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Abstract. In the paper, spin-crossover compounds were examined from the viewpoint of 
perturbation theory for self-consistent field. The research carried out in the framework of 
the Ising-like model for these compounds. We have obtained the first four moments for 
the spin state distribution function in contact with environment in a narrow temperature 
interval.  
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1. Introduction  

Molecular bistability is a property of molecular system 
to evolve from one stable state to another stable state in 
response to external influence. Spin-crossover 
phenomenon is the best example of molecular and 
supramolecular bistability [1]. Spin-crossover complexes 
of transition metal ions having d4-d7 electronic 
configuration and might be characterized by two low-
lying electronic states of different spin-multiplicity: the 
low-spin (LS) state with a maximum number of paired 
electrons and the high-spin (HS) state with a maximum 
number of unpaired d-electrons (See Fig. 1).  

Compounds based on Fe2+(3d6), Fe3+(3d5) and 
Co2+(3d7) are the most common transition-metal ions for 
which the spin-state interconversion has been observed 
[2]. We focused on the consideration of spin-crossover 
compounds of iron (II) with the coordination number 6 
because they have the widest practical application. Ions 
of all these materials can exist in one of two states, 
determined by different spin multiplicity, depending on 
the value of the ligand field Δ. If Δ is greater than the 
average energy of spin pairs P, d-electrons try to occupy 
the lower orbital level: compound will remain in a low-
spin phase where the spin state of Fe2+(3d6) atoms are 

. If Δ is less than the energy of P, due to the Hund 

first rule, ions exist in a high-spin state . The 
electronic configurations of Fe

gA1
1

gT2
5

2+(3d6) states in these 
cases are presented in Fig. 2. When Δ and P are the 
values of the same order as occurs for Δ at the point of 

intersection Δc, spin transitions from one state to another 
can be controlled by external influences such as 
temperature, pressure and light irradiation. Thus, the 
spin transition results from an interaction-induced 
interplay between the valence electrons on the ligands 
and d-electrons in the lower energy shells located near 
the Fe2+(3d6) core [3]. 

These states are determinate numerical: S = 0 for 
diamagnetic LS state and S = 2 for paramagnetic HS 
state. Therefore, we can say about stable (S = 0) and 
metastable (S = 2) states. This system can be considered 
by the instrumentality of the Ising-like model. This 
microscopic model was developed in the Wajnflasz 
pioneering works [4]. For the first time, the Ising-like 
model for treating nearest-neighbour interactions in spin-
crossover compounds was proposed Bouseksou et al. 
[5]. This model was successful in simulating a transition 
of the steady state of the Fe(II) metal compounds [6-11]. 
Also, for these materials many efforts have been devoted 
to understand theoretically spin transition in 
phenomenological models [12-14]. In this paper, we 
adopt high-temperature expansion in the field theory to 
microscopic Ising-like model of spin-crossover 
compounds. 

2. Model Hamiltonian 

It is easy to analyze the spin-crossover compounds by 
using for their description the Ising-like model and 
instrumentality of Glauber stochastic dynamics for 
processes of spin states changing in contact with the 
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Fig. 1. Spin-crossover process for Fe2+(3d6). 

environment. In the two-level scheme, the Ising-like 
model represents molecular states of spin-crossover 
material describing a fictitious spin operator si with 
eigenvalues ±1, with respective degeneracies gHS and 
gLS. The degeneracies of the eigenvalues are such that 
gHS ≠ gLS, because of the different electronic and 
vibrational properties of the spin states. The values 

environment. In the two-level scheme, the Ising-like 
model represents molecular states of spin-crossover 
material describing a fictitious spin operator s

1

i with 
eigenvalues ±1, with respective degeneracies gHS and 
gLS. The degeneracies of the eigenvalues are such that 
gHS ≠ gLS, because of the different electronic and 
vibrational properties of the spin states. The values 
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1+  
and  associated with the high-spin and low-spin states 
of  molecule, respectively. So, we can write the 
Hamiltonian of the nearest-neighbor Ising model:  

1−
th−i

∑∑ ⎟
⎠
⎞

⎜
⎝
⎛ −Δ+−=

i
i

ij
ji sgkTssJ ln

22
1

H .  (1) 

Let us use the designation 

HgkT
=⎟

⎠
⎞

⎜
⎝
⎛ −Δ ln

2
.     (2) 

Here, H is the effective intramolecule “magnetic” 
field dependent on temperature, ∑

ij

 is the sum over 

the interacting neighbors (or the notation ij  indicates 
that the sites i and j appearing in the sum are nearest 
neighbors), J is the strength of the short-range 
interaction between spins, g = gHS/gLS is degeneracy ratio 
between HS and LS, T is the absolute temperature. 
Δ = E(HS) – E(LS) denoted energy gap (or ‘fictitious 
field’) is the enthalpy change associated with the 
LS→HS conversion of one molecule. We use positive Δ, 
so that the ground state at low temperature is the LS 
phase. In the case of this model, the critical properties 
are the short-range Ising ferromagnet. Note that in an 
infinite system, with no boundaries, all spins are 
equivalent. 

The fraction of HS molecules  is the real order 
parameter for the present model. In order to study 
critical behavior of spin-crossover compounds, we adopt 
the magnetization per spin 

Hn

12 −= Hns  as the order 
parameter. In this model, molecular crystal is treated as a 
lattice of pseudospins. 

3. Perturbation theory for self-consistent field 

Every selected spin is influenced by an effective 
magnetic field: 

effH ,
2
1

1

HsJq
N

j
j∑

=

+−=     (3) 

where q is the number of the nearest neighbors of the 
th−i  spin. 

It means that in the mean-field approach, we can 
change effective field to the following important 
simplification: 

MF
effH HsqJN

N

j
j +−−= ∑

=

−

1

1)1(
2
1 ,   (4) 

where the sum concludes all ( ) points “j”, what is 
unequal to “i”. 

1−N

So, we get the mean-field Hamiltonian 

.
)1(2

)1(2

1
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  (5) 

 

 
Fig. 2. Schematic representation of the electronic 
configurations of HS- and LS-states. 
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Due to definition of the average magnetization per 
spin, we can write in the mean-field approximation 

∑
≠

∞→ −
=

N

j
jN

s
N

s
11

1lim , (6) 

MF
effH HsqJ +−=

2
1 . (7) 

On the other hand, the system has the thermal 
average spin value: 

)( sSps ρ= ,  (8) 

where  is the density 
matrix. From Eq. (8), we then find that the 
magnetization 

( ) (( HSpH β−β−=ρ exp/exp
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))

s  in the mean-field approximation 
satisfies the self-consistency condition 

⎟
⎠
⎞

⎜
⎝
⎛ β−β= HsqJs

2
tanh . (9) 

Let us denote: 

qJ
d Δ
=

2 ; 
qJ
kT2

=θ ; 
2

ln
2

gr
= . (10) 

As a result, we obtain: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

θ

⎟
⎠
⎞

⎜
⎝
⎛ θ−−

= 2tanh

rds
s . (11) 

With the above formulation, the condition of 
equilibrium in the present mean-field approach can be 
written as 

gqJr
d

eq ln
42 Δ

==θ , 
g

qJkT theq ln
42 Δ

== . (12) 

Fig. 3 shows the temperature dependence of the 
magnetization per spin for d = 1.5 (dash), 2.5 (square), 
3.5 (circle) (r = 5 for all the next figures). It is evident 
that s  has a hysteresious behavior of temperature 
lower critical. Here, we find the typical d-dependence of 
( )θs . That is, we find a smooth dependence for large 

values of d, and a first-order phase transition for small d. 
In the critical point, this system undergoes the second-
order phase transition. 

In the spirit of the perturbation theory, we can 
separate the Hamiltonian to two parts int0 HHH += , 
where: 

∑⎟⎠
⎞

⎜
⎝
⎛ +

θ
−=

i
isJqdrJq

240H , (13) 

∑
≠

−=
ji

ji ssJ
2
1

intH . (14) 

 
a 

 
b 

Fig. 3. Magnetic phase diagram (a) and the order parameter 
s  vs temperature θ (b) for the ferromagnetic interaction 

between spins. 
 
 

Our aim is to calculate correlation functions 

lji sss ... , where ...  is used to denote statistical 

averaging the Hamiltonian : H

( )
.......

,......

0
00 HH

HH

β−β−

β−β−

⎟
⎠
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⎝
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=
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For convenience, we can rewrite:  

0

021
21
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H

H
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e
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sss

l
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For the selected point, the average spin value is 
given by 

( )

( )0
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In the above equation, we put 
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rdrqJJqd
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⎛ θ

−
θ
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The average from every power operator s we can 
describe, let us use the function  and its 

derivatives : 

)( 0yb
[ ]nb

Z
Zs

N
N

][

= , (19) 

where . ∑=
i

ysieZ

Due to 
Z
Zb
′

= , we get: 

]1[][ )(1 −= NN bZ
Z

s . (20) 

According to Leibniz equation, we obtain 
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][ kkn
n

k

k
n
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=
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where 
)!(!

!
knk

nС k
n −
=  are binomial coefficients. 

For our case, we have recurrence relations for the 
high-temperature expansion  

[ ]∑
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−−σ
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−
=σ
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0
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1
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n

nNnN b
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So, fоr the particular cases, we have first four 
moments 

.436
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,

,

224
0
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At the following step, we rewrite a typical term of 
Hamiltonian (13), (14) as   

=0H ∑∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

θ
−

≠ i
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j ssJrJqJqd

2
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). (25) 

The term  describing of fluctuations in 
magnetization will be small compared to the  in the 
limit . The latter equations are the starting point 
for thermodynamic perturbation theory. The mean field 
model is the reference or zeroth-order system. We 
assume that fluctuations about the mean field energy are 
small. Thus, this approach allows for the Ising-type 
model taking into account correlation effects. 

intH

0H
∞→N

In this approach, the mean model energy is given 
by 

θ
++

θ
−=β−=

s
rdy

2
1

H . (26) 

Recall that the distribution can be described by 
moments of random variables. For our case we have 
obtained first four moments: 
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From Eqs (27) and (28), we obtain for the variance, 
the skewness and the kurtosis, respectively, 
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The second, third and fourth moments will be 
considered by us in the field where temperature is higher 
than the critical temperature.  
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Fig. 4. Variance as a function of temperature. 
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Fig. 5. Plots of the skewness (a) and kurtosis (b) of the spin 
probability density. 
 

Fig. 4 shows the mean variance obtained by 
solution of Eq. (33) for various d. The stationary 
variance of the corresponding probability distribution is 
finite. In the critical point, we see that the variance 
decreases as the temperature increases. The variance 
exhibits a single-peak shape as shown in Fig. 4 with the 
curve at d = 3.5 above the critical point. 

We calculated also the skewness (34) that 
characterizes the degree of asymmetry of distribution 

function of fictitious spin s and the kurtosis (35) that 
characterizes the degree of peakedness of this 
distribution function. Because these values are equal to 
zero identically to a Gaussian distribution, one can 
consider the skewness and kurtosis as appropriate 
measures of deviation of distribution from a Gaussian 
shape. In the high temperature case, the data show that 
the probability distribution function slowly approaches 
to Gaussian.  

4. Concluding remarks 

Summarizing, in high-temperature approach we have 
derived and analyzed the equations for four first 
moments of the distribution function of the net 
magnetization in spin-crossover compounds. It allows us 
to reduce the distribution function and provide the 
behavior of the molecules in spin-crossover materials 
under the external influences. In order to characterize the 
difference of the spin probability density from the 
Gaussian density, we have calculated the skewness and 
kurtosis. According to this theory, one could 
qualitatively expect the behavior of probability 
distribution of magnetization per spin in spin-crossover 
compounds.  

Our results agree with those obtained by other 
methods. 
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