G HOBI ITHOOPMAIIHI I TETEKOMYHIKAIIITHI TEXHOJIOTTi

UDC 004.03
V.V. KAZYMYR, I.I. KARPACHEV"
IMPROVING TIME-CRITICAL CODE PERFORMANCE WITH JNI

“Chernihiv National University of Technology, Chernihiv, Ukraine

Anomauia. Haseoeno ananiz suxopucmanns JNI 05 mobinonux npucmpois 3 OC Android. Jlocaiooicenns
INI-npoyecy nposedeno 3 naoannam npuxnadie kody, wo peanizye Java-euxnuku C i C ++ yacmun npo-
epam. Ilokazano nioguuyennss npoOYKMUBHOCMI 3a PAXYHOK 3aMiHU KpumudHux yacmun xkooy JNI anano-
eamu.

Knrouoei cnosa: INI, mobineruil npucmpiil, KpumuyHUL no 4acy 8UKOHAHHA KOO, NPOOYKMUBHICHb KOOY.

Annomayus. Ipuseden ananus ucnonvzosanus INI ons mobursusix yempoticme ¢ OC Android. Hecneoo-
sanue INI-npoyecca nposedero ¢ npedocmasienuem npumepos kooa, pearusyrouezo Java-evizosvt C u C
++ uacmeii npoepamm. Ilokazano nosviuenue npou3e0OUMeIbHOCIMU 3a CYem 3aMeHbl KpUMU4ecKux 4a-
cmeiti kooa IN| ananoeamu.

Knroueswie cnosa: INI, mobunsroe ycmpoiicmeo, kpumuueckutl no pemeru Koo, npooyKmMUHOCHb K0Od.

Abstract. Analysis of usage of JNI for mobile devices with OS android is provided. JNI-workflow is ex-
plored including usage of code examples which realizes Java calls C and C++ parts of programs. Improv-
ing of performance due to replacing time-critical parts of code with JNI analogs is shown.

Keywords: JNI, mobile device, time-critical code, code-performance.

1. Introduction

One of Java's greatest advantages is that its design allows for cross-platform capability. This fea-
ture, however, is also a bug with regard to other aspects of programming. It is constrained in its
interaction with the local machine, and thus the local machine instructions cannot be utilized to
achieve the full performance potential of the machine. To ameliorate this weakness, there is the
Java Native Interface, a Java platform that interacts with the machine on the local level. It can be
employed to allow the use of legacy code and more interaction with the hardware for efficient
performance. This article explores the JNI workflow, provides code examples of how Java calls
in both C and C++, and introduces the Android Native Development Kit (NDK), which compiles
the C/C++ code into applications that can run on an Android device.

2. INI overview

The Java Native Interface (JNI) is the native programming interface for Java that is part of the
JDK. By writing programs using the JNI, developer ensures that the code is completely portable
across all platforms.

The JNI allows Java code that runs within a Java Virtual Machine (VM) to operate with
applications and libraries written in other languages, such as C, C++, and assembly.

JNI is used to write native methods to handle those situations when an application cannot
be written entirely in the Java programming language. For example, developer may need to use
native methods and the JNI in the following situations [1]:

1. The standard Java class library may not support the platform-dependent features needed
by the application.

2. An existing library or application written in another programming language may be al-
ready available and developer wishes to make it accessible to Java applications.

72 © Kazymyr V.V., Karpachev 1.1., 2016
ISSN 1028-9763. MaremaTnyni Mamuau i cucremu, 2016, Ne 2

3. Developer may want to implement a small portion of time-critical code in a lower- level
programming language, such as assembly, and then having Java application call these functions.

Programming through the JNI framework lets developer to use native methods to do many
operations. Native methods may represent legacy applications or they may be written explicitly to
solve a problem that is best handled outside of the Java programming environment.

The JNI framework lets native methods utilize Java objects in the same way that Java code
uses these objects. A native method can create Java objects, including arrays and strings, and then
inspect and use these objects to perform its tasks. A native method can also inspect and use ob-
jects created by Java application code. A native method can even update Java objects that it creat-
ed or that were passed to it, and these updated objects are available to the Java application. Thus,
both the native language side and the Java side of an application can create, update, and access
Java objects and then share these objects between them.

Native methods can also easily call Java methods. Often, developer will already have an
implemented library of Java methods. The native method does not need to repeat functionality
already incorporated in existing Java methods. The native method, using the JNI framework, can
call the existing Java method, pass it the required parameters, and get the results back when the
method completes.

The JNI enables the advantages of the Java programming language from the native meth-
ods. In particular, developer can catch and throw exceptions from the native method and have
these exceptions handled in the Java application. Native methods can also get information about
Java classes. By calling special JNI functions, native methods can load Java classes and obtain
class information. Finally, native methods can use the JNI to perform runtime type checking.

It is easy to see that the JNI serves as the glue between Java and native applications. The
figure 1 shows how the JNI ties the C side of an application to the Java side.

Codes INI Codes 3. Boosting performance with JNI

- = ' Mok_JiIe JNI or Java Native Interface is

P Header file . the interface between the Java code run-

Machine ning in a JVM and the native code run-

ning outside the JVM. It works both

— [edpaneers ways that is developer can use JNIto call

native code from Java programs and to

call Java code from the native code. The

=8 Reum result - native code normally resides within a

Function library (.so file) and is typically written
inC/C++ [2].

The main reason to use JNI in a

Java program is to bypass performance
bottlenecks — execute heavy number
crunching in native code and get rid of the overhead that the instruction interpretation in the JVM
introduces.

On Android, in order to prevent fragmentation, developers are only allowed to use the fol-
lowing libraries in the native code:

— libc (C library) headers;

— libm (math library) headers;

— JNI interface headers;

— libz (Zlib compression) headers;

— liblog (Android logging) header;

— OpenGL ES 1.1 (3D graphics library) headers (since 1.6);

Fig. 1. JNI Architecture

ISSN 1028-9763. MarematuuHi MaliHu i cuctemu, 2016, Ne 2 73

— A Minimal set of headers for C++ support.

The following example demonstrates how to transform a time consuming Java method
with a lot of number crunching into a native declared method where the real work is performed in
native code.

Here is the time consuming Java method:

public double compare (int[] sourceData,int[] targetData, double tar-
getError) {

double error = 0.0D;
for (int index = 0; index < targetData.length; index++) {
int ¢l = sourceData[index];
int ¢c2 = targetData[index];
int b = (cl >> 16 & 255) - (c2 >> 16 & 255);
int g = (¢l >> 8 & 255) - (c2 >> 8 & 255);
int r = (cl & 255) - (c2 & 255);

error += r * r + g * g + b * b;
if (error > targetError)
return error;

}
return error;
}

The sourceData and targetData arguments represent the pixels of two Bitmaps. In short the
method calculates the sum of the square distance in color between two images, pixel by pixel. If
compare two 200x200 pixels images the for-loop will run 40000 times. This is a typical candidate
for when to use JNI.

This is what the function will look like when written in C:
static jdouble compareNative (JNIEnv *env, jobject thiz, jintArray
sourceArr , jobject targetArr, Jjdouble targetError) {

jdouble error = 0.0;

int index, cl, c2, b, g, r = 0;

jint *sarr, *tarr;

sarr = (*env)->GetIntArrayElements (env, sourceArr, NULL);

tarr (*env) ->GetIntArrayElements (env, targetArr, NULL);

if (sarr == NULL || tarr == NULL) return targetError;

int size = (*env)->GetArrayLength (env, sourceArr) ;

for (index = 0; index < size; index++) {

cl = sarr[index];

c2 = tarr[index];

b (cl >> 16 & 255) - (c2 >> 16 & 255);

g (cl >> 8 & 255) - (c2 >> 8 & 255);

r (cl & 255) - (c2 & 255);

error += r * r + g * g + b * b;

if (error > targetError) {
(*env)->ReleaseIntArrayElements (env, sourceArr, sarr, 0);
(*env) ->ReleaselIntArraykElements (env, targetArr, tarr, 0);

return error;

}
(*env)->ReleaseIntArrayElements (env, sourceArr, sarr, 0);
(*env)->ReleaseIntArrayElements (env, targetArr, tarr, 0);
return error;

}
All native functions must have the JNIEnv (a reference to the virtual machine itself) and
the jobject (a reference to the “this pointer” of the Java object where the native method call comes
from) as the first two arguments. Then it is possible to add custom arguments.

74 ISSN 1028-9763. MaTemaTuuHi MamuHy i cuctemu, 2016, Ne 2

It is necessary to find a way to make the virtual machine direct the calls to the native de-
clared Java method to the native C function. This is done using the registerNatives function of the
JNIEnNv. If developer uses the boilerplate C code from above two things are to be done:

1. Setting the classpath variable to the full class name of the Java class (including package
name). Replacing the dots with slashes.

2. For each native declared method in Java, inserting a JNINativeMethod struct into the
methods[] array.

For this example it will look like this
static const char *classPathName
"com/jayway/MyComparator";

static JNINativeMethod methods[] = {
// nameOfNativeMethod, methodSignature, methodPointer
{"compare", " ([I[ID)D", (void*)compareNative },
}i

The first parameter is the name of the native declared Java method, the second is the sig-
nature of the native declared Java method and the last parameter is the function pointer to the C
function to execute when the native declared Java function is executed.

The signature of a Java method can be determined using the javap tool from SUN’s Java
SDK or developer can create it using the following table, Java VM Type Signatures.

To make things really simple when developing JNI code Google has released the Android
Native Development Kit (NDK). It is easy to setup and use. In short, developer creates a folder
named jni in the Android project. Here all the c-files together with an Android.mk file are put. In
the Android.mk developer specifies which c-files are to be compiled. In the Android NDK/apps
folder a directory named after the project (perhaps my-app) is created. In this directory developer
adds an Application.mk file. In the Application.mk, variable APP_PROJECT_PATH is necessary
to set to the path of the Android project.

After some simple benchmarking it is clear that the native declared method executed about
2-3 times faster than the original method executing within Dalvik. For larger images the im-
provement might be even bigger (Fig. 2 and table 1) since a call to a native declared method takes
more time than calling a normal Java method.

Execution time was measured using Linux's perf tool. Each reported value is the average
of 10 independent runs.

Table 1. Different data sizes benchmarking results

Java

Size of matrices: 100 500 750 1,000 1,200 1,500 2,000 2,500
instructions 1,083M 3,048M 6,703M 13,16[\; 21,592M 39,319M 88,776M 184,918M
bus-cycles 29M 70M 263M 785M 1,577M 3,295M 8,610M 19,566M
L1 dcache-misses 159M 1,594M 10,782M SSar

M 55,255M 150,889M 434,910M 796,139M

LLC cache-references 7M 70M 610M 1,717M 1,192M 5,395M 14,455M 28,911M

LLC cache-misses 765K 2M 7M 35M 84M 245M 692M 1,115M
elapsed time (s) 0.168 0.513 2.467 7.754 15.681 33.009 86.531 196.528
input gen time (s) 0.117 0.217 0.301 0.412 0:555 0.707 1.230 1.529
C
Size of matrices: 100 500 750 1,000 1,200 1,500 2,000 2,500
instructions 21M 1,515M 4,864M 11'0_13 18,945M 36,190M 84,339M 163,086M
bus-cycles 432K 20M 123M 676M 1,203M 2,465M 5,779M 11,932M
L1 dcache-misses 787K 800M 3,345M 12'095 28,687M 63,774M 180,454M 314,781M
LLC cache-references 23K 7™M 27M 71M 137M 1,581M 2,018M 9,418M
LLC cache-misses 5K 135K 641K 14M 63M 236M 511M 1,009M
elapsed time (s) 0.005 0.204 1.232 6.866 12.108 24.845 58.227 119.937

ISSN 1028-9763. MaTemaTuuHi MamuHy i cuctemu, 2016, Ne 2 75

http://journals.ecs.soton.ac.uk/java/tutorial/native1.1/implementing/method.html
http://developer.android.com/sdk/ndk/1.6_r1/index.html
http://developer.android.com/sdk/ndk/1.6_r1/index.html

Execution

250

200

=l Java
e C

150

100

Elapsed time

50

| 100 500 750 1,000 1,200 1,500 2,000

Metrics size

Fig. 2. Execution time and payload dependency when using JNI

4. JNI Performance overheads

The main disadvantage of using JNI is calling a native method can be slower than making a nor-
mal Java method call. There are some cases will be described below.

Native methods will not be inlined by the JVM. Nor will they be just-in-time compiled for
this specific machine — they are already compiled [3].

A Java array may be copied for access in native code, and later copied back. The cost can
be linear in the size of the array. It was measured JNI copying of a 100,000 array to average about
75 microseconds on Windows desktop, and 82 microseconds on Mac. Fortunately, direct access
may be obtained via GetPrimitiveArrayCritical or NewDirectByteBuffer.

If the method is passed an object, or needs to make a callback, then the native method will
likely be making its own calls to the JVM. Accessing Java fields, methods and types from the
native code requires something similar to reflection. Signatures are specified in strings and que-
ried from the JVM. This is both slow and error-prone [4].

Java Strings are objects, have length and are encoded. Accessing or creating a string may
require an O(n) copy.

In Bresenham's algorithm ¢ implementation, a number of different techniques are used to
copy an array that contains 1,000 elements. The copy operations are performed using various na-
tive and nonnative methods. To make it easier to compare the performance of these different
techniques, the program performs each copy 10,000 times.

The first two copy techniques don't use any native code; the rest call C functions. These C
functions are written using different JNI usage patterns to illustrate the costs associated with dif-
ferent coding techniques. Note that some of these C functions don't perform the full array copy;
they're included to highlight the costs of particular operations. Table 2 shows the benchmark re-
sults for the different methods.

Table 2. Array Copy Results 5. Summary
Copy Method Time Using information presented above it was
Arraycopy 234 ms defined, that replacing critical parts of code
Assign 984 ms with JNI analog could show significant dif-
Dumbnativecopy 1,609 ms ference in performance. There are two main
Nativedonothing 1,125 ms reasons for this: technical restrictions of JVM
Nativedoabsolutelynothin g 63 ms and fast nature of C code. In spite the fact
Nativecritical 578 ms that there is speed issue on the very low java
Nativecriticalmemcpy 422 ms level, especially on mobile devices, modern
Nativepullonly 391 ms CPU power enough for coupe with most of

76

the issues.

ISSN 1028-9763. MaremaTtn4Hi MamuHu i cuctemu, 2016, Ne 2

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#GetPrimitiveArrayCritical_ReleasePrimitiveArrayCritical
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#NewDirectByteBuffer

REFERENCES

1. Reinholtz K. Java will be faster than C++ / K. Reinholtz // ACM Sigplan Notices (ICDMA). — 2000. —
P.25-28.

2. Zorn B. The Measured Cost of Conservative Garbage Collection Software / B. Zorn // Software — Prac-
tice & Experience. — 1993. — Vol. 23, Issue 7. — P. 733 — 756.

3. Schanzer E. Performance Considerations for Run-Time Technologies in the NET Framework /
E. Schanzer. — Germany: Microsoft Developer Network article, 2012, — P. 71 — 93.

4. Cowell-Shah C.W. Nine Language Performance Round-up: Benchmarking Math & File 1/O
[Enextponnuit pecypc] / C.W. Cowell-Shah // OSnews.com. — 2004. — Pexum pgocrymy:
http://www.osnews.com/story/5602.

Cmamms naoditiuna 0o pedaxyii 13.05.2016

ISSN 1028-9763. MaTemaTuuHi MamuHy i cuctemu, 2016, Ne 2 77

http://www.osnews.com/story/5602

