S. Ye. Kondratyuk, Z. V. Parkhomchuk, E. N. Stoianova Structure and properties of hereditarily modified steels Summary

The influence of hereditary modification of carbonaceous and alloyed steels with additives of steels of a similar chemical composition with a structure prepared by deformation-thermal treatment is studied. A regular increase in the dispersity and homogeneity of the structure, mechanical properties, and resistance to brittle fracture of steels 25 Π , 45 Π , 25 $X\Gamma$ CT $\Phi\Pi$, 45 $X\Gamma$ CT $\Phi\Pi$ and P6M5 Π is shown.

УДК 669.017.3:669-158:539.26

Вплив швидкості кристалізації на формування квазікристалічної фази в сплаві системи Ti – Cr – Al – Si

М. О. Крапівка, М. В. Карпець, О. А. Рокицька

Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, Київ

Досліджено зміни фазового складу сплаву Ti₆₀Cr₃₀Al₃Si₂(SiO₂)₅ та його фізико-механічних властивостей залежно від швидкості кристалізації розплаву. Встановлено, що суттєве підвищення твердості сплаву зумовлено утворенням нанорозмірної ікосаедричної квазікристалічної фази.

Фізико-механічні властивості сплавів визначаються їх структурним станом та фазовим складом. В даний час область структурних станів сплавів значно розширилася за рахунок нанокристалічних та аморфних матеріалів. Отримання сплавів в таких граничних станах є складною технологічною проблемою і вирішується найчастіше надшвидкою кристалізацією розплаву на масивному мідному диску, що обертається, або охолоджуванням розплаву в зваженому стані. Проте основним методом отримання будь-якого матеріалу в нанокристалічному або аморфному станах є його надшвидке охолодження зі швидкостями > 1000 °C/с. За таких швидкостей вдається не лище подрібнювати структуру до нанорозмірів, але і фіксувати квазікристалічні та метастабільні фази, які сильно впливають на фізико-механічні властивості матеріалу.

На сьогоднішній день квазіперіодичні фази ідентифіковані у великій кількості сплавів на основі алюмінію, титану, цирконію, магнію. Хоча найбільш широко досліджено формування та властивості ікосаедричної фази в сплавах на основі алюмінію. Титанові сплави формують другий великий клас.

В роботі брали участь Горбань В.Ф., Самелюк А.В.

В роботі [1] методами трансмісійної електронної мікроскопії та рентгенівського дифракційного аналізу були визначені квазікристалічні фази в системі $Ti_{68-x} - Cr_{32} - Si_x$ (де $6 \le x \le 18$), одержані методом спінінгування. Встановлено, що в сплавах утворюється ікосаедрична фаза Маккея – *i*-фаза (TiCrSi) з періодом гратки a = 1,314 нм.

Щоб виявити фактори, які впливають на кількість квазікристалічної фази, а також встановити загальні закономірності її поведінки при різних швидкостях кристалізації, нами було обрано сплав системи Ti – Cr – Al – Si, додатково легований алюмінієм та киснем у вигляді SiO₂, оскільки відомо [2], що добавка кисню в кількості понад 10 ат. % стабілізує квазікристалічну фазу, що, в свою чергу, дає можливість її одержання безпосередньо при кристалізації зливка.

Враховуючи досить високу температуру плавлення титану і його високу хімічну активність, була розроблена спеціальна методика кристалізації сплавів зі швидкостями > 1000 °C/с, яка відрізняється простотою та високою експресивністю. Метод полягає в сплескуванні між двома масивними мідними пластинами краплі розплавленого сплаву. Змінюючи вагу розплавленої краплі (від 1,5 до 5 г), вагу охолоджуючих пластин, швидкість їх сплескування та ступінь перегріву розплаву, можна в широких межах змінювати швидкість кристалізації матеріалу. Проведення процесу сплескування в атмосфері чистого аргону запобігає забрудненню сплаву домішками втілення. Радіус розтікання краплі становить 2 – 4 см, товщина від 20 до 300 мкм. Змінювати швидкість кристалізації розплаву можна також за рахунок зміни маси краплі, маси ударної пластини, жорсткості пружини і ступеня перегріву краплі. Завдяки цьому можна відтворено одержувати високі швидкості кристалізації від 1000 °С/с до 3000 °С/с. Запропонований метод надшвидкої кристалізації може бути використаний для отримання сильно пересичених твердих розчинів, квазікристалічних і нанокристалічних структур, а також для складнолегованих сплавів – і для аморфізації.

Сплав $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$ було виплавлено з елементів високої чистоти в дуговій печі МИФИ-9-3 в атмосфері високочистого аргону, додатково очищеного шляхом багатократного преплаву Zr-Ti геттера. Нами для якісного введення кисню в процесі виготовлення сплавів використовувався високо чистий плавлений кварц SiO₂. Після семикратного переплаву сплав охолоджували з різною швидкістю з використанням наступних методів: охолодження на мідній подині з водяним охолодженням (20 – 30 °C/c), методу падаючої краплі (~1000 °C/c), сплетінг краплі (~2000 °C/c), та спінінгування (~3000 °C/c).

Фазовий склад сплавів досліджували методом рентгенівської дифрактометрії (ДРОН-УМ1) у монохроматичному Си_{ка}-випроміненні. В якості монохроматора використовували монокристал графіту, встановлений на дифрагованому пучку. Обробку даних проводили з використанням програми для повнопрофільного аналізу дифракційних картин PowderCell 2.4.

Фізико-механічні властивості одержаних сплавів досліджували методом мікроіндентування на установці "Мікрон-гамма" (навантаження

в межах до P = 3 H) при кімнатній температурі алмазною пірамидою Берковича ($\alpha = 65^{\circ}$) з автоматичним навантаженням та розвантаженням протягом 30 с і записом діаграмми в координатах P-h. Автоматично проводили обрахування таких характеристик матеріалу, як твердість H_{IT} та модуль Юнга E.

Проведений повнопрофільний рентгенівський фазовий аналіз зразків сплаву $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$ (табл. 1), закристалізованих з різною швидкістю охолодження, показав, що залежно від швидкості кристалізації в сплавах реалізуються як двофазний, так і однофазний стан.

Таблиця 1

Фазовий склад та параметри гратки сплаву Ti₆₀Cr₃₀Al₃Si₂(SiO₂)₅ при різних швидкостях охолодження

Швидкість	Фазовий склад	Тип гратки	Кількість	Параметри	
охолодження,			фази, %	гратки, нм	
V _{ox} ,°C/c			ваг.	а	с
20	α-TiCrSi	Кубічна	74	1,313	
	TiCr ₂	Гексагональна	26	0,4925	0,803
1000	α-TiCrSi	Кубічна	91	1,3137	
	TiCr ₂	Гексагональна	9	0,4922	0,802
2000	α-TiCrSi	Кубічна	78	1,3130	
	β-Ti	ОЦК	22	0,3154	
3000	і-фаза	Ікосаедрична	100	0,4772	

Згідно одержаним даним, сплав Ti₆₀Cr₃₀Al₃Si₂(SiO₂)₅ у вихідному литому стані (V_{ox} =20 °C/с) є двофазним і містить інтерметалід TiCr₂ (фаза Лавеса тип C14), що має гексагональну кристалічну гратку в кількості 30 % по масі та 1/1 апроксимант квазікристалічної фази α-TiCrSi в кількості 70 % по масі, що має кубічну кристалічну гратку з періодом *a* = 13,130 нм (табл. 1).

Слід зазначити, що основні максимуми α-TiCrSi фази практично повністю збігаються з відбиттям квазікристалічної складової. Однак відрізнити апроксимантну складову можливо досить надійно по наявності додаткових піків, які притаманні лише їй. В нашому випадку це, зокрема, присутність дифракційного максимуму (442) в околі кута 41° (рис. 1 а, 6), який знаходиться між двома найбільш інтенсивними піками (433) та (532), характерними як для ікосаедричного квазікристалу, так і для його апроксиманту.

Мікроструктуру повільно охолодженого литого сплаву наведено на рис. 2 а, в, г.

Підвищення швидкості кристалізації (метод падаючої краплі, V~1000 °C/с) не призводить до зміни фазового складу сплаву. Спостерігається збільшення кількісті апроксимантної фази α-TiCrSi до 90 % по масі (табл. 1).

Висока швидкість кристалізації (сплетінг краплі, V ~ 2000 °C/с) дозволяє зафіксувати в сплаві ~ 22 % по масі β-твердого розчину титану, що має ОЦК кубічну гратку та апроксимант 1/1 α-ТіСгSi. Причому кількість

Рис. 1. Дифрактограми сплаву $Ti_{60}Cr_{30}AI_3Si_2(SiO_2)_5$ після плавки в дуговій печі (a), кристалізації методом падаючої краплі (б), спінінгування (в) (для квазікристалічної *i*-фази вказані індекси Кана).

апроксиманту дещо зменшується і становить 78 % по масі. Спостерігається суттєве подрібнення мікроструктури сплаву (рис. 2 б, д, е).

При надшвидкій кристалізаціїї розплаву (метод спінінгування, V~3000°C/c) в сплаві формується 100 % квазікристалічна ікосаедрична *i*-фаза (рис. 1 г та рис. 3 а, 6).

Дослідження фізико-механічних властивостей стабілізованого киснем сплаву $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$ показало (табл. 2), що з підвищенням швидкості охолодження при кристалізації твердість зростає від 10,3 ГПа ($V_{ox} \sim 20 \text{ °C/c}$) до 15 ГПа ($V_{ox} \sim 3000 \text{ °C/c}$), оскільки при надшвидкій кристалізації формується квазікристалічна ікосаедрична фаза, якій притаманні високі значення твердості. Співвідношення H/E^{*} змінюється від 0,081 до 0,105, що свідчить про нанорозмірний стан матеріалу [3].

Таблиця 2
Вплив швидкості охолодження на фізико-механічні властивост
складнолегованого сплаву $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$.

Швидкість охолодження V _{ox} , °C/c	Н, ГПа	Е, ГПа	H/E [*]		
20	10,3	127	0,081		
2000	13,4	171	0,084		
3000	15	142	0,105		

Плавлення і кристалізація

Рис. 2. Мікроструктура складнолегованого сплаву $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$ при різних швидкостях охолодження при кристалізації (а, б – світлова мікроскопія, в – е – РЕМ). а, в, г – 20 °C/с; б, д, е – 2000 °C/с.

Таким чином в результаті проведених досліджень встановлено, що формування квазікристалічної фази в сплаві $Ti_{60}Cr_{30}Al_{3}Si_{2}(SiO_{2})_{5}$ відбувається при надшвидкому охолодженні розплаву із $V_{0x} \sim 3000$ °C/с. При нижчій швидкості кристалізації $V_{0x} \sim 2000$ °C/с в сплаві фіксується високотемпературна β-фаза та кубічний апроксимант квазкристалічної фази. Максимальні значення твердості спостерігаються у сплаві, одержаному методом спінінгування розплаву, що свідчить про перспективність його використання у якості зносостійких покриттів, одержаних такими методами напилення, які забезпечують високу швидкість кристалізації металу.

Металознавство та обробка металів 4'2017

Плавлення і кристалізація

а 6 Рис. 3. ТЕМ структура (а) та відповідна електронограма (б) сплаву 6 1 6 6 7 3 6 6 7 3 6 6 7 3 6 6 7 3 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 ${}^{$

Література

- 1. Icosahedral Phase Formation in Ti_{68-x}-Cr₃₂-Si_x alloys / Zhang X, Kelton K.F. / / Phil.Mag.Lett. 1990. vol. 62. N4. P. 265 271.
- 2. Oxygen in Ti-(Cr,Mn)-Si Icosahedral Phases and Approximant / Libbert J.L, Kim J.Y., Kelton K.F / / Phil. Mag. A. – 1999. – vol. 79 – P. 2209 – 2225.
- 3. Горбань В.Ф., Печковский Э.П. Связь параметров упругости, полученных методом инструментального индентирования, со структурным состоянием материала // Порошковая металлургия. 2010. № 7/8. С. 55 62.

References

- 1. Icosahedral Phase Formation in Ti_{68-x}-Cr₃₂-Si_x alloys / Zhang X, Kelton K.F. / / Phil.Mag.Lett. 1990. vol. 62. N 4. P. 265 271.
- 2. Oxygen in Ti-(Cr,Mn)-Si Icosahedral Phases and Approximant / Libbert J.L, Kim J.Y., Kelton K.F // Phil. Mag. A. – 1999. – vol. 79. – P. 2209 – 2225.
- 3. Gorban' V.F., Pechkovskiy E.P. Svyaz' parametrov uprugosti, poluchennyh metodom instrumental'nogo indentirovaniya, so strukturnym sostoyaniyem materiala // Poroshkovaya metallurgiya. 2010. №7/8. S. 55 62.

Одержано 23.09.17

О. М. Крапивка, М. В. Карпец, О. А. Рокитская

Влияние скорости кристаллизации на формирование квазикристаллической фазы в сплаве системы Ti – Cr – Al – Si

Резюме

Исследовано изменения фазового состава сплава Ti₆₀Cr₃₀Al₃Si₂(SiO₂)₅ и его физико-механических свойств в зависимости от скорости кристаллизации расплава. Установлено, что существенное повышение твердости сплава обусловлено образованием наноразмерной икосаэдрической квазикристаллической фазы.

M. O. Krapivka, M. V. Karpets, O. A. Rokytska

The influence of solidification rate on the formation quasicrystalline phase in of Ti - Cr - Al - Si alloys

Summary

The change of the phase composition and physical and mechanical properties of $Ti_{60}Cr_{30}Al_3Si_2(SiO_2)_5$ alloy depending on the crystallization rate of the melt is studied. A substantial increase in the hardness of alloy due to the formation of a nanosized icosahedral quasicrystalline phase.