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1. Introduction

Electromagnetic wave propagation in time-varying 
media yields rise of new physical phenomena and 
possibilities for novel applications. Tuning the refractive 
index in time provides a fast frequency shift in the linear 
material dielectric resonator [1]. Half-restricted time-
varying plasma causes focusing of a point source 
radiation at the plane boundary [2], which resembles 
action of a lens in the form of a plane layer with double-
negative materials. Transient medium is used in the 
light-modulated photo-induced method for the 
development of a non-mechanical millimeter wave 
scanning technique [3]. Plasma based lenses with 
properties electronically adjusted can offer an alternative 
to the existing electronic beam steering systems by 
varying the density of plasma in time [4]. In practice, 
temporal switching of the material refractive index can 
be realized by varying the input signal in a nonlinear 
structure [5], by voltage control [6], by a focused laser 
beam as a local heat source [7], or by plasma injection of 
free carriers [8]. 

The main goal of this paper is to demonstrate a 
possibility of beam deflection control in a homogeneous 
lens of simple shape by adjusting its material parameters 
in time. The investigation based on a rigorous 
mathematical method that uses the Laplace 
transformation is aimed at deriving an analytical solution 

of the problem in a frequency domain. Time domain 
fields are recovered due to computation of the inverse 
Laplace transform via evaluation of residues at singular 
points. This approach provides accurate back 
transformation of the functions and allows to understand 
and look inside the fundamental processes. This method 
has already been successfully applied to solve the 
various time domain problems with different geometries 
[1, 9-11]. The accurate solution will reveal peculiarities 
of nonstationary electromagnetic processes in canonical 
objects, which will give a possibility to formulate 
recommendations for applications in new technologies to 
control electromagnetic radiation.

2. Formulation of the problem and its solution

Consider a 2D initial-boundary value problem of 
exciting a circular cylinder by an incident beam that is 
modeled by complex source point (CSP). To describe 
the fields, the cylindrical system of coordinates z,, 
centered at the cylinder is introduced. The incident beam 

is generated by an external source    csH
2

0

with time dependence tie 0 , where v  is the phase 
velocity of background medium. Its position is described 
by a complex vector cs


with the Cartesian 

coordinates [12]
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where ,,, 00 byx  are real numbers. In this case, the 

distance between the source and the point of observation 

is complex as well 22 )()( cscscs yyxx 


. 

The real point ),( 00 yx  corresponds to the center of the 

beam waist (Fig. 1). The beam width is controlled by the 
parameter cb  [13-15], and the beam direction is 

defined by the angle  . For the situation depicted in 

Fig. 1, the value of   is π. Using the addition theorem 

for Hankel functions, the incident field of CSP can be
presented in the following form:
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the Heaviside unit function.  
The scattered and transmitted fields are expanded, 

respectively, as follows:
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Here, HEU ,  or HEV ,  represents z-coordinate of the 
electric or magnetic field for E - or H -polarized fields. 

Unknown expansion coefficients HE
kA ,  and HE

kB ,  are 

found from the boundary conditions, which requires 
continuity of tangential components of the total electric 
and magnetic fields. Assuming the external position of 
CSP ( a0 ), the unknown coefficients can be obtained 

in the following form:

Fig. 1. Schematic diagram of the problem.
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The prime here represents full differentiation with 
respect to the argument. Fig. 2 represents a near-field 
portrait of the CSP beam passing through a circular lens. 
The values of the parameters are: 1 cb , 20 ax , 

5.00 ay ,  200 ca , the refractive index of the 

material is 5.11 n . 

Suppose that at zero moment of time, the dielectric 
permittivity value inside the cylinder changes from 1  to 

2  in response to some external source. The 

transformation of the initial CSP field caused by time 
change of the medium is going to be studied with a 
particular emphasis on the transient processes and 
steady-state regime occurring in such a simple dynamic 
lens. It means that we have an initial-boundary value 
problem, where transformed fields have to satisfy the 
wave equations

0),(1),( 22
2  tWvtW tt


,  a ,  (8)

0),(1),( 22  tWvtW tt


, a . (9)

Fig. 2. CSP beam passage through a circular dielectric lens 
(near-field distribution).
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Here, W  represents the electric zE  or magnetic 

zH  field components after zero moment of time, and 

2

2
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 .

The corresponding initial conditions are provided 

by continuity of the electric flux density D


 and the 

magnetic flux density B


 at zero moment of time. In the 
transient area inside the cylinder, they have the 
following form [1]

)0()0( 21
  tEtE , 

)0()0( 21
  tEtE tt ; (10)

)0()0(   tHtH , 

)0()0( 21
  tHtH tt . (11)

In the steady-state outer region, initial conditions 
are:

)0()0(   tEtE , )0()0(   tEtE tt ; (12)
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The Laplace transform 



0

)()( dtetWpL pt  is

employed directly to the wave Eqs (8), (9). It follows 
from the previous works [9-11] that the solution has to 
be written in the form:  
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The unknown coefficients can be found using the 
boundary conditions: 
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Behaviour of the back transformed function is 
defined by its singular points, hence the inverse Laplace 
transform can be evaluated by calculation of the residues 
at its poles and the integral along the branch cut. The 
functions (14) and (15) involve an infinite number of 
simple poles associated with the eigenfrequencies of the 

cylinder and given by zeros of the functions HE
kR ,  (22). 

Besides, apart from these singularities there is another 
one associated with the carrier frequency 0 of the

incident beam. The functions (14) and (15) also have the 
branch point at p = 0, therefore a branch-cut should be 
introduced, for instance, along the negative 0)Re( p

axis. All residues can be calculated analytically, while 
the integral along the branch cut should be calculated 
numerically. After permittivity change, the eigenmodes 
of the cylinder are excited, which causes transients. It 
should be mentioned that all eigenfrequencies are 
complex valued, so this ’ringing’ is observable during 
limited time interval. Here, the electromagnetic field is 
defined by the residue at the the singular point 0 ip

and coincides with the harmonic source field in the 
cylinder with dielectric permittivity 2 . So, 

transformation of the near-field distribution during the 
transient period is observable. However, in the steady-
state regime the field behaviour is determined only by 
the residue at 0 ip .

3. Numerical results 

Being based on the above approach, controlling the 
deflection angle of the beam passing through the isolated 
dielectric cylinder by adjusting the material parameters 
in time should be demonstrated. In what follows, with no 
loss of generality, the E-polarized fields are estimated 
numerically. Fig. 3 shows the radiation pattern of the 
CSP beam passing through the cylinder. It is evident that 
the angle of deflection crucially depends on the position 
of the incident beam (the value of h  in Fig. 1). It is seen 
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Fig. 3. CSP beam passage through a circular dielectric lens (far-field distribution).
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Fig. 4. Dependence of the deflection angle on the value       Fig. 5. Time representation of the electric field inside the cylinder.
of the refractive index inside the cylinder.       The refractive index changes from the value 1.4 up to 1.45.

that the widest deflection angle is observable for the 
value of ah  close to 0.5. An assumption that the media 

parameters are tuned in time makes it possible to control 
the angle of deflection. Thus, Fig. 4 represents the far-
field distribution for different values of the refractive 
index of the lens. It is seen that the rise of the refractive 
index increases the angle of deflection and vice versa. 
To estimate the duration of the transient period, the time 
domain representation of the field was obtained. Fig. 5 
shows the dependence of the absolute value of the total 
electric field normalized by amplitude of the incident 
beam on the normalized time (T = tc/a). The coordinates 
of the observation point are: 5.0ax , 0ay . All 

the beam parameters are the same as in Fig. 2. The initial 
value of the refractive index is 1.4 that at zero moment 
of time changes to the value 1.45. It should be noted that 

although this large jump of permittivity has not been yet 
attained in practice, it is used here to trace the dynamics 
of the phenomena in a clearer manner. Before zero 
moment of time, the incident field is presented. After 
zero moment of time, the field inside the cylinder is 
represented by the first term in Eq. (14). The initial wave 
is split into two waves: the time-transmitted and time-
reflected ones with the shifted frequency 120 vv . 

Within the time interval )1(0 2 anT  , these two 

waves are observable. The second term in (14) describes 
the influence of the transient boundary and demonstrates 
some time delay (for more information see e.g. [ 119 ]). 
Fig. 5 illustrates the moment of time )1(2 anT 
that from the physical viewpoint corresponds to the 
moment when the wavefront from the transient boundary 
reaches the point of observation. The transformed field 
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involves the whole spectrum, which is given by the poles 
of the function (22). However, it is seen that, after short 
period of transients, the steady-state regime is achieved, 
which corresponds to the new position of the deflected 
angle. 

4. Conclusions

The temporal analysis of the electromagnetic field 
transformed by the time change of the permittivity in the 
dielectric cylinder illuminated by a harmonic CSP beam 
is carried out. This analysis is based on the exact 
formulas for the interior and exterior fields that are 
obtained as the solutions of the initial-boundary value 
problem.

The theory is based on the eigenfunction expansion 
in the Laplace transform domain and the solution 
inversion into the time domain through evaluation of 
residues. The obtained results indicate a possibility of 
using this simple lens model for very fast beam control. 
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1. Introduction 

Electromagnetic wave propagation in time-varying media yields rise of new physical phenomena and possibilities for novel applications. Tuning the refractive index in time provides a fast frequency shift in the linear material dielectric resonator [1]. Half-restricted time-varying plasma causes focusing of a point source radiation at the plane boundary [2], which resembles action of a lens in the form of a plane layer with double-negative materials. Transient medium is used in the light-modulated photo-induced method for the development of a non-mechanical millimeter wave scanning technique [3]. Plasma based lenses with properties electronically adjusted can offer an alternative to the existing electronic beam steering systems by varying the density of plasma in time [4]. In practice, temporal switching of the material refractive index can be realized by varying the input signal in a nonlinear structure [5], by voltage control [6], by a focused laser beam as a local heat source [7], or by plasma injection of free carriers [8]. 


The main goal of this paper is to demonstrate a possibility of beam deflection control in a homogeneous lens of simple shape by adjusting its material parameters in time. The investigation based on a rigorous mathematical method that uses the Laplace transformation is aimed at deriving an analytical solution of the problem in a frequency domain. Time domain fields are recovered due to computation of the inverse Laplace transform via evaluation of residues at singular points. This approach provides accurate back transformation of the functions and allows to understand and look inside the fundamental processes. This method has already been successfully applied to solve the various time domain problems with different geometries [1, 9-11]. The accurate solution will reveal peculiarities of nonstationary electromagnetic processes in canonical objects, which will give a possibility to formulate recommendations for applications in new technologies to control electromagnetic radiation.


2. Formulation of the problem and its solution


Consider a 2D initial-boundary value problem of exciting a circular cylinder by an incident beam that is modeled by complex source point (CSP). To describe the fields, the cylindrical system of coordinates 
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 are real numbers. In this case, the distance between the source and the point of observation is complex as well 
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 corresponds to the center of the beam waist (Fig. 1). The beam width is controlled by the parameter 
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 [13-15], and the beam direction is defined by the angle 
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 is π. Using the addition theorem for Hankel functions, the incident field of CSP can be presented in the following form:
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 is the Heaviside unit function.  


The scattered and transmitted fields are expanded, respectively, as follows:
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 are found from the boundary conditions, which requires continuity of tangential components of the total electric and magnetic fields. Assuming the external position of CSP (
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Fig. 1. Schematic diagram of the problem.
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The prime here represents full differentiation with respect to the argument. Fig. 2 represents a near-field portrait of the CSP beam passing through a circular lens. The values of the parameters are: 
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Suppose that at zero moment of time, the dielectric permittivity value inside the cylinder changes from 
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 in response to some external source. The transformation of the initial CSP field caused by time change of the medium is going to be studied with a particular emphasis on the transient processes and steady-state regime occurring in such a simple dynamic lens. It means that we have an initial-boundary value problem, where transformed fields have to satisfy the wave equations
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Fig. 2. CSP beam passage through a circular dielectric lens (near-field distribution).


Here, 
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The corresponding initial conditions are provided by continuity of the electric flux density 
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 and the magnetic flux density 

[image: image50.wmf]B


r


 at zero moment of time. In the transient area inside the cylinder, they have the following form [1]
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In the steady-state outer region, initial conditions are:
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The Laplace transform 
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 is employed directly to the wave Eqs (8), (9). It follows from the previous works [9-11] that the solution has to be written in the form:  
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The unknown coefficients can be found using the boundary conditions: 
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Behaviour of the back transformed function is defined by its singular points, hence the inverse Laplace transform can be evaluated by calculation of the residues at its poles and the integral along the branch cut. The functions (14) and (15) involve an infinite number of simple poles associated with the eigenfrequencies of the cylinder and given by zeros of the functions 
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 (22). Besides, apart from these singularities there is another one associated with the carrier frequency 
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 of the incident beam. The functions (14) and (15) also have the branch point at p = 0, therefore a branch-cut should be introduced, for instance, along the negative 
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 axis. All residues can be calculated analytically, while the integral along the branch cut should be calculated numerically. After permittivity change, the eigenmodes of the cylinder are excited, which causes transients. It should be mentioned that all eigenfrequencies are complex valued, so this ’ringing’ is observable during limited time interval. Here, the electromagnetic field is defined by the residue at the the singular point 
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 and coincides with the harmonic source field in the cylinder with dielectric permittivity 
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. So, transformation of the near-field distribution during the transient period is observable. However, in the steady-state regime the field behaviour is determined only by the residue at 
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3. Numerical results 


Being based on the above approach, controlling the deflection angle of the beam passing through the isolated dielectric cylinder by adjusting the material parameters in time should be demonstrated. In what follows, with no loss of generality, the E-polarized fields are estimated numerically. Fig. 3 shows the radiation pattern of the CSP beam passing through the cylinder. It is evident that the angle of deflection crucially depends on the position of the incident beam (the value of 
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that the widest deflection angle is observable for the value of 
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 close to 0.5. An assumption that the media parameters are tuned in time makes it possible to control the angle of deflection. Thus, Fig. 4 represents the far-field distribution for different values of the refractive index of the lens. It is seen that the rise of the refractive index increases the angle of deflection and vice versa. To estimate the duration of the transient period, the time domain representation of the field was obtained. Fig. 5 shows the dependence of the absolute value of the total electric field normalized by amplitude of the incident beam on the normalized time (T = tc/a). The coordinates of the observation point are: 
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. All the beam parameters are the same as in Fig. 2. The initial value of the refractive index is 1.4 that at zero moment of time changes to the value 1.45. It should be noted that although this large jump of permittivity has not been yet attained in practice, it is used here to trace the dynamics of the phenomena in a clearer manner. Before zero moment of time, the incident field is presented. After zero moment of time, the field inside the cylinder is represented by the first term in Eq. (14). The initial wave is split into two waves: the time-transmitted and time-reflected ones with the shifted frequency 
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, these two waves are observable. The second term in (14) describes the influence of the transient boundary and demonstrates some time delay (for more information see e.g. [
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]). Fig. 5 illustrates the moment of time 
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 that from the physical viewpoint corresponds to the moment when the wavefront from the transient boundary reaches the point of observation. The transformed field involves the whole spectrum, which is given by the poles of the function (22). However, it is seen that, after short period of transients, the steady-state regime is achieved, which corresponds to the new position of the deflected angle. 


4. Conclusions


The temporal analysis of the electromagnetic field transformed by the time change of the permittivity in the dielectric cylinder illuminated by a harmonic CSP beam is carried out. This analysis is based on the exact formulas for the interior and exterior fields that are obtained as the solutions of the initial-boundary value problem.


The theory is based on the eigenfunction expansion in the Laplace transform domain and the solution inversion into the time domain through evaluation of residues. The obtained results indicate a possibility of using this simple lens model for very fast beam control. 
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Fig. 3. CSP beam passage through a circular dielectric lens (far-field distribution).
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Fig. 4. Dependence of the deflection angle on the value 	      Fig. 5. Time representation of the electric field inside the cylinder.


of the refractive index inside the cylinder.		      The refractive index changes from the value 1.4 up to 1.45.
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