. Then we have that

$$
\begin{aligned}
& (a, b)=(a, b)(a, b)^{-1}(c, d)=(a, b)(b, a)(c, d)= \\
& =(a, a)(c, d)=\left(a, a \cdot c^{-1} \cdot d\right)=(a, b)
\end{aligned}
$$

and hence $(a, b) \preceq(c, d)$ in $B(A)$.
The proof of the equivalence $(i i) \Leftrightarrow(i i i)$ is trivial.
The definition the semigroup operation in $B(A)$ implies that $(a, b)=$ $=(a, c)(c, d)(d, b)$ for arbitrary elements a, b, c, d of the group A. The following two propositions give descriptions of solutions of some equations in the semigroup $B(A)$.

Proposition 2. Let G be a linearly ordered group, A be a non-empty shift-set in G, and a, b, c, d be arbitrary elements of A. Then the following conditions hold:
(i) $(a, b)=(a, c)(x, y)$ for $(x, y) \in B(A)$ if and only if $(c, b) \preceq(x, y)$ in $B(A)$;
(ii) $(a, b)=(x, y)(d, b)$ for $(x, y) \in B(A)$ if and only if $(a, d) \preceq(x, y)$ in $B(A)$;
(iii) $a, b=(a, c)(x, y)(d, b)$ for $(x, y) \in B(A)$ if and only if $(c, d) \preceq(x, y)$ in $B(A)$.
P r o o f. $(\boldsymbol{i})(\Rightarrow)$. Suppose that $(a, b)=(a, c)(x, y)$ for some $(x, y) \in B(A)$. Then we have that

$$
(a, c)(x, y)= \begin{cases}\left(a \cdot, c \cdot x^{-1} \cdot y\right), & c>x \\ (a, y), & c=x \\ \left(x \cdot c^{-1} \cdot a, y\right), & c<x\end{cases}
$$

Then in the case when $c>x$ we get that $b=c \cdot x^{-1} \cdot y$ and hence Lemma 1 implies that $(c, b) \leq(x, y)$ in $B(A)$. Also, in the case when $c=x$ we have that $b=y$, which implies the inequality $(c, b) \leq(x, y)$ in $B(A)$. The case $c<x$ does not hold because the group operation on G implies that $x \cdot c^{-1} \cdot a<a$.
(\Leftarrow). Suppose that the relation $(c, b) \leq(x, y)$ holds in $B(A)$. Then by Lemma 1 we have that $c^{-1} \cdot b=x^{-1} \cdot y$ and $c \geq x$ in A, and hence the semigroup operation of $B(A)$ implies that

$$
(a, c)(x, y)=\left(a, c \cdot x^{-1} \cdot y\right)=\left(a, c \cdot c^{-1} \cdot b\right)=(a, b) .
$$

The proof of statement (ii) is similar to statement (\boldsymbol{i}).
(iii) (\Rightarrow). Suppose that $(a, b)=(a, c)(x, y)(d, b)$ for some $(x, y) \in B(A)$.

Then we have that

$$
(a, c)(x, y)= \begin{cases}\left(a \cdot, c \cdot x^{-1} \cdot y\right), & c>x \\ (a, y), & c=x \\ \left(x \cdot c^{-1} \cdot a, y\right), & c<x\end{cases}
$$

Therefore,
(a) if $c>x$, then

$$
\begin{aligned}
& (a, c)(x, y)(d, b)=\left(a, c \cdot x^{-1} \cdot y\right)(d, b)= \\
& \quad= \begin{cases}\left(a \cdot, c \cdot x^{-1} \cdot y \cdot d^{-1} \cdot b\right), & c \cdot x^{-1} \cdot y>d \\
(a, b), & c \cdot x^{-1} \cdot y=d \\
\left(d \cdot y^{-1} \cdot x \cdot c^{-1} \cdot a, b\right), & c \cdot x^{-1} \cdot y<d\end{cases}
\end{aligned}
$$

(b) if $c=x$, then

$$
(a, c)(x, y)(d, b)=(a, y)(d, b)= \begin{cases}\left(a \cdot, y \cdot d^{-1} \cdot b\right), & y>d \\ (a, b), & y=d \\ \left(d \cdot y^{-1} \cdot a, b\right), & y<d\end{cases}
$$

(c) if $c<x$, then

$$
(a, c)(x, y)(d, b)=\left(x \cdot c^{-1} \cdot a, y\right)(d, b)= \begin{cases}\left(x \cdot c^{-1} \cdot a \cdot y \cdot d^{-1} \cdot b\right), & y>d \\ \left(x \cdot c^{-1} \cdot a, b\right), & y=d \\ \left(d \cdot y^{-1} \cdot x \cdot c^{-1} \cdot a, b\right), & y<d\end{cases}
$$

Then the equality $(a, b)=(a, c)(x, y)(d, b)$ implies that
in case $(\boldsymbol{a}): \quad$ if $c>x$, then $c \cdot x^{-1} \cdot y \cdot d^{-1}=e$ in G,
in case (b): if $c=x$, then $y=d$,
and the case (c) does not hold. Hence, by Lemma 1 we get that $(c, d) \preceq(x, y)$ in $B(A)$.
(\Leftarrow). Suppose that the relation $(c, d) \leq(x, y)$ holds in $B(A)$. Then by Lemma 1 we have that $c^{-1} \cdot d=x^{-1} \cdot y$ and $c \geq x$ in A, and hence the semigroup operation of $B(A)$ implies that

$$
\begin{gathered}
(a, c)(x, y)(d, b)=(a, c)(x, y)\left(c \cdot x^{-1} \cdot y, b\right)=(a, c)\left(c \cdot x^{-1} \cdot y \cdot y^{-1} \cdot x, b\right)= \\
=(a, c)\left(c \cdot x^{-1} \cdot x, b\right)=(a, c)(c, b)=(a, b)
\end{gathered}
$$

because $c \cdot x^{-1} \cdot y \geq y$ in A.
Proposition 3. Let G be a linearly ordered group, A be a non-empty shift-set in G, and a, b, c, d be arbitrary elements of A. Then the following conditions hold:
(i) if $a<c$ in A, then the equation $(a, b)=(c, d)(x, y)$ has no solutions in $B(A)$;
(ii) if $a>c$ in A, then the equation $(a, b)=(c, d)(x, y)$ has the unique solution $(x, y)=\left(a \cdot c^{-1} \cdot d, b\right)$ in $B(A)$;
(iii) the equation $(a, b)=(a, d)(x, y)$ has the unique solution $(x, y)=(d, b)$ in $B(A)$;
(iv) if $b<d$ in A then the equation $(a, b)=(x, y)(c, d)$ has no solutions in $B(A)$;
(v) if $b>d$ in A, then the equation $(a, b)=(x, y)(c, d)$ has the unique solution $(x, y)=\left(a, b \cdot d^{-1} \cdot c\right)$ in $B(A)$;
(vi) the equation $(a, b)=(x, y)(c, b)$ has the unique solution $(x, y)=(a, c)$ in $B(A)$.

Proof. (i). Assume that $a<c$. Then formula (2) implies that $d<x$ in A and hence $(a, b)=\left(x \cdot d^{-1} \cdot c, y\right)$. This implies that $a=x \cdot d^{-1} \cdot c$ and $b=y$. Since $d<x$, the equality $a=x \cdot d^{-1} \cdot c$ implies that $a>c$, which contradicts the assumption of statement (i).
(ii). Assume that $a>c$. Then formula (2) implies that $d<x$ in A and hence we have that $(a, b)=\left(x \cdot d^{-1} \cdot c, y\right)$. This implies the equalities $x=a \cdot c^{-1} \cdot d$ and $y=b$.
(iii) follows from formula (2).

The proofs of statements $(\boldsymbol{i v}),(\boldsymbol{v})$ and $(\boldsymbol{v} \boldsymbol{i})$ are dual to the proofs of (\boldsymbol{i}), (ii), and (iii), respectively.

Later we need the following proposition which follows from formula (2) and describes right and left principal ideals in the semigroup $B(A)$ for a nonempty shift-set A in G.

Proposition 4. Let G be a linearly ordered group and A be a non-empty shift-set in G. Then the following conditions hold:
(i) $(a, a) B(A)=\{(x, y) \in B(A): x \geq a$ in $A\}$;
(ii) $B(A)(a, a)=\{(x, y) \in B(A): y \geq a$ in $A\}$.
2. On topologizations of the semigroup $B(A)$. It is obvious that every left (right) topological group G with an isolated point is discrete. This implies that every countable T_{1}-Baire left (right) topological group is a discrete space, too. Later we shall show that the similar statement holds for Baire semitopological semigroup $B(A)$ over a non-empty shift-set A of a countable linearly ordered group G.

For an arbitrary element (a, b) of the semigroup $B(A)$ we denote

$$
\uparrow_{\leq}(a, b)=\{(x, y) \in B(A):(a, b) \preceq(x, y)\} .
$$

Lemma 2. Let G be a linearly ordered group, A be a non-empty shift-set in G, and τ be a shift-continuous topology on $B(A)$ such that $(B(A), \tau)$ contains an isolated point. Then the space $(B(A), \tau)$ is discrete.

Proof. Suppose that (a, b) is an isolated point of the topological space $(B(A), \tau)$. Assume that for an arbitrary $u \in A$ there exists $c \in A$ such that $u>c$, which implies $d=c \cdot u^{-1} \cdot b<b$. By Proposition $3(v)$ the equation $(a, b)=(x, y)(c, d)$ has the unique solution

$$
\begin{gathered}
(x, y)=\left(a, b \cdot d^{-1} \cdot c\right)=\left(a, b \cdot\left(c \cdot u^{-1} \cdot b\right)^{-1} \cdot c\right)= \\
=\left(a, b \cdot b^{-1} \cdot u \cdot c^{-1} \cdot c\right)=(a, u)
\end{gathered}
$$

in $B(A)$. If u is the smallest element of A, then by Proposition $3(\boldsymbol{v} \boldsymbol{i})$, the equation $(a, b)=(x, y)(u, b)$ has the unique solution $(x, y)=(a, u)$. In both cases the continuity of right translations in $(B(A), \tau)$ implies that for arbitrary $u \in A$ the pair (a, u) is an isolated point of the topological space $(B(A), \tau)$.

Fix an arbitrary element v of A. Assume that there exists $d \in A$ such that $d<v$, which implies $c=d \cdot v^{-1} \cdot a<a$. Then by Proposition 3(ii), the equation $(a, u)=(c, d)(x, y)$ has the unique solution

$$
\begin{gathered}
(x, y)=\left(a \cdot c^{-1} \cdot d, u\right)=\left(a \cdot\left(d \cdot v^{-1} \cdot a\right)^{-1} \cdot d, u\right)= \\
=\left(a \cdot a^{-1} \cdot v \cdot d^{-1} \cdot d, u\right)=(v, u)
\end{gathered}
$$

in $B(A)$. If v is the smallest element of A, then by Proposition 3(iii), the equation $(a, u)=(a, v)(x, y)$ has the unique solution $(x, y)=(v, u)$. Since (a, u) is an isolated point of $(B(A), \tau)$, in both cases the continuity of left translations in $(B(A), \tau)$ implies that for arbitrary $u \in A$ the pair (v, u) is an isolated point of the topological space $(B(A), \tau)$. This completes the proof of the lemma.

Theorem 1. Let A be a countable non-empty shift-set in a linearly ordered group G and τ be a T_{1}-Baire shift-continuous topology on $B(A)$. Then the topological space $(B(A), \tau)$ is discrete.

P r o o f. By Proposition 1.30 from [36] every countable Baire T_{1}-space contains a dense subspace of isolated points, and hence the space $(B(A), \tau)$ contains an isolated point. Then we apply Lemma 2.

Theorem 1 implies the following
Corollary 1. Let A be a countable non-empty shift-set in a linearly ordered group G, and τ be a shift-continuous Čech complete (locally compact) T_{1}-topology on $B(A)$. Then the topological space $(B(A), \tau)$ is discrete.

Remark 1. Let \mathbb{R} be the set of reals with usual topology. It is obvious that $S_{\mathbb{R}}=\mathbb{R} \times \mathbb{R}$ with the semigroup operation

$$
(a, b)(c, d)= \begin{cases}(a-b+c, d), & b<c \\ (a, d), & b=c \\ (a, b-c+d), & b>c\end{cases}
$$

is isomorphic to the semigroup $B(G)$, where G is the additive group of reals $(\mathbb{R},+$) with usual linear order \leq. Then simple verifications show that S with the product topology τ_{p} is a topological inverse semigroup (also, see [39, 40]). Then the subspace $S_{\mathbb{Q}}=\left\{(x, y) \in S_{\mathbb{R}}: x\right.$ and y are rational $\}$ with the induced semigroup operation from S is a countable non-discrete non-Baire topological inverse subsemigroup of (S, τ_{p}). Also, the same we get in the case of subsemigroup $S_{\mathbb{Q}}^{+}=\left\{(x, y) \in S_{\mathbb{Q}}: x \geq 0\right.$ and $\left.y \geq 0\right\}$ of (S, τ_{p}) (see [4-8]). The above arguments show that the condition in Theorem 1 that τ is a T_{1} Baire topology is essential.

Recall that a linearly ordered group G is said to be densely ordered if for every positive element $g \in G$ there exists a positive element $h \in G$ such that $h<g$.

Remark 2. It is obviously that for a linearly ordered group G the following conditions are equivalent:
(i) G is not densely ordered;
(ii) for every $g \in G$ there exists a unique $g^{+} \in G$ such that $G^{+}(g) \backslash G^{+}\left(g^{+}\right)=\{g\} ;$
(iii) for every $g \in G$ there exists a unique $g^{-} \in G$ such that $G^{+}(g) \backslash G^{+}\left(g^{+}\right)=\{g\}$, where $G^{-}(g)$ is the negative cone on the element g, i.e., $G^{-}(g)=\{x \in G: x \leq g\}$.
In what follows, for a linearly ordered group G which is not densely ordered and an arbitrary element g of a non-empty shift-set A in G by g^{+} (respectively, g^{-}) we denote the minimum (respectively, maximum) element of the set $G^{+}(g) \backslash\{g\} \cap A$ (respectively, $G^{-}(g) \backslash\{g\} \cap A$).

Theorem 2. Let G be a linearly ordered group which is not densely ordered and A be a non-empty shift-set in G. Then every shift-continuous Hausdorff topology τ on the semigroup $B(A)$ is discrete, and hence $B(A)$ is a discrete subspace of any semitopological semigroup which contains $B(A)$ as a subsemigroup.

P r o o f. We fix an arbitrary idempotent (a, a) of the semigroup $B(A)$ and suppose that (a, a) is a non-isolated point of the topological space $(B(A), \tau)$. Since the maps $\lambda_{(a, a)}: B(A) \rightarrow B(A) \quad$ and $\quad \rho_{(a, a)}: B(A) \rightarrow B(A)$ defined by the formula $(x, y) \lambda_{(a, a)}=(a, a)(x, y)$ and $(x, y) \rho_{(a, a)}=(x, y)(a, a)$ are continuous retractions, we conclude that $(a, a) B(A)$ and $B(A)(a, a)$ are closed subsets in the topological space $(B(A), \tau)$ (see [23, Exercise 1.5.C]). For an arbitrary element b of the shift-set A in the linearly ordered group G we put

$$
D L_{(b, b)}[(b, b)]=\{(x, y) \in B(A):(x, y)(b, b)=(b, b)\}
$$

Lemma 1 and Proposition 2 imply that

$$
D L_{(b, b)}[(b, b)]=\uparrow_{\leq}(b, b)=\{(x, x) \in B(A): x \leq b \text { in } A\}
$$

and since right translations are continuous maps in $(B(A), \tau)$ we get that $D L_{(b, b)}[(b, b)]$ is a closed subset of the topological space $(B(A), \tau)$ for every $b \in A$. Then there exists an open neighbourhood $W_{(a, a)}$ of the point (a, a) in the topological space $(B(A), \tau)$ such that

$$
W_{(a, a)} \subseteq B(A) \backslash\left(\left(a^{+}, a^{+}\right) B(A) \cup B(A)\left(a^{+}, a^{+}\right) \cup D L\left(a^{-}, a^{-}\right)\right)
$$

Since $(B(A), \tau)$ is a semitopological semigroup we conclude that there exists an open neighbourhood $V_{(a, a)}$ of the idempotent (a, a) in the topological space $(B(A), \tau)$ such that the following conditions hold:

$$
V_{(a, a)} \subseteq W_{(a, a)}, \quad(a, a) \cdot V_{(a, a)} \subseteq W_{(a, a)}, \quad V_{(a, a)} \cdot(a, a) \subseteq W_{(a, a)}
$$

Hence at least one of the following conditions holds:
(a) the neighbourhood $V_{(a, a)}$ contains infinitely many points $(x, y) \in B(A)$ such that $x<y \leq a$ in the group A;
or
(b) the neighbourhood $V_{(a, a)}$ contains infinitely many points $(x, y) \in B(A)$ such that $y<x \leq a$ in the group A.
In the case (a) by Proposition 2 we have that

$$
(a, a)(x, y)=\left(a, a \cdot x^{-1} \cdot y\right) \notin W_{(a, a)},
$$

because $x^{-1} \cdot y \geq e$ in G, and in the case (b) by Proposition 2 we have that

$$
(x, y)(a, a)=\left(a \cdot y^{-1} \cdot x, a\right) \notin W_{(a, a)}
$$

because $y^{-1} \cdot x \geq e$ in G, which contradicts the separate continuity of the semigroup operation in $(B(A), \tau)$. The obtained contradiction implies that the set $V_{(a, a)}$ is a singleton, and hence the idempotent (a, a) is an isolated point of the topological space $(B(A), \tau)$.

Now, we apply Lemma 2 and get that the topological space $(B(A), \tau)$ is discrete.

Theorem 2 implies the following three corollaries.
Corollary 2. Let G be a linearly ordered group which is not densely ordered and A be a non-empty shift-set in G. Then every semigroup Hausdorff topology τ on the semigroup $B(A)$ is discrete.

Corollary 3 [24]. Every shift-continuous Hausdorff topology τ on the bicyclic extended semigroup $C_{\mathbb{Z}}$ is discrete.

Corollary 4 [15, 22]. Every shift-continuous Hausdorff topology τ on the bicyclic monoid $C(p, q)$ is discrete.

Acknowledgements. The authors acknowledge Taras Banakh and the referee for their important comments and suggestions.

1. Вагнер В. В. Обобщенные группы // Докл. АН СССР. - 1952. - 84, № 6. С. 1119-1122.
2. Тайманов А. Д. О топологизации коммутативных полугрупп // Мат. заметки. 1975. - 17, № 5. - С. 745-748.

Taimanov A. D. On the topologization of commutative semigroups // Math. Notes. - 1975. - 17, No. 5. - P. 443-444.
3. Тайманов А. Д. Пример полугруппы, допускающей только дискретную топологию // Алгебра и логика. - 1973. - 12, No. 1. - P. 114-116.

Taimanov A. D. An example of a semigroup which admits only the discrete topology // Algebra and Logic. - 1973. - 12, No. 1. - P. 64-65.
4 Ahre K. R. Locally compact bisimple inverse semigroups // Semigroup Forum. 1981. - 22, No. 1 - P. 387-389. - https://doi.org/10.1007/BF02572817.
5. Ahre K. R. On the closure of $B_{[0, \infty)}^{1} / /$ İstanbul Tek. Üniv. Bül. - 1983. - 36, No. 4. - P. 553-562.
6. Ahre K. R. On the closure of $B_{[0, \infty)}^{1} / /$ İstanbul Tek. Üniv. Bül. $-1989 .-42$, No. 3 . - P. 387-390.
7. Ahre K. R. On the closure of $B_{[0, \infty)}^{\prime} / /$ Semigroup Forum. - 1984. - 28, No. 1-3. P. 377-378.
8. Ahre K. R. On the closure of $B_{[0, \infty)}^{1} / /$ Semigroup Forum. - 1986. - 33, No. 2. P. 269-272.
9. Andersen O. Ein Bericht über die Struktur abstrakter Halbgruppen. - Hamburg: PhD Thesis. - 1952.
10. Anderson L. W., Hunter R. P., Koch R. J. Some results on stability in semigroups // Trans. Amer. Math. Soc. - 1965. - 117. - P. 521-529.
11. Banakh T. O., Dimitrova S., Gutik O. V. The Rees-Suschkewitsch theorem for simple topological semigroups // Мат. студіі. - 2009. - 31, № 2. - P. 211-218.
12. Banakh T., Dimitrova S., Gutik O. Embedding the bicyclic semigroup into countably compact topological semigroups // Topology Appl. - 2010. - 157, No. 18. - P. 2803-2814.
13. Bardyla S. Classifying locally compact semitopological polycyclic monoids // Мат. вісн. НТШ. - 2016. - 13. - С. 21-28.
14. Bardyla S., Gutik O. On a semitopological polycyclic monoid // Algebra Discrete Math. - 2016. - 21, № 2. - P. 163-183.
15. Bertman M. O., West T. T. Conditionally compact bicyclic semitopological semigroups // Proc. Roy. Irish Acad. Section A: Math. and Phys. Sci.- 1976. - 76. P. 219-226. - http://www.jstor.org/stable/20489047.
16. Birkhoff G. Lattice theory. - Providence: Amer. Math. Soc., 1973. - Amer. Math. Soc. Colloq. Publ. - Vol. 25. - 420 p.
17. Carruth J. H., Hildebrant J. A., Koch R. J. The theory of topological semigroups. New York etc.: Marcell Dekker Inc., 1983. - Vol. 1. - 244 p.; 1986. - Vol. 2. - 196 p.
18. Chuchman I. Ya., Gutik O. V. Topological monoids of almost monotone injective cofinite partial selfmaps of the set of positive integers // Карпат. мат. публікації. 2010. - 2, № 1. - C. 119-132.
19. Chuchman I., Gutik O. On monoids of injective partial selfmaps almost everywhere the identity // Demonstr. Math. - 2011. - 44, No. 4. - P. 699-722. https://doi.org/10.1515/dema-2013-0340.
20. Clay A., Rolfsen D. Ordered groups and topology. - Providence: Amer. Math. Soc., 2016. - Ser. Graduate Studies in Mathematics. - Vol. 176. - 154 p.
21. Clifford A. H., Preston G. B. The algebraic theory of semigroups. - Providence: Amer. Math. Soc., 1961. - Vol. 1. - xv+224 p.; 1972. - Vol. 2. - xv+352 p.

Клиффорд А., Престон Г. Алгебраическая теория полугрупп: В 2 т. Москва: Мир, 1972. - Т. 1. - 285 с.; Т. 2. -422 с.
22. Eberhart C., Selden J. On the closure of the bicyclic semigroup // Trans. Amer. Math. Soc. - 1969. - 144. - P. 115-126.
23. Engelking R. General topology. - Berlin: Heldermann, 1989. - 539 p. Энгелъкинг Р. Общая топология. - Москва: Мир, 1986. - 752 с.
24. Fihel I. R., Gutik O. V. On the closure of the extended bicyclic semigroup // Карпат. мат. публікації. - 2011. - 3, № 2. - C. 131-157.
25. Fotedar G. L. On a class of bisimple inverse semigroups // Riv. Mat. Univ. Parma. Ser. 4. - 1978. - 4. - P. 49-53.
26. Fotedar G. L. On a semigroup associated with an ordered group // Math. Nachr. 1974. - 60, No. 1-6. - P. 297-302. - DOI: 10.1002/mana. 19740600128.
27. Fuchs L. Partially ordered algebraic systems. - Oxford etc.: Pergamon Press, 1963. $-\mathrm{x}+230 \mathrm{p}$.
28. Gutik O. On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero // Вісн. Львів. ун-ту. Сер. мех.-мат. - 2015. - Вип. 80. C. 33-41.
29. Gutik O. Topological properties of Taimanov semigroups// Мат. вісн. НТШ. 2016. - 13. - C. 29-34.
30. Gutik O., Maksymyk K. On semitopological interassociates of the bicyclic monoid // Вісн. Львів. ун-ту. Сер. мех.-мат. - 2016. - Вип. 82. - С. 98-108.
31. Gutik O., Pagon D., Pavlyk K. Congruences on bicyclic extensions of a linearly ordered group // Acta Comment. Univ. Tartu. Math. - 2011. - 15, No. 2. P. 61-80.
32. Gutik O., Pozdnyakova I. On monoids of monotone injective partial selfmaps of $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ with co-finite domains and images // Algebra Discrete Math. - 2014. 17, No. 2. - P. 256-279.
33. Gutik O., Repovš D. On countably compact 0 -simple topological inverse semigroups // Semigroup Forum. - 2007. - 75, No. 2. - P. 464-469.
34. Gutik O., Repovš D. On monoids of injective partial selfmaps of integers with cofinite domains and images // Georgian Math. J. - 2012. - 19, No. 3. - P. 511-532.
35. Gutik O., Repovš D. Topological monoids of monotone, injective partial selfmaps of \mathbb{N} having cofinite domain and image // Stud. Sci. Math. Hungar. - 2011. - 48, No. 3. - P. 342-353.
36. Haworth R. C., McCoy R. A. Baire spaces. - Warszawa: Inst. Matematyczny Polskiej Akad. Nauk, 1977. - http://eudml.org/doc/268479.
37. Hildebrant J. A., Koch R. J. Swelling actions of Γ-compact semigroups // Semigroup Forum. - 1986. - 33. - P. 65-85.
38. Koch R. J., Wallace A. D. Stability in semigroups // Duke Math. J. - 1957. - 24, No. 2. - P. 193-195.

- doi:10.1215/S0012-7094-57-02425-0.

39. Korkmaz R. Dense inverse subsemigroups of a topological inverse semigroup // Semigroup Forum. - 2009. - 78, No. 3. - P. 528-535.
40. Korkmaz R. On the closure of $B_{[-\infty,+\infty)}^{2} / /$ Semigroup Forum. - 1997. - 54, No. 2. P. 166-174.
41. Lawson M. Inverse semigroups. The theory of partial symmetries. - Singapore: World Sci., 1998. - xiii+411 p.
42. Mesyan Z., Mitchell J. D., Morayne M., Péresse Y. H. Topological graph inverse semigroups // Topology Appl. - 2016. - 208. - P. 106-126.
43. Petrich M. Inverse semigroups. - New York: John Wiley \& Sons, 1984. - 674 p.
44. Ruppert W. Compact semitopological semigroups: An intrinsic theory // Lect. Notes Math. - Berlin: Springer, 1984. - 1079. - 259 p.

НАПІВТОПОЛОГІЧНІ БІЦИКЛІЧНІ РОЗШИРЕННЯ ЛІНІЙНО ВПОРЯДКОВАНИХ ГРУП

Підмножину $A \subseteq G$ лінійно впорядкованої групи G називають трансляиійною, якщо для довілъних $x, y, z \in A, y<x$, елемент $x \cdot y^{-1} \cdot z \in A$. Описано природний частковий порядок i розв'язки рівнянь на півгрупі $B(A)$ зсувів додатних конусів множини A. Вивчається топологізаиія півгрупи $B(A)$. Зокрема, показано, що для довілъної зліченної лінійно впорядкованої групи G н непорожнъої трансляиійної множини $A, A \subseteq G$, кожна берівсъка трансляййно неперервна T_{1}-топологія τ на $B(A)$ є дискретною. Також доведено, що для довілъної лінійно нещільно впорядкованої групи G і непорожнъої трансляиійної множини A кожна трансляиійно неперервна гаусдорфова топологія τ на півгрупі $B(A)$ є дискретною.

ПОЛУТОПОЛОГИЧЕСКИЕ БИЦИКЛИЧЕСКИЕ РАСШИРЕНИЯ

 ЛИНЕЙНО УПОРЯДОЧЕННЫХ ГРУПППодмножество $A \subseteq G$ линейно упорядоченной группъ G называют трансляиионнъл, если для произволънъх $x, y, z \in A, y<x$, элемент $x \cdot y^{-1} \cdot z \in A$. Описан естественнъй частичньй порядок и решения уравнений на полугруппе $B(A)$ сдвигов положительных конусов множества A. Изучается топологизация полугруппъ $B(A)$. В частности, показано, что для произвольной счётной линейно упорядоченной группъ G и непустого трансляиионного множества $A, A \subseteq G$, каждая бэровская трансляиионно непрерьвная T_{1}-топология τ на $B(A)$ является дискретной. Также доказано, что для произволъной линейно неплотно упорядоченной группъ G и непустого трансляиионного множества A каждая трансляиионно непрерывная гаусдорфова топология τ на полугруппе $B(A)$ является дискретной.

Ivan Franko Nat. Univ. of L’viv, L’viv

