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1. Introduction

Cadmium telluride (CdTe) is recognized as a promising 
photovoltaic material for diverse optoelectronic 
applications [1]. Due to its near-optimum direct energy 
gap (1.5 eV at room temperature) and high absorption 
coefficient, it allows a high theoretical maximum 
efficiency of 29% under AM1.5G conditions for CdTe-
based solar cells [2]. Recently CdS/CdTe thin-film solar 
cells with efficiencies over 16.4% [3] and module 
performance over 11% [4] were demonstrated. In 
addition, CdTe has suitable physical properties like high 
atomic number and high density for utilization in X-ray 
and γ-ray detection [5, 6]. There is growing interest to 
digital X-ray images for obtaining and processing digital 
images in a real time regime. Polycrystalline CdTe as a 
material with high density and high stopping power can 
be successfully used for this purpose as well. 

The key problems of CdS/CdTe solar cells such as 
high series resistance, formation of ohmic contacts, 
degradation of solar cell performance are closely 
connected with conduction mechanisms in CdTe 
polycrystalline films. At the same time, the conductivity 
in these films has not been investigated systematically so 
far. Obviously, the lack of fundamental scientific 
knowledge of transport properties of CdTe 
polycrystalline films impedes further progress towards 
improving CdS/CdTe solar cells performance.

Usually, polycrystalline semiconductors are 
regarded as having two different phases. One of them is 

the crystalline material inside a grain. Its physical 
properties is assumed to be similar to bulk material. The 
other one is the intergrain material, that is the grain 
boundaries (GBs). Accordingly, there are two 
conduction channels in polycrystalline materials 
connected with grains and GBs [7-9]. The conductivity 
in the first channel is controlled by potential barriers at 
the GBs. The grain boundary conductivity was 
investigated in ZnO varistors [9]. Information on similar 
investigations in other semiconductors is rather poor 
because of crystalline structure and electronic properties 
of GBs are not well understood so far. They were 
considered to be either between ordered crystal and 
disordered amorphous material [7, 8]. In CdTe 
polycrystalline films of n-and p-type conductivity, GBs 
were modeled by n-p-n structure [7] and dielectric 
layer [10]. 

It is generally accepted that the direct current 
conductivity in polycrystalline semiconductors is 
controlled by potential barriers and space charge regions 
at GBs [7, 8]. There are two distinct mechanisms 
whereby mobile carriers can overcome a potential 
barrier at a grain boundary: quantum-mechanical 
tunneling and barrier emission. Earlier studies have 
shown that if the conductivity of a polycrystalline 
semiconductor exhibits Arrhenius behavior, then the 
thermally excited conduction mechanism like thermionic 
emission is dominant [7, 8, 11]. Frequently observed 
deviations from this plot can be attributed to fluctuations 
of potential barriers or to structural and electronic 
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Fig. 1. Current-voltage characteristics of a polycrystalline 
film at different temperatures. The straight line is shown 
as an eye guide.

inhomogeneity of GBs [11]. If the scatter of the potential 
barrier heights is large enough, the direct current 
conductivity of a polycrystalline semiconductor is 
percolation in its nature [12]. An attempt to study the 
percolation conductivity in a sample of bulk 
polycrystalline CdTe has been performed 
previously [13]. 

The aim of this work is to study electrical and 
photoelectrical properties of thin CdTe polycrystalline 
films grown on dielectric substrates in a wide range of 
voltage biases and temperatures in order to clarify 
mechanisms of the direct current conductivity. 

2. Preparation of samples and experimental details

Preparation of CdTe polycrystalline films with stable 
and predictable characteristics still to be an actual task 
for device applications. Different kinds of vapor 
deposition techniques [1] have been used for growing 
CdTe polycrystalline films on semiconductor and 
dielectric substrates. Among others, the close-spaced 
vapor transport technique possesses several advantages 
[14]. Since the as-grown films have poor electrical 
properties, they are usually annealed in CdCl2

atmosphere. 
In this study, CdTe polycrystalline films were 

prepared by a close-spaced vapor transport technique 
modified in our laboratory. Samples of mechanically 
polished glass ceramic were used as substrates. The 
glass ceramic possesses such advantages as 
manufacturability, high transparency in a wide spectral 
range, thermal and chemical stability. The substrates 
were etched in aqueous solution of hydrofluoric acid and 
washed in distilled water. For deposition, polycrystalline 
CdTe of n-type conductivity doped with indium was 
used as a source. The substrate holder and source 
container were done from a high-density graphite block. 
Both have individual heater which allows one to regulate 
their temperatures with the accuracy ±3 С. The distance 
h between the substrate and the surface of CdTe source 
was adjusted by one to three millimeters. The developed 
technological module was placed in a quartz ampoule 
and mounted in a vacuum chamber (P = 10-4 Pa) using 
vertical arrangement. 

The source and substrate temperatures (Tso, Tsub) as 
well as the distance h were varied in order to determine 
optimal deposition conditions. Directly before 
deposition, the substrate was heated to approximately 
600 С and maintained at this temperature during a half-
hour. After that, the substrate temperature was gradually 
decreased up to the required value 350-400 С. 
Simultaneously, the source temperature was increased to 
values 500-600 C. The films investigated in this study 
had the mean grain size 9±2 μm and resistance ρ = (2-
3)×105 Ohm·cm. They were grown for approximately 
15 min at Tsub = 400 С and Tso = 550 С. 

The as-prepared films were of n-type conductivity. 
The type of conductivity was checked by measuring the 

polarity of photoresponse signal in Schottky contacts 
deposited on the films. Previously, the polarity of 
photoresponse signal was calibrated using a sample of 
CdTe film with the known type of conductivity. The 
Schottky contacts were prepared by electrolyte 
deposition of Au. Ohmic contacts were deposited by 
thermal vacuum evaporation of indium. The 
measurements of the direct current conductivity were 
made using the standard four-probe technique. The 
distance between potential electrodes was within the 
range 1-2 mm.

It is necessary to note that the investigated films 
were not annealed. They exhibited high photosensitivity 
and stable values of resistance after temperature cycling 
in the range T = 77-300 K. Comparatively small changes 
of electrical and photoelectrical characteristics were 
observed in the investigated films after storage for five 
years under ambient laboratory conditions. The 
deposition method used in this investigation is charac-
terized by high transfer efficiency of the starting material 
in the growth chamber (losses were less than 5%). 

3. Experimental results and discussion

The current-voltage characteristics were measured in the 
temperature range T = 196-298 K. Shown in Fig. 1 are 
the current-electric field characteristics in the 
logarithmic scale. The solid lines represent linear UI 
dependences proving that the initial region of the 
measured characteristics obeys the Ohm law. With 
increase in electric field, the measured UI   curves 
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Fig. 2. Direct current vs reverse temperature dependences 
measured at different bias voltages, V: 1 – 2, 2 – 15, 3 – 50, 
4 – 80, 5 – 120.

start to deviate from the linear dependence. It is 
necessary to note that the observed non-linearity has 
different character for the characteristics measured at 
different temperatures. At room temperature T = 298 K, 
they consist of the sub-linear region at lower values of 
the electric field followed by the super-linear one at 
higher values of bias voltages. To our knowledge, such 

UI  dependence is observed in CdTe polycrystalline 
films for the first time. The sub-linear region is not 
observed on characteristics measured at low 
temperatures. It should be also stressed that the current-
voltage non-linearities are observed at rather low values 
of the electric field F = 100-300 V/cm. 

The dependence of the direct current on 
temperature was measured at several fixed values of the 
electric field, Fig. 2. Experimental data are shown in the 
standard semilogarithmic scale, with I versus 103/T. Two 
temperature regions for all the measured curves can be 
distinguished: a sharp increase in current with 
temperature increasing at T > 250 K and a rather slow 
variation of current at lower temperatures. Obviously, 
the high temperature region corresponds to a thermally 
activated conduction mechanism. The activation energy 
of this mechanism is represented by a straight line in 

coordinates FE   (Fig. 3). The value of ΔE0 = 
0.63 eV at zero electric field is obtained using 
extrapolation procedure. Finally, Fig. 4 shows the 
current-electric field characteristics plotted in 

coordinates 2/1UI  . As seen, at low temperatures 

experimental data are well linearized within two orders 
of magnitude. The linearization is worse at high 
temperatures. 

Experimental results shown in Figs 1 and 2 clearly 
indicate that different transport mechanisms operate in 
the investigated samples. The current-voltage 
characteristic measured at room temperature can be 
interpreted in terms of the grain boundary trapping 
theory firstly developed for silicon bicrystals [15]. The 
capture of mobile carriers on partially occupied trapping 
states at a grain boundary and subsequent rise of the 
barrier height results in the sub-linear current-voltage 
dependence. With electric field increase, these states 
become fully occupied, and direct current starts to 
increase exponentially. However, the field dependence 
of the direct current linear dependence of the dark 
current on the square root of electric field can’t be 
explained within this theory [15]. In ordered 
semiconductors, these dependences are usually 
explained by the well-known Frenkel-Poole emission of 
carriers from deep-defect states in the gap [17]. As a 
rule, this emission is observed in the strong electric field 
of the order of 104 V/cm. The current-voltage 
characteristics with a form close to the Frenkel-Poole 
law are also observed in amorphous and polycrystalline 
materials [9, 18]. The theory of this phenomena in 
highly doped and compensated semiconductors has been 
developed by Shklovskii [18]. This theory was also used 
for interpretation of the dependence of conductivity on 
electric field in a polycrystalline semiconductor with the 
large-scale fluctuations of the potential barrier height 
[12]. However, its experimental verification in 
application to polycrystalline semiconductors is 
insufficient.
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Fig. 3. Field dependence of the activation energy. 
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Fig. 4. Current-voltage characteristics in Schottky coordinates 
measured at different temperatures. The straight line represents 
the dependence I – U1/2. 

The analysis of experimental data given below is 
based on the Shklovskii theory [18]. The conductivity of 
such a semiconductor at high temperatures is determined 
by thermal transition of carriers on the percolation level 
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where Ep is the percolation energy and EF is the Fermi 
energy. If fluctuations of potential barriers U0 are close 
to Ep–EF, the non-ohmic conductivity becomes apparent 
at rather low electric field F in comparison with the 
ordered semiconductors: 
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Here L is the length of the large-scale fluctuations. 
In this case, the field dependence of the dark current has 
a form close to the Frenkel-Poole law 
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but with a different coefficient  in the exponent. For the 
Frenkel-Poole emission from deep traps in ordered 
semiconductors this coefficient is given by the known 
formula [16]

2/1
0

3 )/(  eFP , (4)

Table. Experimental and calculated material parameters.

Т, K 298 279 269 258 247 217 196
βexp,
V–1/2·сm1/2

0.110 0.125 0.134 0.145 0.155 0.166 0.173

βSH,
V–1/2·сm1/2

0.089 0.094 0.097 0.101 0.106 0.120 0.133

βFP,
V–1/2·сm1/2

0.0089 0.0095 0.0099 0.0103 0.0107 0.0122 0.0135

L×106, сm 5.8 5.1 4.8 6.3 5.8 6.9 5.7

where all symbols have usual meanings. For the 
Schottky emission, its value is a factor of 0.5 lower. In 
the Shklovskii theory, this coefficient is expressed as 

2/1
0 )(CreUSE  , (5)

where the numerical coefficient C is ranged from 0.25 
to 1.0 [18]. 

If percolation conductivity is dominant in the 
investigated films at low temperatures, the coefficient β 

can be extracted from the slope of 2/1UI 
characteristics shown in Fig. 4. The list of 
experimentally determined and calculated values of β is 
shown in Table. In the calculation of βSE, two 
assumptions were made: i) the magnitude of potential 
barrier fluctuations U0 is equal to ΔE0 and ii) the length 
of the large-scale fluctuations L is determined for the 
minimal electric field values at which the non-ohmic 
conductivity begins. As seen from Table, there is a 
pronounced difference between experimental values of β 
and those calculated for the Frenkel-Poole and Schottky 
emission. Much better coincidence is observed for the 
values calculated in accordance with the Shklovskii 
theory. 

The calculated values of the length L needs 
additional explanation. In a polycrystalline 
semiconductor, the distance between potential barriers 
are equal to the average size of grains. The physical 
meaning of L in this case is the distance between the key 
barriers that determine the non-ohmic conductivity in 
low electric fields [11]. As seen from Table, the 
calculated values of L are far less than the average size 
of grains (~10 μm) in the investigated films. In order to 
consistently explain experimental results obtained in this 
study, it has been assumed that the GBs in the 
investigated films can be treated as a highly doped and 
compensated semiconductor. This assumption is based
on the well-known fact of a very high density of defect 
states (>1018 cm-3) at the GBs in CdTe polycrystalline 
films [19]. These high defect state densities in the GBs 
have major contribution to both the high density of point 
defects and the high degree of compensation commonly 
observed in cadmium telluride devices. In this case, the 
length L has a meaning commonly used in the theory of 
highly doped and compensated semiconductors [18]. 
Lowering the potential barriers in the applied electric 
field shown in Fig. 3 results in emission of carriers from 
the electron-hole drops onto the percolation level. This 
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result may be interpreted as analogue of Frenkel-Poole 
effect in disordered semiconductors. 

As seen from Fig. 4, the percolation conduction is 
dominant at low temperatures. In fact, this process could 
be also at room temperature, but another conduction 
channel provided by the thermally excited movement of 
carriers over the potential barriers can mask it. 

4. Conclusions

From the study of the direct current as a function of 
temperature and electric field the possible conduction 
mechanisms were established in CdTe polycrystalline 
films grown on glass ceramic substrates. In the low 
temperature region T < 250 K, the percolation 
conductivity is a dominant conduction mechanism. At 
room temperature, the dominant conduction mechanism 
becomes the thermally activated process like thermionic 
emission or drift-diffusion transport of mobile carriers 
over potential barriers at the grain boundaries.

References

1. K.L. Chopra, S.R. Das, Thin- Film Solar Cells. 
Plenum Press, New York, 1983.

2. D.P. Holliday, J.M. Eggelston, K. Duarose, A 
photoluminescence study of polycrystalline thin-
film CdTe/CdS solar cells // J. Cryst. Growth 186, 
p. 543-549 (1998).

3. Record 16.4% efficient CdTe PV cell // III-Vs 
Review, 14(5), p. 22 (2001). 

4. D.W. Cunningham, Appolo thin film process 
development, in: Final Technical Report, p. 34 
(2002). 

5. K. Zanio, Cadmium Telluride, in: Semiconductors 
and Semimetals, 13, Eds. R.K. Willardson and 
A.C. Beer. Academ. Press, NY, 1978, p. 1-235. 

6. D.V. Korbutyak, S.V. Mel’nichuk, 
Ye.V. Korbutyak, M.M. Borisyuk, Cadmium 
Impurity-Defect States and Detector’s Properties. 
Ivan Fedorov Publ., Kyiv, 2000. 

7. L.L. Kazmerski, in: Polycrystalline and Amorphous 
Thin Films and Devices, Ed. L.L. Kazmerski. 
Acad. Press, New York, 1980. 

8. Polycrystalline Semiconductors. Physical 
Properties and Applications, Ed. G. Harbeke. 
Springer, Heidelberg, 1985. 

9. V.B. Kvaskov, Semiconductor Devices with 
Bipolar Conductivity. Energoatomizdat, Moscow, 
1988 (in Russian).

10. K.M. Doschanov, Mecahanism of abnormally large 
photovoltage in polycrystalline semiconductors // 
Fizika tekhnika poluprovodnikov 24(7), p. 1251-
1258 (1990), in Russian.

11. J.H. Werner, Origin of curved Arrhenius plots for 
the conductivity of polycrystalline semiconductors 
// Solid State Phenomena 37-38, p. 213-218 (1994).

12. A.Ya. Vinnikov, A.M. Meshkov, V.N. Savushkin, 
Theory of non-linear percolation 
electroconductivity in disordered semiconductor 
system with intergrain barriers // Fizika tverdogo 
tela 24 (5), p. 1352-1359 (1982), in Russian. 

13. R.P. Sharma, A.K. Shukla, A.K. Kapoor, 
R. Srivastava, and P.C. Mathur, Hopping 
conduction ip polycrystalline semiconductors // J. 
Appl. Phys. 57(6), p. 2026-2029 (1985).

14. V. Sosa, R. Castro, J.L. Pena, Pressure and 
temperature influence on CdTe thin-film deposit by 
close-spaced vapor transport technique // J. Vac. 
Sci. Technol. A 8(2), p. 979-983 (1990). 

15. E.I. Goldman, A.G. Zhdan, Electrical conductivity 
of semiconductors with intergrain barriers // Fizika 
tekhnika poluprovodnikov 10(10), p. 1839 (1976), 
in Russian. 

16. E.I. Goldman, I.B. Gulayev, A.G. Zhdan, 
V.B. Sandomirskii, Field characteristics of 
electrical conductivity in semiconductor films with 
intergrain barriers // Fizika tekhnika polupro-
vodnikov 10(11), p. 2089 (1976), in Russian. 

17. A.G. Milnes, Deep Impurities in Semiconductors. 
Wiley, New York, 1973.

18. B.I. Shklovskii, Percolation conductivity in strong 
electric fields // Fizika tekhnika poluprovodnikov
13(1), p. 93 (1979), in Russian.

19. A.S. Gilmore, V. Kaydanov, T.R. Ohno, D. Grecu, 
and D. Rose, Impedance spectroscopy and Hall 
measurements on CdTe thin polycrystalline films, 
in: II-VI Compound Semiconductor Photovoltaic 
Materials, MRS Proceedings, 668 (2001).



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 2. P. 221-225.



PACS 78.30.L

Mechanisms of carrier transport in CdTe polycrystalline films 

A.V. Sukach, V.V. Tetyorkin and N.M. Krolevec

V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 

41, prospect Nauky, 03028 Kyiv, Ukraine


Phone: 38 (044) 525-18-13, e-mail: teterkin@isp.kiev.ua 

Abstract. Cadmium telluride (CdTe) polycrystalline films grown on glass ceramic substrates by a modified close-spaced vapor transport technique have been investigated. The as-grown films have columnar structure with the average grain sizes about 10 (m. The in-plain direct current conductivity as a function of temperature and electric field has been investigated. The percolation conductivity is shown to be dominant at low temperatures (T < 250 K). At room temperature, the dominant transport mechanism is an activated process such as thermionic emission. The carrier transport across barriers is influenced by traps in the surface barrier regions. The non-annealed films exhibited stable electrical parameters and high photosensitivity during five-year storage under laboratory conditions. 

Keywords: CdTe, polycrystalline film, percolation conductivity.

Manuscript received 19.02.10; accepted for publication 25.03.10; published online 30.04.10.

1. Introduction 

Cadmium telluride (CdTe) is recognized as a promising photovoltaic material for diverse optoelectronic applications [1]. Due to its near-optimum direct energy gap (1.5 eV at room temperature) and high absorption coefficient, it allows a high theoretical maximum efficiency of 29% under AM1.5G conditions for CdTe-based solar cells [2]. Recently CdS/CdTe thin-film solar cells with efficiencies over 16.4% [3] and module performance over 11% [4] were demonstrated. In addition, CdTe has suitable physical properties like high atomic number and high density for utilization in X-ray and γ-ray detection [5, 6]. There is growing interest to digital X-ray images for obtaining and processing digital images in a real time regime. Polycrystalline CdTe as a material with high density and high stopping power can be successfully used for this purpose as well. 


The key problems of CdS/CdTe solar cells such as high series resistance, formation of ohmic contacts, degradation of solar cell performance are closely connected with conduction mechanisms in CdTe polycrystalline films. At the same time, the conductivity in these films has not been investigated systematically so far. Obviously, the lack of fundamental scientific knowledge of transport properties of CdTe polycrystalline films impedes further progress towards improving CdS/CdTe solar cells performance.


Usually, polycrystalline semiconductors are regarded as having two different phases. One of them is the crystalline material inside a grain. Its physical properties is assumed to be similar to bulk material. The other one is the intergrain material, that is the grain boundaries (GBs). Accordingly, there are two conduction channels in polycrystalline materials connected with grains and GBs [7-9]. The conductivity in the first channel is controlled by potential barriers at the GBs. The grain boundary conductivity was investigated in ZnO varistors [9]. Information on similar investigations in other semiconductors is rather poor because of crystalline structure and electronic properties of GBs are not well understood so far. They were considered to be either between ordered crystal and disordered amorphous material [7, 8]. In CdTe polycrystalline films of n-and p-type conductivity, GBs were modeled by n-p-n structure [7] and dielectric layer [10]. 


It is generally accepted that the direct current conductivity in polycrystalline semiconductors is controlled by potential barriers and space charge regions at GBs [7, 8]. There are two distinct mechanisms whereby mobile carriers can overcome a potential barrier at a grain boundary: quantum-mechanical tunneling and barrier emission. Earlier studies have shown that if the conductivity of a polycrystalline semiconductor exhibits Arrhenius behavior, then the thermally excited conduction mechanism like thermionic emission is dominant [7, 8, 11]. Frequently observed deviations from this plot can be attributed to fluctuations of potential barriers or to structural and electronic inhomogeneity of GBs [11]. If the scatter of the potential barrier heights is large enough, the direct current conductivity of a polycrystalline semiconductor is percolation in its nature [12]. An attempt to study the percolation conductivity in a sample of bulk polycrystalline CdTe has been performed previously [13]. 

The aim of this work is to study electrical and photoelectrical properties of thin CdTe polycrystalline films grown on dielectric substrates in a wide range of voltage biases and temperatures in order to clarify mechanisms of the direct current conductivity. 


2. Preparation of samples and experimental details


Preparation of CdTe polycrystalline films with stable and predictable characteristics still to be an actual task for device applications. Different kinds of vapor deposition techniques [1] have been used for growing CdTe polycrystalline films on semiconductor and dielectric substrates. Among others, the close-spaced vapor transport technique possesses several advantages [14]. Since the as-grown films have poor electrical properties, they are usually annealed in CdCl2 atmosphere. 
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In this study, CdTe polycrystalline films were prepared by a close-spaced vapor transport technique modified in our laboratory. Samples of mechanically polished glass ceramic were used as substrates. The glass ceramic possesses such advantages as manufacturability, high transparency in a wide spectral range, thermal and chemical stability. The substrates were etched in aqueous solution of hydrofluoric acid and washed in distilled water. For deposition, polycrystalline CdTe of n-type conductivity doped with indium was used as a source. The substrate holder and source container were done from a high-density graphite block. Both have individual heater which allows one to regulate their temperatures with the accuracy ±3 (С. The distance h between the substrate and the surface of CdTe source was adjusted by one to three millimeters. The developed technological module was placed in a quartz ampoule and mounted in a vacuum chamber (P = 10-4 Pa) using vertical arrangement. 


The source and substrate temperatures (Tso, Tsub) as well as the distance h were varied in order to determine optimal deposition conditions. Directly before deposition, the substrate was heated to approximately 600 (С and maintained at this temperature during a half-hour. After that, the substrate temperature was gradually decreased up to the required value 350-400 (С. Simultaneously, the source temperature was increased to values 500-600 (C. The films investigated in this study had the mean grain size 9±2 μm and resistance ρ = (2-3)×105 Ohm·cm. They were grown for approximately 15 min at Tsub = 400 (С and Tso = 550 (С. 


The as-prepared films were of n-type conductivity. The type of conductivity was checked by measuring the polarity of photoresponse signal in Schottky contacts deposited on the films. Previously, the polarity of photoresponse signal was calibrated using a sample of CdTe film with the known type of conductivity. The Schottky contacts were prepared by electrolyte deposition of Au. Ohmic contacts were deposited by thermal vacuum evaporation of indium. The measurements of the direct current conductivity were made using the standard four-probe technique. The distance between potential electrodes was within the range 1-2 mm.


It is necessary to note that the investigated films were not annealed. They exhibited high photosensitivity and stable values of resistance after temperature cycling in the range T = 77-300 K. Comparatively small changes of electrical and photoelectrical characteristics were observed in the investigated films after storage for five years under ambient laboratory conditions. The deposition method used in this investigation is charac​terized by high transfer efficiency of the starting material in the growth chamber (losses were less than 5%). 


3. Experimental results and discussion

The current-voltage characteristics were measured in the temperature range T = 196-298 K. Shown in Fig. 1 are the current-electric field characteristics in the logarithmic scale. The solid lines represent linear 
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 curves start to deviate from the linear dependence. It is necessary to note that the observed non-linearity has different character for the characteristics measured at different temperatures. At room temperature T = 298 K, they consist of the sub-linear region at lower values of the electric field followed by the super-linear one at higher values of bias voltages. To our knowledge, such 
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 dependence is observed in CdTe polycrystalline films for the first time. The sub-linear region is not observed on characteristics measured at low temperatures. It should be also stressed that the current-voltage non-linearities are observed at rather low values of the electric field F = 100-300 V/cm. 
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The dependence of the direct current on temperature was measured at several fixed values of the electric field, Fig. 2. Experimental data are shown in the standard semilogarithmic scale, with I versus 103/T. Two temperature regions for all the measured curves can be distinguished: a sharp increase in current with temperature increasing at T > 250 K and a rather slow variation of current at lower temperatures. Obviously, the high temperature region corresponds to a thermally activated conduction mechanism. The activation energy of this mechanism is represented by a straight line in coordinates 
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 (Fig. 3). The value of ΔE0 = 0.63 eV at zero electric field is obtained using extrapolation procedure. Finally, Fig. 4 shows the current-electric field characteristics plotted in coordinates 
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. As seen, at low temperatures experimental data 

are well linearized within two orders of magnitude. The linearization is worse at high temperatures. 


Experimental results shown in Figs 1 and 2 clearly indicate that different transport mechanisms operate in the investigated samples. The current-voltage characteristic measured at room temperature can be interpreted in terms of the grain boundary trapping theory firstly developed for silicon bicrystals [15]. The capture of mobile carriers on partially occupied trapping states at a grain boundary and subsequent rise of the barrier height results in the sub-linear current-voltage dependence. With electric field increase, these states become fully occupied, and direct current starts to increase exponentially. However, the field dependence of the direct current linear dependence of the dark current on the square root of electric field can’t be explained within this theory [15]. In ordered semiconductors, these dependences are usually explained by the well-known Frenkel-Poole emission of carriers from deep-defect states in the gap [17]. As a rule, this emission is observed in the strong electric field of the order of 104 V/cm. The current-voltage characteristics with a form close to the Frenkel-Poole law are also observed in amorphous and polycrystalline materials [9, 18]. The theory of this phenomena in highly doped and compensated semiconductors has been developed by Shklovskii [18]. This theory was also used for interpretation of the dependence of conductivity on electric field in a polycrystalline semiconductor with the large-scale fluctuations of the potential barrier height [12]. However, its experimental verification in application to polycrystalline semiconductors is insufficient.
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Fig. 3. Field dependence of the activation energy. 




[image: image7.emf]2 4 6 8 10 12 14 16


10


-9


10


-8


10


-7


10


-6


 


I, A


 298


 279


 258


 196


U


1/2


, V


1/2




Fig. 4. Current-voltage characteristics in Schottky coordinates measured at different temperatures. The straight line represents the dependence I – U1/2. 

The analysis of experimental data given below is based on the Shklovskii theory [18]. The conductivity of such a semiconductor at high temperatures is determined by thermal transition of carriers on the percolation level 
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where Ep is the percolation energy and EF is the Fermi energy. If fluctuations of potential barriers U0 are close to Ep–EF, the non-ohmic conductivity becomes apparent at rather low electric field F in comparison with the ordered semiconductors: 
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Here L is the length of the large-scale fluctuations. In this case, the field dependence of the dark current has a form close to the Frenkel-Poole law 
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but with a different coefficient ( in the exponent. For the Frenkel-Poole emission from deep traps in ordered semiconductors this coefficient is given by the known formula [16]
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		Table. Experimental and calculated material parameters. 

Т, K

		298

		279

		269

		258

		247

		217

		196



		βexp,

V–1/2·сm1/2

		0.110

		0.125

		0.134

		0.145

		0.155

		0.166

		0.173



		βSH,


V–1/2·сm1/2

		0.089

		0.094

		0.097

		0.101

		0.106

		0.120

		0.133



		βFP,

V–1/2·сm1/2

		0.0089

		0.0095

		0.0099

		0.0103

		0.0107

		0.0122

		0.0135



		L×106, сm

		5.8

		5.1

		4.8

		6.3

		5.8

		6.9

		5.7





where all symbols have usual meanings. For the Schottky emission, its value is a factor of 0.5 lower. In the Shklovskii theory, this coefficient is expressed as 
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where the numerical coefficient C is ranged from 0.25 to 1.0 [18]. 


If percolation conductivity is dominant in the investigated films at low temperatures, the coefficient 



 EMBED Equation.3  β can be extracted from the slope of 
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 characteristics 



 EMBED Equation.3  shown in Fig. 4. The list of experimentally determined and calculated values of β is shown in Table. In the calculation of βSE, two assumptions were made: i) the magnitude of potential barrier fluctuations U0 is equal to ΔE0 and ii) the length of the large-scale fluctuations L is determined for the minimal electric field values at which the non-ohmic conductivity begins. As seen from Table, there is a pronounced difference between experimental values of β and those calculated for the Frenkel-Poole and Schottky emission. Much better coincidence is observed for the values calculated in accordance with the Shklovskii theory. 


The calculated values of the length L needs additional explanation. In a polycrystalline semiconductor, the distance between potential barriers are equal to the average size of grains. The physical meaning of L in this case is the distance between the key barriers that determine the non-ohmic conductivity in low electric fields [11]. As seen from Table, the calculated values of L are far less than the average size of grains (~10 μm) in the investigated films. In order to consistently explain experimental results obtained in this study, it has been assumed that the GBs in the investigated films can be treated as a highly doped and compensated semiconductor. This assumption is based on the well-known fact of a very high density of defect states (>1018 cm-3) at the GBs in CdTe polycrystalline films [19]. These high defect state densities in the GBs have major contribution to both the high density of point defects and the high degree of compensation commonly observed in cadmium telluride devices. In this case, the length L has a meaning commonly used in the theory of highly doped and compensated semiconductors [18]. Lowering the potential barriers in the applied electric field shown in Fig. 3 results in emission of carriers from the electron-hole drops onto the percolation level. This result may be interpreted as analogue of Frenkel-Poole effect in disordered semiconductors. 


As seen from Fig. 4, the percolation conduction is dominant at low temperatures. In fact, this process could be also at room temperature, but another conduction channel provided by the thermally excited movement of carriers over the potential barriers can mask it. 


4. Conclusions


From the study of the direct current as a function of temperature and electric field the possible conduction mechanisms were established in CdTe polycrystalline films grown on glass ceramic substrates. In the low temperature region T < 250 K, the percolation conductivity is a dominant conduction mechanism. At room temperature, the dominant conduction mechanism becomes the thermally activated process like thermionic emission or drift-diffusion transport of mobile carriers over potential barriers at the grain boundaries.
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Fig. 2. Direct current vs reverse temperature dependences measured at different bias voltages, V: 1 – 2, 2 – 15, 3 – 50, 4 – 80, 5 – 120.
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Fig. 1. Current-voltage characteristics of a polycrystalline film at different temperatures. The straight line is shown as an eye guide.
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