

72 © Kazymyr V.V., Karpachev I.I., 2016

 ISSN 1028-9763. Математичні машини і системи, 2016, № 2

НОВІ ІНФОРМАЦІЙНІ І ТЕЛЕКОМУНІКАЦІЙНІ ТЕХНОЛОГІЇ

UDC 004.03

V.V. KAZYMYR
*
, I.I. KARPACHEV

*

IMPROVING TIME-CRITICAL CODE PERFORMANCE WITH JNI
*
Chernihiv National University of Technology, Chernihiv, Ukraine

Анотація. Наведено аналіз використання JNI для мобільних пристроїв з ОС Android. Дослідження

JNI-процесу проведено з наданням прикладів коду, що реалізує Java-виклики С і C ++ частин про-

грам. Показано підвищення продуктивності за рахунок заміни критичних частин коду JNI анало-

гами.

Ключові слова: JNI, мобільний пристрій, критичний по часу виконання код, продуктивність коду.

Аннотация. Приведен анализ использования JNI для мобильных устройств с ОС Android. Исследо-

вание JNI-процесса проведено с предоставлением примеров кода, реализующего Java-вызовы С и C

++ частей программ. Показано повышение производительности за счет замены критических ча-

стей кода JNI аналогами.

Ключевые слова: JNI, мобильное устройство, критический по времени код, продуктивность кода.

Abstract. Analysis of usage of JNI for mobile devices with OS android is provided. JNI-workflow is ex-

plored including usage of code examples which realizes Java calls C and C++ parts of programs. Improv-

ing of performance due to replacing time-critical parts of code with JNI analogs is shown.

Keywords: JNI, mobile device, time-critical code, code-performance.

1. Introduction

One of Java's greatest advantages is that its design allows for cross-platform capability. This fea-

ture, however, is also a bug with regard to other aspects of programming. It is constrained in its

interaction with the local machine, and thus the local machine instructions cannot be utilized to

achieve the full performance potential of the machine. To ameliorate this weakness, there is the

Java Native Interface, a Java platform that interacts with the machine on the local level. It can be

employed to allow the use of legacy code and more interaction with the hardware for efficient

performance. This article explores the JNI workflow, provides code examples of how Java calls

in both C and C++, and introduces the Android Native Development Kit (NDK), which compiles

the C/C++ code into applications that can run on an Android device.

2. JNI overview

The Java Native Interface (JNI) is the native programming interface for Java that is part of the

JDK. By writing programs using the JNI, developer ensures that the code is completely portable

across all platforms.

The JNI allows Java code that runs within a Java Virtual Machine (VM) to operate with

applications and libraries written in other languages, such as C, C++, and assembly.

JNI is used to write native methods to handle those situations when an application cannot

be written entirely in the Java programming language. For example, developer may need to use

native methods and the JNI in the following situations [1]:

1. The standard Java class library may not support the platform-dependent features needed

by the application.

2. An existing library or application written in another programming language may be al-

ready available and developer wishes to make it accessible to Java applications.

ISSN 1028-9763. Математичні машини і системи, 2016, № 2 73

Fig. 1. JNI Architecture

3. Developer may want to implement a small portion of time-critical code in a lower- level

programming language, such as assembly, and then having Java application call these functions.

Programming through the JNI framework lets developer to use native methods to do many

operations. Native methods may represent legacy applications or they may be written explicitly to

solve a problem that is best handled outside of the Java programming environment.

The JNI framework lets native methods utilize Java objects in the same way that Java code

uses these objects. A native method can create Java objects, including arrays and strings, and then

inspect and use these objects to perform its tasks. A native method can also inspect and use ob-

jects created by Java application code. A native method can even update Java objects that it creat-

ed or that were passed to it, and these updated objects are available to the Java application. Thus,

both the native language side and the Java side of an application can create, update, and access

Java objects and then share these objects between them.

Native methods can also easily call Java methods. Often, developer will already have an

implemented library of Java methods. The native method does not need to repeat functionality

already incorporated in existing Java methods. The native method, using the JNI framework, can

call the existing Java method, pass it the required parameters, and get the results back when the

method completes.

The JNI enables the advantages of the Java programming language from the native meth-

ods. In particular, developer can catch and throw exceptions from the native method and have

these exceptions handled in the Java application. Native methods can also get information about

Java classes. By calling special JNI functions, native methods can load Java classes and obtain

class information. Finally, native methods can use the JNI to perform runtime type checking.

It is easy to see that the JNI serves as the glue between Java and native applications. The

figure 1 shows how the JNI ties the C side of an application to the Java side.

3. Boosting performance with JNI

Mobile JNI or Java Native Interface is

the interface between the Java code run-

ning in a JVM and the native code run-

ning outside the JVM. It works both

ways that is developer can use JNI to call

native code from Java programs and to

call Java code from the native code. The

native code normally resides within a

library (.so file) and is typically written

in C/C++ [2].

The main reason to use JNI in a

Java program is to bypass performance

bottlenecks – execute heavy number

crunching in native code and get rid of the overhead that the instruction interpretation in the JVM

introduces.

On Android, in order to prevent fragmentation, developers are only allowed to use the fol-

lowing libraries in the native code:

– libc (C library) headers;

– libm (math library) headers;

– JNI interface headers;

– libz (Zlib compression) headers;

– liblog (Android logging) header;

– OpenGL ES 1.1 (3D graphics library) headers (since 1.6);

74 ISSN 1028-9763. Математичні машини і системи, 2016, № 2

– A Minimal set of headers for C++ support.

The following example demonstrates how to transform a time consuming Java method

with a lot of number crunching into a native declared method where the real work is performed in

native code.

Here is the time consuming Java method:

public double compare(int[] sourceData,int[] targetData, double tar-

getError) {

double error = 0.0D;

for (int index = 0; index < targetData.length; index++) {

int c1 = sourceData[index];

int c2 = targetData[index];

int b = (c1 >> 16 & 255) - (c2 >> 16 & 255);

int g = (c1 >> 8 & 255) - (c2 >> 8 & 255);

int r = (c1 & 255) - (c2 & 255);

error += r * r + g * g + b * b;

if (error > targetError)

return error;

}

return error;

}

The sourceData and targetData arguments represent the pixels of two Bitmaps. In short the

method calculates the sum of the square distance in color between two images, pixel by pixel. If

compare two 200×200 pixels images the for-loop will run 40000 times. This is a typical candidate

for when to use JNI.

This is what the function will look like when written in C:
static jdouble compareNative(JNIEnv *env, jobject thiz, jintArray

sourceArr , jobject targetArr, jdouble targetError){

jdouble error = 0.0;

int index, c1, c2, b, g, r = 0;

jint *sarr, *tarr;

sarr = (*env)->GetIntArrayElements(env, sourceArr, NULL);

tarr = (*env)->GetIntArrayElements(env, targetArr, NULL);

if (sarr == NULL || tarr == NULL) return targetError;

int size = (*env)->GetArrayLength(env, sourceArr) ;

for (index = 0; index < size; index++) {

c1 = sarr[index];

c2 = tarr[index];

b = (c1 >> 16 & 255) - (c2 >> 16 & 255);

g = (c1 >> 8 & 255) - (c2 >> 8 & 255);

r = (c1 & 255) - (c2 & 255);

error += r * r + g * g + b * b;

if (error > targetError){

(*env)->ReleaseIntArrayElements(env, sourceArr, sarr, 0);

(*env)->ReleaseIntArrayElements(env, targetArr, tarr, 0);

return error;

}

}

(*env)->ReleaseIntArrayElements(env, sourceArr, sarr, 0);

(*env)->ReleaseIntArrayElements(env, targetArr, tarr, 0);

return error;

}

All native functions must have the JNIEnv (a reference to the virtual machine itself) and

the jobject (a reference to the “this pointer” of the Java object where the native method call comes

from) as the first two arguments. Then it is possible to add custom arguments.

ISSN 1028-9763. Математичні машини і системи, 2016, № 2 75

It is necessary to find a way to make the virtual machine direct the calls to the native de-

clared Java method to the native C function. This is done using the registerNatives function of the

JNIEnv. If developer uses the boilerplate C code from above two things are to be done:

1. Setting the classpath variable to the full class name of the Java class (including package

name). Replacing the dots with slashes.

2. For each native declared method in Java, inserting a JNINativeMethod struct into the

methods[] array.

For this example it will look like this
static const char *classPathName =

"com/jayway/MyComparator";

static JNINativeMethod methods[] = {

// nameOfNativeMethod, methodSignature, methodPointer

{"compare", "([I[ID)D", (void*)compareNative },

};

The first parameter is the name of the native declared Java method, the second is the sig-

nature of the native declared Java method and the last parameter is the function pointer to the C

function to execute when the native declared Java function is executed.

The signature of a Java method can be determined using the javap tool from SUN’s Java

SDK or developer can create it using the following table, Java VM Type Signatures.

To make things really simple when developing JNI code Google has released the Android

Native Development Kit (NDK). It is easy to setup and use. In short, developer creates a folder

named jni in the Android project. Here all the c-files together with an Android.mk file are put. In

the Android.mk developer specifies which c-files are to be compiled. In the Android NDK/apps

folder a directory named after the project (perhaps my-app) is created. In this directory developer

adds an Application.mk file. In the Application.mk, variable APP_PROJECT_PATH is necessary

to set to the path of the Android project.

After some simple benchmarking it is clear that the native declared method executed about

2–3 times faster than the original method executing within Dalvik. For larger images the im-

provement might be even bigger (Fig. 2 and table 1) since a call to a native declared method takes

more time than calling a normal Java method.

Execution time was measured using Linux's perf tool. Each reported value is the average

of 10 independent runs.

 Table 1. Different data sizes benchmarking results

http://journals.ecs.soton.ac.uk/java/tutorial/native1.1/implementing/method.html
http://developer.android.com/sdk/ndk/1.6_r1/index.html
http://developer.android.com/sdk/ndk/1.6_r1/index.html

76 ISSN 1028-9763. Математичні машини і системи, 2016, № 2

Fig. 2. Execution time and payload dependency when using JNI

4. JNI Performance overheads

The main disadvantage of using JNI is calling a native method can be slower than making a nor-

mal Java method call. There are some cases will be described below.

Native methods will not be inlined by the JVM. Nor will they be just-in-time compiled for

this specific machine – they are already compiled [3].

A Java array may be copied for access in native code, and later copied back. The cost can

be linear in the size of the array. It was measured JNI copying of a 100,000 array to average about

75 microseconds on Windows desktop, and 82 microseconds on Mac. Fortunately, direct access

may be obtained via GetPrimitiveArrayCritical or NewDirectByteBuffer.

If the method is passed an object, or needs to make a callback, then the native method will

likely be making its own calls to the JVM. Accessing Java fields, methods and types from the

native code requires something similar to reflection. Signatures are specified in strings and que-

ried from the JVM. This is both slow and error-prone [4].

Java Strings are objects, have length and are encoded. Accessing or creating a string may

require an O(n) copy.

In Bresenham's algorithm c implementation, a number of different techniques are used to

copy an array that contains 1,000 elements. The copy operations are performed using various na-

tive and nonnative methods. To make it easier to compare the performance of these different

techniques, the program performs each copy 10,000 times.

The first two copy techniques don't use any native code; the rest call C functions. These C

functions are written using different JNI usage patterns to illustrate the costs associated with dif-

ferent coding techniques. Note that some of these C functions don't perform the full array copy;

they're included to highlight the costs of particular operations. Table 2 shows the benchmark re-

sults for the different methods.

Table 2. Array Copy Results

Copy Method Time

Arraycopy 234 ms

Assign 984 ms

Dumbnativecopy 1,609 ms

Nativedonothing 1,125 ms

Nativedoabsolutelynothin g 63 ms

Nativecritical 578 ms

Nativecriticalmemcpy 422 ms

Nativepullonly 391 ms

5. Summary

Using information presented above it was

defined, that replacing critical parts of code

with JNI analog could show significant dif-

ference in performance. There are two main

reasons for this: technical restrictions of JVM

and fast nature of C code. In spite the fact

that there is speed issue on the very low java

level, especially on mobile devices, modern

CPU power enough for coupe with most of

the issues.

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#GetPrimitiveArrayCritical_ReleasePrimitiveArrayCritical
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#NewDirectByteBuffer

ISSN 1028-9763. Математичні машини і системи, 2016, № 2 77

REFERENCES

1. Reinholtz K. Java will be faster than C++ / K. Reinholtz // ACM Sigplan Notices (ICDMA). – 2000. –

P. 25 – 28.

2. Zorn B. The Measured Cost of Conservative Garbage Collection Software / B. Zorn // Software – Prac-

tice & Experience. – 1993. – Vol. 23, Issue 7. – P. 733 – 756.

3. Schanzer E. Performance Considerations for Run-Time Technologies in the NET Framework /

E. Schanzer. – Germany: Microsoft Developer Network article, 2012. – P. 71 – 93.

4. Cowell-Shah C.W. Nine Language Performance Round-up: Benchmarking Math & File I/O

[Електронний ресурс] / C.W. Cowell-Shah // OSnews.com. – 2004. – Режим доступу:

http://www.osnews.com/story/5602.

Стаття надійшла до редакції 13.05.2016

http://www.osnews.com/story/5602

