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ON SEMITOPOLOGICAL BICYCLIC EXTENSIONS OF 
LINEARLY ORDERED GROUPS 
 

For a linearly ordered group G  let us define a subset A G⊆  to be a shift-set if 

for any , ,x y z A∈  with y x<  we get 1x y z A−⋅ ⋅ ∈ . We describe the natural 

partial order and solutions of equations on the semigroup ( )B A  of shifts of 

positive cones of A . We study topologizations of the semigroup ( )B A . In 

particular, we show that, for an arbitrary countable linearly ordered group G  and 
a non-empty shift-set A  of G , every Baire shift-continuous 1T -topology τ  on 

( )B A  is discrete. Also we prove that, for an arbitrary linearly non-densely ordered 

group G  and a non-empty shift-set A  of G , every shift-continuous Hausdorff 
topology τ  on the semigroup ( )B A  is discrete.  

 
Introduction and preliminaries. We shall follow the terminology of [17, 

21, 23, 27, 36, 43, 44]. 
A semigroup is a non-empty set with a binary associative operation. A 

semigroup S  is called inverse if for any x S∈  there exists a unique y S∈  

such that x y x x⋅ ⋅ =  and y x y y⋅ ⋅ = . Such an element y  in S  is called the 

inverse of x  and denoted by 1x− . The map defined on an inverse semigroup 

S  which maps every element x  of S  to its inverse 1x−  is called the 
inversion. 

For a semigroup S  by ( )E S  we denote the set of idempotents in S. If S  
is an inverse semigroup, then ( )E S  is closed under multiplication and we shall 
refer to ( )E S  as the band of S . A semilattice is a commutative semigroup of 
idempotents. 

Let Xℑ  denote the set of all partial one-to-one transformations of an in-

finite set X  together with the following semigroup operation: ( ) ( )x xαβ = α β  

if dom ( ) dom | domx y y∈ αβ = ∈ α α ∈ β{ } , for , Xα β ∈ ℑ . The semigroup Xℑ  

is called the symmetric inverse semigroup over the set X  (see [21].). The sym-
metric inverse semigroup was introduced by Wagner [1] and it plays a major 
role in the theory of semigroups. 

The bicyclic monoid ( , )C p q  is the semigroup with the identity 1  genera-

ted by two elements p  and q  subjected only to the condition 1pq = . The bi-

cyclic monoid is a combinatorial bisimple F -inverse semigroup and it plays an 
important role in the algebraic theory of semigroups and in the theory of to-
pological semigroups. For example the well-known Andersen’s result [9] states 
that a (0 )− simple semigroup is completely (0 )−  simple if and only if it does 
not contain the bicyclic monoid. The bicyclic monoid does not embed into 
stable semigroups [38]. 

Recall from [27] that a partially-ordered group is a group ( , )G ⋅  equipped 

with a translation-invariant partial order ≤ ; in other words, the binary 
relation ≤  has the property that, for all , ,a b g G∈ , if a b≤  then a g b g⋅ ≤ ⋅  

and g a g b⋅ ≤ ⋅ . 

By e  we denote the identity of a group G . The set :G x G e x+ = ∈ ≤{ }  

in a partially ordered group G  is called the positive cone of G  and satisfies 
the properties: 
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1°) G G G+ + +⋅ ⊆ ; 

2°) 1( )G G e+ + − =∩ { } ; 

3°) 1x G x G− + +⋅ ⋅ ⊆  for each x G∈ . 

Any subset P  of a group G  that satisfies the conditions 1°–3° induces a 

partial order on G  ( x y≤  if and only if 1x y P− ⋅ ∈ ) for which P  is the 

positive cone. An elements of the set \G e+ { }  is called positive. 

A linearly ordered or totally ordered group is an ordered group G  whose 
order relation « ≤ » is total (see [16] and [20]). 

From now on we shall assume that G  is a non-trivial linearly ordered 
group. 

For every g G∈  the set  

 ( ) :G g x G g x+ = ∈ ≤{ } . 

is called the positive cone on element g  in G . 

For arbitrary elements ,g h G∈  we consider a partial map :g
h G Gα →  

defined by the formula 

 1( ) g
hx x g h−α = ⋅ ⋅ , for ( )x G g+∈ . 

We observe that Lemma XIII.1 from [16] implies that for such partial map 

:g
h G Gα →  the restriction : ( ) ( )g

h G g G h+ +α →  is a bijective map. 

We consider the semigroups 

 ( ) : : ,g
hB G G G g h G= α → ∈{ } , 

 ( ) : : ,g
hB G G G g h G+ += α → ∈{ } , 

endowed with the operation of the composition of partial maps. Simple verifi-
cations show that 

 g k a
bhα ⋅ α = αl , where 1( )a h k h g−= ∨ ⋅ ⋅  and 1( )b h k k−= ∨ ⋅ ⋅ l , (1) 

for , , ,g h k G∈l , where by h k∨  we denote the join of h  and k  in the 

linearly ordered set ( , )G ≤ . Therefore, property 1° of the positive cone and 

condition ( )1  imply that ( )B G  and ( )B G+  are subsemigroups of Gℑ . 

By Proposition 1.2 from [31] for a linearly ordered group G  the following 
assertions hold: 

 (i) elements g
hα  and h

gα  are inverse of each other in ( )B G  for all 

,g h G∈  (respectively, ( )B G+  for all ,g h G+∈ ); 

 (ii) an element g
hα  of the semigroup ( )B G  (respectively, ( )B G+ ) is an 

idempotent if and only if g h= ; 

(iii) ( )B G  and ( )B G+  are inverse subsemigroups of Gℑ ; 

(iv) the semigroup ( )B G  (respectively, ( )B G+ ) is isomorphic to the set 

GS G G= ×  (respectively, GS G G+ + += × ) with the following semi-

group operation: 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), ,

c b a d b c
a b c d a d b c

a b c d b c

−

−

 ⋅ ⋅ <
= =
 ⋅ ⋅ >

 (2) 
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where , , ,a b c d G∈  (respectively, , , ,a b c d G+∈ ). 
It is obvious that: 
1°) if G is isomorphic to the additive group of integers ( , )+Z  with usual 

linear order ≤ , then the semigroup ( )B G+  is isomorphic to the bicyclic mo-

noid ( , )C p q  and the semigroup ( )B G+  is isomorphic to the extended bicyclic 

semigroup CZ  (see [24]); 

2°) if G  is the additive group of real numbers ( , )+R  with usual linear 

order ≤ , then the semigroup ( )B G  is isomorphic to 2
( , )B −∞ ∞  (see [40, 39] ) and 

the semigroup ( )B G+  is isomorphic to 1
0, )B ∞[  (see [4–8]); 

3°) the semigroup ( )B G+  is isomorphic to the semigroup ( )S G  which is 
defined in [25, 26]. 

In the paper [31] semigroups ( )B G  and ( )B G+  are studied for a linearly 

ordered group G . That paper describes Green’s relations on ( )B G  and ( )B G+  
and their bands and shows that these semigroups are bisimple. Also in [31] it 
is proved that, for a commutative linearly ordered group G , all non-trivial 

congruences on the semigroups ( )B G  and ( )B G+  are group congruences if 
and only if the group G  is Archimedean; and the structure of group con-

gruences on the semigroups ( )B G  and ( )B G+  is described. 
In this paper we present a more general construction than the semi-

groups ( )B G  and ( )B G+ . Namely, for a linearly ordered group G  let us 
define a subset A G⊆  to be a shift-set if for any , ,x y z A∈  with y x<  we 

get 1x y z A−⋅ ⋅ ∈ . For any shift-set A G⊆  let  

 ( ) : ( ) ( ) : ,a
bB A G a G b a b A+ += α → ∈{ }  

be the semigroup of partial bijections defined by the formula 

 1( ) a
bx x a b−α = ⋅ ⋅  for ( )x G a+∈ . 

The semigroup ( )B A  is isomorphic to the semigroup AS A A= ×  endowed 

with the binary operation defined by formula (2). For A G=  the semigroup 

( )B A  coincides with ( )B G  and for A G+=  it coincides with the semigroup 

( )B G+ . 
Later in this paper for a non-empty shift-set A G⊆  we identify the 

semigroup ( )B A  with the semigroup AS  endowed with the multiplication 

defined by formula (2). We observe that ( )B A  is an inverse subsemigroup of 
( )B G  for any non-empty shift-set A  of a linearly ordered group G . 

Moreover, the results of [31] imply that an element ( , )a b  of ( )B A  is an 
idempotent iff a b= , and ( , )b a  is inverse of ( , )a b  in ( )B G . 

We recall that a topological space X  is said to be 

• locally compact, if every point x X∈  has an open neighbourhood with 
the compact closure; 

• Čech-complete, if X  is Tychonoff and X  is a Gδ -set in its Čech –

Stone compactification Xβ ; 

• Baire, if, for each sequence 1( )i iU ∞
=  of open dense subsets of X , the 

intersection 
1

i
i

U
∞

=
∩  is a dense subset in X . 



34 

Every Hausdorff locally compact space is Čech-complete, and every 
Čech-complete space is Baire (see [23]). 

A semitopological (topological) semigroup is a topological space with a se-
parately continuous (jointly continuous) semigroup operation. 

A topology τ  on a semigroup S  is called: 
• semigroup if ( , )S τ  is a topological semigroup; 

• shift-continuous if ( , )S τ  is a semitopological semigroup. 

The bicyclic monoid admits only the discrete semigroup Hausdorff topo-
logy and if a topological semigroup S  contains it as a dense subsemigroup 
then ( , )C p q  is an open subset of S  [22]. We observe that the openness of 

( , )C p q  in its closure easily follows from the non-topologizability of the bicyc-

lic monoid, because the discrete subspace D  is open in its closure D  in any 

1T -space containing D . Bertman and West in [15] extend this result for the 

case of Hausdorff semitopological semigroups. Stable and Γ -compact topologi-
cal semigroups do not contain the bicyclic monoid [10, 37]. The problem of an 
embedding of the bicyclic monoid into compact-like topological semigroups 
studied in [11, 12, 33]. Independently Taimanov in [3] constructed a semigroup 

æA  of cardinality æ  which admits only the discrete semigroup topology. Also, 
Taimanov [2] gave sufficient conditions on a commutative semigroup to have 
a non-discrete semigroup topology. In the paper [29] it was shown that for the 
Taimanov semigroup æA  from [3] the following conditions hold: every 1T -to-

pology τ  on the semigroup æA  such that ( , )τæA  is a topological semigroup is 

discrete; for every 1T -topological semigroup which contains æA  as a subsemi-

group, æA  is a closed subsemigroup of S ; and every homomorphic non-iso-

morphic image of æA  is a zero-semigroup. Also in the paper [24] it is proved 
that the discrete topology is the unique shift-continuous Hausdorff topology 
on the extended bicyclic semigroup CZ . Also, for many (0 )− bisimple semi-

groups of transformations S  the following statement holds: every shift-conti-
nuous Hausdorff Baire (in particular locally compact) topology S  is discrete 
(see [18, 19, 32, 34, 35]). In the paper [42] Mesyan, Mitchell, Morayne and Pé-
resse showed that if E  is a finite graph, then the only locally compact Haus-
dorff semigroup topology on the graph inverse semigroup ( )G E  is the discrete 
topology. In [14] it was proved that the conclusion of this statement also holds 
for graphs E  consisting of one vertex and infinitely many loops (i.e., infinite-
ly-generated polycyclic monoids). A surprising dichotomy for the bicyclic mo-

noid with adjoined zero 0 ( , ) 0C C p q= C{ }  was proved in [28]: every Hausdorff 

locally compact semitopological bicyclic monoid 0C  with adjoined zero is 
either compact or discrete. The above dichotomy was extended by Bardyla in 
[13] to locally compact λ -polycyclic semitopological monoids and to locally 
compact semitopological interassociates of the bicyclic monoid [30]. 

For a linearly ordered group G  and a non-empty shift-set A  of G , the 
natural partial order and solutions of equations on the semigroup ( )B A  are 
described. We study topologizations of the semigroups ( )B A . In particular, we 
show that for an arbitrary countable linearly ordered group G  and a non-
empty shift-set A  of G , every Baire shift-continuous 1T -topology τ  on ( )B A  
is discrete. We also prove that for an arbitrary linearly non-densely ordered 
group G  and a non-empty shift-set A  of G , every shift-continuous 
Hausdorff topology τ  on the semigroup ( )B A  is discrete, and hence ( ( ), )B A τ  
is a discrete subspace of any Hausdorff semitopological semigroup which 
contains ( )B A  as a subsemigroup. 
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1. Solutions of some equations and the natural partial order on the se-
migroup ( )B A . It is well known that every inverse semigroup S  admits the 
natural partial order: 

 s t°  if and only if s et=  for some ( )e E S∈ . 

This order induces the natural partial order on the semilattice ( )E S , and for 
arbitrary ,s t S∈  the following conditions are equivalent: 

 (α): s t° ; (β): 1s ss t−= ; (γ): 1s ts s−=  (3) 

(see [41, Chap. 3]).  
Proposition 1. Let G  be a linearly ordered group and A  be a non-empty 

shift-set in G . Then the following assertions hold: 

(i) if ( , ), ( , ) ( ( ))g g h h E B A∈  then ( , ) ( , )g g h h°  if and only if g h≥  in A ; 

 (ii) the semilattice ( ( ))E B A  is isomorphic to A  considered as ∨ -semilat-
tice under the isomorphism ( ( )) , : ( , )i : E B A A i g g g→ → ; 

 (iii) ( , ) ( , )g h kR l  in ( )B A  if and only if g k=  in A ; 

 (iv) ( , ) ( , )g h kL l  in ( )B A  if and only if h = l  in A ; 

 (v) ( , ) ( , )g h kH l  in ( )B A  if and only if g k=  and h = l  in A , and hence 

every H -class in ( )B A  is a singleton;  

 (vi) ( )B A  is a bisimple semigroup and hence it is simple; 

P r o o f.  Assertions (i) and (ii) are trivial, (iii)–(v) follow from Propo-
sition 2.1 from [31] and Proposition 3.2.11 from [41], and (vi) follows from Pro-
position 3.2.5 from [41].   

Later we need the following lemma, which describes the natural partial 
order on the semigroup ( )B A . 

Lemma 1. Let G  be a linearly ordered group and A  be a non-empty 
shift-set in G . Then for arbitrary elements ( , ), ( , ) ( )a b c d B A∈  the following 
conditions are equivalent: 

 (i) ( , ) ( , )a b c d°  in ( )B A ; 

 (ii) 1 1a b c d− −⋅ = ⋅  and a c≥  in A ; 

 (iii) 1 1b a d b− ⋅ −⋅ = ⋅  and b d≥  in A . 

P r o o f.  (i) ⇒ (ii). The equivalence of conditions (α) and (β) in ( )3  im-

plies that ( , ) ( , )a b c d°  in ( )B A  if and only if 1( , ) ( , )( , ) ( , )a b a b a b c d−= . 
Therefore we have that 

 1( , ) ( , )( , ) ( , ) ( , )( , )( , ) ( , )( , )a b a b a b c d a b b a c d a a c d−= = = =  

 

1

1

( , ), ,
( , ), ,

( , ), .

c a a d a c
c d a c

a a c d a c

−

−

 ⋅ ⋅ <
= =
 ⋅ ⋅ >

 

This implies that 

 
1

( , ), ,
( , ) ( , ), ,

( , ), ,

c d a c
a b c d a c

a a c d a c−

 <
= =
 ⋅ ⋅ >
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and hence the condition ( , ) ( , )a b c d°  in ( )B A  implies that 1 1a b c d− −⋅ = ⋅  
and a c≥  in A . 

(ii) ⇒ (i). Fix arbitrary ( , ), ( , ) ( )a b c d B A∈  such that 1 1a b c d− −⋅ = ⋅  and 
a c≥  in A . Then we have that 

 1( , ) ( , )( , ) ( , ) ( , )( , )( , )a b a b a b c d a b b a c d−= = =  

 1( , )( , ) ( , ) ( , )a a c d a a c d a b−= = ⋅ ⋅ =  

and hence ( , ) ( , )a b c d°  in ( )B A . 

The proof of the equivalence (ii) ⇔ (iii) is trivial.  

The definition the semigroup operation in ( )B A  implies that ( , )a b =  

( , )( , )( , )a c c d d b=  for arbitrary elements , , ,a b c d  of the group A . The fol-
lowing two propositions give descriptions of solutions of some equations in the 
semigroup ( )B A . 

Proposition 2. Let G  be a linearly ordered group, A  be a non-empty 
shift-set in G , and , , ,a b c d  be arbitrary elements of A . Then the following 
conditions hold: 

 (i) ( , ) ( , )( , )a b a c x y=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )c b x y°  in 

( )B A ; 

 (ii) ( , ) ( , )( , )a b x y d b=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )a d x y°  in 

( )B A ; 

(iii) , ( , )( , )( , )a b a c x y d b=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )c d x y°  in 

( )B A . 

P r o o f.  (i) (⇒). Suppose that ( , ) ( , )( , )a b a c x y=  for some ( , ) ( )x y B A∈ . 
Then we have that 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), .

a c x y c x
a c x y a y c x

x c a y c x

−

−

 ⋅ ⋅ ⋅ >
= =
 ⋅ ⋅ <

 

Then in the case when c x>  we get that 1b c x y−= ⋅ ⋅  and hence Lem-

ma 1 implies that ( , ) ( , )c b x y≤  in ( )B A . Also, in the case when c x=  we 

have that b y= , which implies the inequality ( , ) ( , )c b x y≤  in ( )B A . The case 

c x<  does not hold because the group operation on G  implies that 
1x c a a−⋅ ⋅ < . 
(⇐). Suppose that the relation ( , ) ( , )c b x y≤  holds in ( )B A . Then by Lem-

ma 1 we have that 1 1c b x y− −⋅ = ⋅  and c x≥  in A , and hence the semigroup 

operation of ( )B A  implies that 

 1 1( , )( , ) ( , ) ( , ) ( , )a c x y a c x y a c c b a b− −= ⋅ ⋅ = ⋅ ⋅ = . 

The proof of statement (ii) is similar to statement (i). 

(iii) (⇒). Suppose that ( , ) ( , )( , )( , )a b a c x y d b=  for some ( , ) ( )x y B A∈ . 
Then we have that 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), .

a c x y c x
a c x y a y c x

x c a y c x

−

−

 ⋅ ⋅ ⋅ >
= =
 ⋅ ⋅ <
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Therefore, 
(a) if c x> , then 

 1( , )( , )( , ) ( , )( , )a c x y d b a c x y d b−= ⋅ ⋅ =  

 

1 1 1

1

1 1 1

( , ), ,

( , ), ,

( , ), ;

a c x y d b c x y d

a b c x y d

d y x c a b c x y d

− − −

−

− − −

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >
= ⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ <

 

(b) if c x= , then 

 

1

1

( , ), ,
( , )( , )( , ) ( , )( , ) ( , ), ,

( , ), ;

a y d b y d
a c x y d b a y d b a b y d

d y a b y d

−

−

 ⋅ ⋅ ⋅ >
= = =
 ⋅ ⋅ <

 

(c) if c x< , then 

 

1 1

1 1

1 1

( , ), ,

( , )( , )( , ) ( , )( , ) ( , ), ,

( , ), .

x c a y d b y d

a c x y d b x c a y d b x c a b y d

d y x c a b y d

− −

− −

− −

 ⋅ ⋅ ⋅ ⋅ ⋅ >
= ⋅ ⋅ = ⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ <

 

Then the equality ( , ) ( , )( , )( , )a b a c x y d b=  implies that  

in case (a):  if c x> , then 1 1c x y d e− −⋅ ⋅ ⋅ =  in G , 

in case (b):  if c x= , then y d= , 

and the case (c) does not hold. Hence, by Lemma 1 we get that ( , ) ( , )c d x y°  

in ( )B A . 

(⇐). Suppose that the relation ( , ) ( , )c d x y≤  holds in ( )B A . Then by Lem-

ma 1 we have that 1 1c d x y− −⋅ = ⋅  and c x≥  in A , and hence the semigroup 

operation of ( )B A  implies that 

 1 1 1( , )( , )( , ) ( , )( , )( , ) ( , )( , )a c x y d b a c x y c x y b a c c x y y x b− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =  

 1( , )( , ) ( , )( , ) ( , )a c c x x b a c c b a b−= ⋅ ⋅ = = , 

because 1c x y y−⋅ ⋅ ≥  in A . 

Proposition 3. Let G  be a linearly ordered group, A  be a non-empty 
shift-set in G , and , , ,a b c d  be arbitrary elements of A . Then the following 
conditions hold: 

 (i)  if a c<  in A , then the equation ( , ) ( , )( , )a b c d x y=  has no solutions 

in ( )B A ; 

 (ii) if a c>  in A , then the equation ( , ) ( , )( , )a b c d x y=  has the unique 

solution 1( , ) ( , )x y a c d b−= ⋅ ⋅  in ( )B A ; 

(iii) the equation ( , ) ( , )( , )a b a d x y=  has the unique solution ( , ) ( , )x y d b=  

in ( )B A ; 

(iv) if b d<  in A  then the equation ( , ) ( , )( , )a b x y c d=  has no solutions in 

( )B A ; 

(v)  if b d>  in A , then the equation ( , ) ( , )( , )a b x y c d=  has the unique 

solution 1( , ) ( , )x y a b d c−= ⋅ ⋅  in ( )B A ; 

(vi) the equation ( , ) ( , )( , )a b x y c b=  has the unique solution ( , ) ( , )x y a c=  

in ( )B A . 
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P r o o f.  (i). Assume that a c< . Then formula (2) implies that d x<  in 

A  and hence 1( , ) ( , )a b x d c y−= ⋅ ⋅ . This implies that 1a x d c−= ⋅ ⋅  and b y= . 

Since d x< , the equality 1a x d c−= ⋅ ⋅  implies that a c> , which contradicts 
the assumption of statement (i). 

(ii). Assume that a c> . Then formula (2) implies that d x<  in A  and 

hence we have that 1( , ) ( , )a b x d c y−= ⋅ ⋅ . This implies the equalities 
1x a c d−= ⋅ ⋅  and y b= . 

(iii) follows from formula (2). 
The proofs of statements (iv), (v) and (vi) are dual to the proofs of (i), 

(ii), and (iii), respectively.   
Later we need the following proposition which follows from formula (2) 

and describes right and left principal ideals in the semigroup ( )B A  for a non-
empty shift-set A  in G . 

Proposition 4. Let G  be a linearly ordered group and A  be a non-empty 
shift-set in G . Then the following conditions hold: 

 (i) ( , ) ( ) ( , ) ( ) :a a B A x y B A x a= ∈ ≥{  in A} ; 

 (ii) ( )( , ) ( , ) ( ) :B A a a x y B A y a= ∈ ≥{  in A} . 

2. On topologizations of the semigroup ( )B A . It is obvious that every 
left (right) topological group G  with an isolated point is discrete. This implies 
that every countable 1T -Baire left (right) topological group is a discrete space, 
too. Later we shall show that the similar statement holds for Baire se-
mitopological semigroup ( )B A  over a non-empty shift-set A  of a countable 
linearly ordered group G . 

For an arbitrary element ( , )a b  of the semigroup ( )B A  we denote 

 ( , ) ( , ) ( ) : ( , ) ( , )a b x y B A a b x y≤↑ = ∈ °{ }  . 

Lemma 2. Let G  be a linearly ordered group, A  be a non-empty shift-set 
in G , and τ  be a shift-continuous topology on ( )B A  such that ( ( ), )B A τ  
contains an isolated point. Then the space ( ( ), )B A τ  is discrete. 

P r o o f.  Suppose that ( , )a b  is an isolated point of the topological space 
( ( ), )B A τ . Assume that for an arbitrary u A∈  there exists c A∈  such that 

u c> , which implies 1d c u b b−= ⋅ ⋅ < . By Proposition 3(v) the equation 
( , ) ( , )( , )a b x y c d=  has the unique solution 

 1 1 1( , ) ( , ) , ( )x y a b d c a b c u b c− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =( )  

 1 1( , ) ( , )a b b u c c a u− −= ⋅ ⋅ ⋅ ⋅ =  

in ( )B A . If u  is the smallest element of A , then by Proposition 3(vi), the 
equation ( , ) ( , )( , )a b x y u b=  has the unique solution ( , ) ( , )x y a u= . In both 

cases the continuity of right translations in ( ( ), )B A τ  implies that for arbitrary 
u A∈  the pair ( , )a u  is an isolated point of the topological space ( ( ), )B A τ .  

Fix an arbitrary element v  of A . Assume that there exists d A∈  such 

that d v< , which implies 1c d v a a−= ⋅ ⋅ < . Then by Proposition 3(ii), the 
equation ( , ) ( , )( , )a u c d x y=  has the unique solution 

 1 1 1( , ) ( , ) ( ) ,x y a c d u a d v a d u− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =( )  

 1 1( , ) ( , )a a v d d u v u− −= ⋅ ⋅ ⋅ ⋅ =  
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in ( )B A . If v  is the smallest element of A , then by Proposition 3(iii), the 
equation ( , ) ( , )( , )a u a v x y=  has the unique solution ( , ) ( , )x y v u= . Since ( , )a u  

is an isolated point of ( ( ), )B A τ , in both cases the continuity of left translations 
in ( ( ), )B A τ  implies that for arbitrary u A∈  the pair ( , )v u  is an isolated point 

of the topological space ( ( ), )B A τ . This completes the proof of the lemma.  

Theorem 1. Let A  be a countable non-empty shift-set in a linearly 
ordered group G  and τ  be a 1T -Baire shift-continuous topology on ( )B A . 

Then the topological space ( ( ), )B A τ  is discrete. 

P r o o f.  By Proposition 1.30 from [36] every countable Baire 1T -space 

contains a dense subspace of isolated points, and hence the space ( ( ), )B A τ  

contains an isolated point. Then we apply Lemma 2.   
Theorem 1 implies the following 
Corollary 1. Let A  be a countable non-empty shift-set in a linearly 

ordered group G , and τ  be a shift-continuous Čech complete (locally compact) 

1T -topology on ( )B A . Then the topological space ( ( ), )B A τ  is discrete. 

Remark 1. Let R  be the set of reals with usual topology. It is obvious 
that S = ×R R R  with the semigroup operation 

 
( , ), ,

( , )( , ) ( , ), ,
( , ), ,

a b c d b c
a b c d a d b c

a b c d b c

− + <= =
 − + >

 

is isomorphic to the semigroup ( )B G , where G  is the additive group of reals 
( , )+R  with usual linear order ≤ . Then simple verifications show that S  with 

the product topology pτ  is a topological inverse semigroup (also, see [39, 40]). 

Then the subspace ( , ) :S x y S x= ∈Q R{  and y  are rational}  with the indu-

ced semigroup operation from S  is a countable non-discrete non-Baire 
topological inverse subsemigroup of ( , )pS τ . Also, the same we get in the case 

of subsemigroup ( , ) : 0S x y S x+ = ∈ ≥Q Q{  and 0y ≥ }  of ( , )pS τ  (see [4–8]). 

The above arguments show that the condition in Theorem 1 that τ  is a 1T -
Baire topology is essential.  

Recall that a linearly ordered group G  is said to be densely ordered if 
for every positive element g G∈  there exists a positive element h G∈  such 

that h g< . 

Remark 2. It is obviously that for a linearly ordered group G  the follo-
wing conditions are equivalent: 

 (i) G  is not densely ordered; 

(ii)  for every g G∈  there exists a unique g G+ ∈  such that 

( ) ( )G g G g g+ + + =\ { } ; 

(iii) for every g G∈  there exists a unique g G− ∈  such that 

( ) ( )G g G g g+ + + =\ { } , where ( )G g−  is the negative cone on the element 

g , i.e., ( ) :G g x G x g− = ∈ ≤{ } . 

In what follows, for a linearly ordered group G  which is not densely 

ordered and an arbitrary element g  of a non-empty shift-set A  in G  by g+  

(respectively, g− ) we denote the minimum (respectively, maximum) element 

of the set ( ) \G g g A+ ∩{ }  (respectively, ( ) \G g g A− ∩{ } ).  
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Theorem 2. Let G  be a linearly ordered group which is not densely orde-
red and A  be a non-empty shift-set in G . Then every shift-continuous 
Hausdorff topology τ  on the semigroup ( )B A  is discrete, and hence ( )B A  is a 
discrete subspace of any semitopological semigroup which contains ( )B A  as a 
subsemigroup. 

P r o o f.  We fix an arbitrary idempotent ( , )a a  of the semigroup ( )B A  
and suppose that ( , )a a  is a non-isolated point of the topological space 

( ( ), )B A τ . Since the maps ( , ) : ( ) ( )a a B A B Aλ →  and ( , ) : ( ) ( )a a B A B Aρ →  

defined by the formula ( , )( , ) ( , )( , )a ax y a a x yλ =  and ( , )( , ) ( , )( , )a ax y x y a aρ =  are 

continuous retractions, we conclude that ( , ) ( )a a B A  and ( )( , )B A a a  are closed 
subsets in the topological space ( ( ), )B A τ  (see [23, Exercise 1.5.C]). For an 
arbitrary element b  of the shift-set A  in the linearly ordered group G  we 
put 
 ( , ) ( , ) ( , ) ( ) : ( , )( , ) ( , )b bDL b b x y B A x y b b b b= ∈ =[ ] { } . 

Lemma 1 and Proposition 2 imply that 

 ( , ) ( , ) ( , ) ( , ) ( ) :b bDL b b b b x x B A x b≤=↑ = ∈ ≤[ ] {  in A}  

and since right translations are continuous maps in ( ( ), )B A τ  we get that 

( , ) ( , )b bDL b b[ ]  is a closed subset of the topological space ( ( ), )B A τ  for every 

b A∈ . Then there exists an open neighbourhood ( , )a aW  of the point ( , )a a  in 

the topological space ( ( ), )B A τ  such that 

 ( , ) ( ) \ ( , ) ( ) ( )( , ) ( , )a aW B A a a B A B A a a DL a a+ + + + − −⊆ ∪ ∪( ) . 

Since ( ( ), )B A τ  is a semitopological semigroup we conclude that there 

exists an open neighbourhood ( , )a aV  of the idempotent ( , )a a  in the topological 

space ( ( ), )B A τ  such that the following conditions hold: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),     ( , ) ,     ( , )a a a a a a a a a a a aV W a a V W V a a W⊆ ⋅ ⊆ ⋅ ⊆ . 

Hence at least one of the following conditions holds: 
(a) the neighbourhood ( , )a aV  contains infinitely many points 

( , ) ( )x y B A∈  such that x y a< ≤  in the group A ;  
or 

(b) the neighbourhood ( , )a aV  contains infinitely many points 

( , ) ( )x y B A∈  such that y x a< ≤  in the group A . 
In the case (a) by Proposition 2 we have that 

 1
( , )( , )( , ) ( , ) a aa a x y a a x y W−= ⋅ ⋅ ∉ , 

because 1x y e− ⋅ ≥  in G , and in the case (b) by Proposition 2 we have that 

 1
( , )( , )( , ) ( , ) a ax y a a a y x a W−= ⋅ ⋅ ∉   

because 1y x e− ⋅ ≥  in G , which contradicts the separate continuity of the 

semigroup operation in ( ( ), )B A τ . The obtained contradiction implies that the 

set ( , )a aV  is a singleton, and hence the idempotent ( , )a a  is an isolated point of 

the topological space ( ( ), )B A τ . 
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Now, we apply Lemma 2 and get that the topological space ( ( ), )B A τ  is 

discrete.   
Theorem 2 implies the following three corollaries. 
Corollary 2. Let G  be a linearly ordered group which is not densely 

ordered and A  be a non-empty shift-set in G . Then every semigroup 
Hausdorff topology τ  on the semigroup ( )B A  is discrete. 

Corollary 3 [24]. Every shift-continuous Hausdorff topology τ  on the bi-
cyclic extended semigroup CZ  is discrete.  

Corollary 4 [15, 22]. Every shift-continuous Hausdorff topology τ  on the 
bicyclic monoid ( , )C p q  is discrete. 
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НАПІВТОПОЛОГІЧНІ БІЦИКЛІЧНІ РОЗШИРЕННЯ ЛІНІЙНО 
ВПОРЯДКОВАНИХ ГРУП 
 
Підмножину A G⊆  лінійно впорядкованої групи G  називають трансляційною, 

якщо для довільних , ,x y z A∈ , y x< , елемент 1x y z A−⋅ ⋅ ∈ . Описано природний 

частковий порядок і розв’язки рівнянь на півгрупі ( )B A  зсувів додатних конусів 

множини A . Вивчається топологізація півгрупи ( )B A . Зокрема, показано, що для 

довільної зліченної лінійно впорядкованої групи G  і непорожньої трансляційної 
множини A , A G⊆ , кожна берівська трансляційно неперервна 1T -топологія τ  

на ( )B A  є дискретною. Також доведено, що для довільної лінійно нещільно впоряд-

кованої групи G  і непорожньої трансляційної множини A  кожна трансляційно 
неперервна гаусдорфова топологія τ  на півгрупі ( )B A  є дискретною.  
 
ПОЛУТОПОЛОГИЧЕСКИЕ БИЦИКЛИЧЕСКИЕ РАСШИРЕНИЯ 
ЛИНЕЙНО УПОРЯДОЧЕННЫХ ГРУПП 
 
Подмножество A G⊆  линейно упорядоченной группы G  называют трансляци-

онным, если для произвольных , ,x y z A∈ , y x< , элемент 1x y z A−⋅ ⋅ ∈ . Описан 

естественный частичный порядок и решения уравнений на полугруппе ( )B A  

сдвигов положительных конусов множества A . Изучается топологизация полу-
группы ( )B A . В частности, показано, что для произвольной счётной линейно 

упорядоченной группы G  и непустого трансляционного  множества A , A G⊆ , 

каждая бэровская трансляционно непрерывная 1T -топология τ  на ( )B A  является 

дискретной. Также доказано, что для произвольной линейно неплотно упорядо-
ченной группы G  и непустого трансляционного  множества A  каждая трансля-
ционно непрерывная гаусдорфова топология τ  на полугруппе ( )B A  является 
дискретной.  
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