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Abstract. The rational canonical form of Kildal’s Hamiltonian has been obtained as a 
matrix with two identical diagonal blocks. It allowed to formulate and strictly prove few 
common assertions. Each of the eigenvalues of Kildal’s Hamiltonian is twice 
degenerated everywhere, and it is well-known Kramers’ degeneration, firstly. However, 
there is neither degeneration with except for Kramers’, secondly. The symmetry of 
Kildal’s Hamiltonian forcedly includes the operation of inversion (i.e. the center of 
symmetry), thirdly. Consequently this form of Hamiltonian is evidently not able to 
describe the specific properties of crystals without the center of symmetry. The 
Frobenius form (alias “the rational canonical form”) of Hamiltonian should consist of 
two non-identical diagonal blocks to remove Kramers’ degeneration.  
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1. Introduction  

The problem of the splitting the eigenvector space is 
solved here for Hamiltonians of Kildal’s type [1]. 
Mathematical and physical conclusions following from 
the analysis both of rational canonical form of Kildal’s 
Hamiltonian as well as of characteristic polynomials 
associated with it will be proved and presented. We are 
going to get the strong evidences of everywhere 
presented Kramer’s degeneration of each energy level 
for this kind of Hamiltonian. Conversely, there is no 
other degeneration except for that as follows. 

The original Hamiltonian of Kildal was written 
down with such a basis [1]: 
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where  are basis functions of the 
corresponding irreducible representations (scalar and 

vector): α, β are two spin indicators whereas  
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The large-blocked structure of this Hamiltonian has 

the form  
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where  is submatrix Hermitian transpose to  and 
submatrices  and  have the following forms: 
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where the symbols Es, Ep, Δ, δ, P mean the same as in 
[1]: energies of s- and p-states, parameter of spin 
splitting, Kildal’s parameter of crystalline field and 
matrix element of the quasi-pulse. Symbols kx, ky, kz 
denote three components of the wave vector.  
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We would like to transform the Hamiltonian (2) 
with blocks (3) and (4) to the block-diagonal form to 
split its eigenvectors space by a couple of independent 
and orthogonal subspaces. This will be helpful to 
formulate several strong and quite general statements 
about eigenvectors and eigenvalues of such a kind of 
Hamiltonians. 

2. Solving the problem 

Let us denote:  
( )

3
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Let us use thereto the spherical coordinates, where  
ϕ±θ=± i
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and 222
zyx kkkk ++= . 

The submatrices (3) and (4) shall get the following 
forms after these substitutions and the relocate of the 
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The rational canonical form (or the so-called 
“Frobenius’ form”) of this Hamiltonian can be found 
using such a system of computer mathematics as 
Maple11, where this possibility is a part of the package 
of programmes called “Linear Algebra”. It is possible to 
obtain not only the partly diagonalized Frobenius’ form 
of Hamiltonian, but the matrix of the basis 
transformation ( Q ) also by this way. However, this 
matrix is very bulky and therefore is absent here in 
paper.  

The rational canonical form of Kildal’s 
Hamiltonian may be written down in a kind: 
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Thus, the Frobenius form of Hamiltonian has the 
block-diagonal kind with identical (4×4) submatrices on 
the main diagonal: 
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Now we can get the dispersion law as the 
submatrix (10) characteristic polynomial with its 
dependence on energy ( E ): 
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It is worthy to note that coefficients of the 
dispersion law (11) are presented in the latter column of 
(10) as elements of this matrix. This equation may be 
resolved directly and even in radicals because it is 
algebraic equation of the fourth degree. However, its 
four roots are somewhat bulky and thus are inconvenient 
for analysis. The indirect solutions (anything like 

),( θEk  or even ) are looking much better from 
this point of view. By the way, using these indirect 
solutions is old good tradition still from Kane [2]. So, we 
have from (11): 
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Our formula for the dispersion law is slightly more 
compact in comparison with the original one [1]: 
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Nevertheless, if we will find a difference between 
both expressions, we shall get zero. What means that 
expressions (12) and (13) are equivalent and tantamount. 

3. Conclusions 

3A. Mathematical point of view 

The block-diagonal structure of the Frobenius 
matrix (9) determines that [3-5]: 

1. Characteristic polynomials for both identical 
diagonal blocks (of submatrices) are also identical. 

2. At the same time, the characteristic polynomials 
are the minimum polynomials of diagonal submatrices 
(i.e. of blocks). 

3. The sequence  where  is 
the characteristic polynomial of the submatrix  (left 
side of Eq. (11)) is the sequence of all invariant 
polynomials of the submatrix , where 

))(,1,1,1( EPol )(EPol

1H

1HEI − I  is the 
identity matrix and  is the submatrix determined 
by (10). 

1H

4. The characteristic polynomial of the 
Hamiltonian matrix  is a product of all its invariant 
polynomials. Consequently, each of two identical 

H
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invariant polynomials  divides the characteristic 
polynomial of the matrix  without a rest. 

)(EPol
H
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5. The identity of characteristic and minimum 
polynomials is the guaranty that all eigenvalues of the 
submatrix  are different in pairs. 1H

6. If  is one of four (  roots of the 
submatrix characteristic polynomial ( , then one 
and only one eigenvector corresponds to this root, and 
this eigenvector has the following coordinates with the 
basis functions of Frobenius’ form (9): 

jE 4,3,2,1=j
)(EPol

32 ,,,1 jjj EEE . 

7. Eigenvectors mentioned above belongs to one 
of these two orthogonal 4D-subspaces with the basis 
functions of Frobenius’ form (9), and the complete 8D-
space of eigenvectors is the direct sum of both 
subspaces. 

3B. Physical point of view 

1. The points 1, 3, 4 and 7 of the above list mean 
that each of eigenvalues of Kildal’s Hamiltonian is twice 
degenerated, and it is well-known Kramers’ 
degeneration evidently. 

2. The points 2, 5 and 6 testify that there is neither 
degeneration with except for Kramers’. 

3. The symmetry of Kildal’s Hamiltonian forcedly 
includes the operation of inversion (i.e. the center of 
symmetry).  

Consequently this form of Hamiltonian is evidently 
not able to describe the specific properties of crystals 
without the center of symmetry. To remove Kramers’ 
degeneration, the Frobenius form of Hamiltonian should 
consist of two non-identical diagonal blocks, as it has 
been explained in [6]. By the way, basis functions of 
more general Hamiltonian [6] are “one to one” as those 
for Hamiltonian (9) and can be found with the matrix Q 
mentioned above and got by us. 
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