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Recently, nanoscale void-species structure has been 
studied [1, 2] in the As2Se3 glass using combination of 
X-ray diffraction in respect to the first sharp diffraction 
peak (FSDP-related XRD), treated within a void-based 
model [3-5], and positron annihilation lifetime 
spectroscopy (PALS), analyzed within the two-state 
positron trapping model [6-8]. Assuming that the same 
nanovoids are responsible for both FSDP and PALS data 
in terms of Jensen et al. [9], the analytical correlation 
relationship between the FSDP position, Q1, and
nanovoid diameter, D, has been presented as [1, 2]

Q1 = 2.3  /D. (1)

In the further work [10], it was shown using the 
examples of both g-As2Se3 and g-As2S3 (g-glassy) that 
the analytically found Eq. (1) seems to be similar to the 
relationship Q1 = 2.5×π/r, reported by Gaskell [11] 
and/or Ehrenfest’s formula 1.23 = Q1 r/2π reported by 
Rachek [12], where r is a characteristic distance that 
corresponds to the inter-atomic correlations detected 
from the pair distribution function, G(r).

The Monte-Carlo simulation results for g-As2Se3

[13, 14] and g-As2S3 [15] have also been applied to 
confirm the validity of Eq. (1) for these chalcogenides.

Basically, the Eq. (1) comes from the Elliott 
interpretation [3-5] of nature of the anomalous first sharp 
diffraction peak (FSDP) as a chemical-order prepeak in 
the concentration-concentration structure factor, arising 
from the clustering of interstitial nanovoids around 
cation-based structural units, tested for AX2-type glassy-
like materials (e.g. GeS(Se)2), and resulting in the 
empirical relationship between the position of the FSDP, 
Q1, and atom-void separation like to diameter of 
nanovoids, D:

Q1 = 3/2D. (2)

If Eq. (2) is presented through a coefficient k, 
depending on the type of glass structure, the Elliott 
formula may be written as

Q1 = k  /D, (3)

where k = 1.5 for tetravalent AX2-type glasses. 
To find a correlation equation in the case of 

pyramidal type As2S(Se)3 glasses, the Jensen et al. [9] 
regularity between the positron lifetime,  (in ns), and 
vacancy volume, V (in Å 3), has been applied [1, 2] in the 
form of expression:
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Table. The values of positron lifetime 2 as typical for chalcogenide glasses as well as the void radius R and void volume V
calculated from Eqs. (4) to (6).

2 (ns) 0.35 0.36 0.37 0.38 0.39 0.40 0.41
Jensen’s et al. approach, Eq.(4)
R (Å) 2.73 2.80 2.88 2.95 3.02 3.08 3.15
V (Å3) 85 92 100 108 115 123 131
Liao’s et al. approach, Eq.(5)
R (Å) 2.26 2.40 2.50 2.60 2.71 2.81 2.91
V (Å3) 48 58 65 74 83 93 103
Liao’s et al. approach, Eq.(6)
R (Å) 2.05 2.16 2.28 2.40 2.51 2.63 2.75
V (Å3) 36 42 50 58 66 76 87

  0.240 + 0.0013  V. (4)

Recently, Liao et al. [16] reported a newly 
modified positron lifetime-free volume correlation 
equation for determination of free volumes up to the 
mean radius R = 5 Å in polymeric systems, where no 
orthopositronium (o-Ps) (3 = 1…4 ns) or very small 
fractions of o-Ps components are observed in PALS, 
which is based on the infinitive potential spherical model 
(originally proposed by Tao [17]) and presented as 

2 = 0.260  [1  (R/(R + 3.823)) + 1/2 
 sin(2R/(R + 3.823))]1. (5)

For simplicity, it was shown in [16] that R2

correlation for R < 5 Å could be approximated and 
empirically fitted by a linear equation as 

2 = 0.174(1 + 0.494R), (6)

where 2 and R are expressed in the units of nanoseconds 
and angstroms, respectively.

As chalcogenide glasses in their chemical nature 
are covalent disordered inorganic polymers [18], and, in 
respect to positron annihilation, they should be 
considered as inorganic polymers without o-Ps 
component or with very small fraction of o-Ps 
component in PALS (see, for example, [8, 19, 20]), the 
Liao et al. correlation equations (5) and/or (6) are valid 
in the first approximation for these materials and can be 
used obviously for As2S(Se)3 alloys. 

The values of void radius R or void volume V (V = 
4/3R3) estimated using positron lifetime-free volume
correlation equations are given in Table. As seen, the 
difference between values of V calculated from Eqs. (5) 
and (6) is 15 Å3, which is rather small to be affected on 
the average size of voids, whereas the void volume V
calculated from Eq. (4) is larger by 30 to 50 Å3. 

Liao et al. [16] noted that Eq.(5) should be applied 
for 2  0.35 to 0.40 ns, while for the shortest 
2 < 0.26 ns this equation is not applicable, while the 
linear Eq. (6) works better. It is noticeable that the 
correlation coefficients (r2 = 0.9391) for Eq. (5) and 
(r2 = 0.9268) for Eq. (6) are very similar [16], and, thus, 
it is suggested that the linear equation could be also used 

in more general cases for 2  0.35 to 0.40 ns when 
various polymeric materials (organic and inorganic) are 
examined. Taking into account that Eq. (5) is deduced 
by Liao et al. [16] using the example of organic 
polymers having preferential hydrocarbon environment, 
while chalcogenide glasses are inorganic polymers, the 
linear Eq. (6) is applied in the present work.

The values of the open-volume defect-related 
positron lifetime component 2 are known to be 0.37 ns 
for g-As2Se3 [21] and 0.36 ns for g-As2S3 [22]. 
According to Eq. (6), the values of void radius R are 
2.28 Å (D = 4.6 Å) for g-As2Se3 and 2.16 Å (D = 4.3 Å) 
for g-As2S3. The values of the FSDP position Q1 are 

known to be 1.25 Å 1 for g-As2Se3 and 1.26 Å 1  for g-
As2S3 (see, for example [1, 2, 10, 23] and references 
therein). Thus, corresponding to Eq. (3), the values of 
the coefficient k are obtained to be 1.8 for g-As2Se3 and 
1.7 for g-As2S3. In average, for pyramidal-type 
As2S(Se)3 glasses, the value of the coefficient k is 1.75 
and modified correlation equation in the FSDP-related 
void-based model for these alloys can be written as

Q1 = 1.75× π/D. (7)

Therefore, using the newly modified positron
lifetime-free volume correlation equation, Eq. (6), it is 
found that the established value of k = 1.75 for 
pyramidal type As2S(Se)3 glasses is very close to the 
above mentioned Elliott’s value of k = 1.5 for tetravalent 
AX2-type glasses. On the basis of this similarity in k
values, it is suggested that the nature of the FSDP for 
pyramidal-type As2S(Se)3 glasses and tetravalent AX2-
type glasses (e.g., A =  Ge, X = S, Se) is the same or 
very similar. In other words, in terms of the FSDP-
related void-based model [3-5], the cation-centered 
nanovoids with the same or very similar size are 
responsible for the FSDP occurrence in the both 
pyramidal and tetrahedral type chalcogenide glasses. 
This finding gives a new insight on the explanation of 
experimental observation that the FSDP position in the 
mixed pyramidal-tetrahedral type chalcogenide glasses, 
such as As(Sb)2S3-GeS2 and As(Sb)2S3-Ge2S3, is 
determined exclusively by concentration of Ge cations, 
while As and Sb cations do not affect the FSDP 
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occurrence [23, 24]. The most probably it is caused by 
the similar size of cation-centered nanovoids in the 
pyramidal and tetrahedral type chalcogenide glasses. 

From this viewpoint, the previously used Jensen 
et al. [9] theoretical calculations of positron annihilation 
lifetime versus open volume in application to 
chalcogenide glasses should be modified (see Eq. (4)). 
One of the reasons for this required modification can be 
a suggestion based on the two-component electron-
positron density functional theoretical calculations 
[25, 26] that a symmetric fourfold tetravacancies formed 
during the clustering process have the positron lifetime 
similar to that of divacancies, and fourfold trivacancies 
have the positron lifetime similar to that of 
monovacancies. This suggestion shows the possible 
confusion in the interpretation of positron annihilation 
lifetime data and explains why the conclusion made 
using Eq. (4) [23] that the size of nanovoids changes 
from three atomic vacancies for pyramidal type 
chalcogenide glasses to di- and/or monovacancies for 
tetrahedral type and pyramidal-tetrahedral type 
chalcogenide glasses should be reconsidered.

Finally, on the basis of the modified correlation 
equation, Eq. (7), reported here, it is easy to calculate 
that the size of nanovoids in the pyramidal type 
As2S(Se)3 glasses with average value of radius 
R  2.22 Å (or volume V  46 Å3) corresponds to the 
size of di- and/or monovacancies similarly to the size of 
nanovoids in the tetrahedral type GeS(Se)2 glasses [23] 
and mixture of pyramidal and tetrahedral structural units 
in chalcogenide glassy network should not practically 
affect the size of nanovoids responsible for the FSDP 
occurrence within the FSDP-related void-based model 
[3-5], as it is indeed experimentally observed [23, 24]. 
This agreement between calculation and experimental 
results may be also considered for validity of linear 
Eq. (6) to be applied for 2  0.35 to 0.40 ns in the case 
of inorganic polymers like to chalcogenide glasses.
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Recently, nanoscale void-species structure has been studied [1, 2] in the As2Se3 glass using combination of X-ray diffraction in respect to the first sharp diffraction peak (FSDP-related XRD), treated within a void-based model [3-5], and positron annihilation lifetime spectroscopy (PALS), analyzed within the two-state positron trapping model [6-8]. Assuming that the same nanovoids are responsible for both FSDP and PALS data in terms of Jensen et al. [9], the analytical correlation relationship between the FSDP position, Q1, and nanovoid diameter, D, has been presented as [1, 2]


Q1 = 2.3 ( (/D.
(1)

In the further work [10], it was shown using the examples of both g-As2Se3 and g-As2S3 (g-glassy) that the analytically found Eq. (1) seems to be similar to the relationship Q1 = 2.5×π/r, reported by Gaskell [11] and/or Ehrenfest’s formula 1.23 = Q1 r/2π reported by Rachek [12], where r is a characteristic distance that corresponds to the inter-atomic correlations detected from the pair distribution function, G(r).


The Monte-Carlo simulation results for g-As2Se3 [13, 14] and g-As2S3 [15] have also been applied to confirm the validity of Eq. (1) for these chalcogenides.

Basically, the Eq. (1) comes from the Elliott interpretation [3-5] of nature of the anomalous first sharp diffraction peak (FSDP) as a chemical-order prepeak in the concentration-concentration structure factor, arising from the clustering of interstitial nanovoids around cation-based structural units, tested for AX2-type glassy-like materials (e.g. GeS(Se)2), and resulting in the empirical relationship between the position of the FSDP, Q1, and atom-void separation like to diameter of nanovoids, D:


Q1 = 3(/2D.




(2)


If Eq. (2) is presented through a coefficient k, depending on the type of glass structure, the Elliott formula may be written as


Q1 = k ( (/D,
(3)


where k = 1.5 for tetravalent AX2-type glasses. 


To find a correlation equation in the case of pyramidal type As2S(Se)3 glasses, the Jensen et al. [9] regularity between the positron lifetime, ( (in ns), and vacancy volume, V (in Å3), has been applied [1, 2] in the form of expression:


( ( 0.240 + 0.0013 ( V.
(4)


Recently, Liao et al. [16] reported a newly modified positron lifetime-free volume correlation equation for determination of free volumes up to the mean radius R = 5 Å in polymeric systems, where no orthopositronium (o-Ps) ((3 = 1…4 ns) or very small fractions of o-Ps components are observed in PALS, which is based on the infinitive potential spherical model (originally proposed by Tao [17]) and presented as 


(2 = 0.260 ( [1 ( (R/(R + 3.823)) + 1/2( ( 
( sin(2(R/(R + 3.823))](1.
(5)


For simplicity, it was shown in [16] that 
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 correlation for R < 5 Å could be approximated and empirically fitted by a linear equation as 


(2 = 0.174(1 + 0.494R),
(6)


where (2 and R are expressed in the units of nanoseconds and angstroms, respectively.


As chalcogenide glasses in their chemical nature are covalent disordered inorganic polymers [18], and, in respect to positron annihilation, they should be considered as inorganic polymers without o-Ps component or with very small fraction of o-Ps component in PALS (see, for example, [8, 19, 20]), the Liao et al. correlation equations (5) and/or (6) are valid in the first approximation for these materials and can be used obviously for As2S(Se)3 alloys. 


The values of void radius R or void volume V (V = 4/3((R3) estimated using positron lifetime-free volume correlation equations are given in Table. As seen, the difference between values of V calculated from Eqs. (5) and (6) is (15 Å3, which is rather small to be affected on the average size of voids, whereas the void volume V calculated from Eq. (4) is larger by 30 to 50 Å3. 


Liao et al. [16] noted that Eq.(5) should be applied for (2 ( 0.35 to 0.40 ns, while for the shortest (2 < 0.26 ns this equation is not applicable, while the linear Eq. (6) works better. It is noticeable that the correlation coefficients (r2 = 0.9391) for Eq. (5) and (r2 = 0.9268) for Eq. (6) are very similar [16], and, thus, it is suggested that the linear equation could be also used in more general cases for (2 ( 0.35 to 0.40 ns when various polymeric materials (organic and inorganic) are examined. Taking into account that Eq. (5) is deduced by Liao et al. [16] using the example of organic polymers having preferential hydrocarbon environment, while chalcogenide glasses are inorganic polymers, the linear Eq. (6) is applied in the present work.


The values of the open-volume defect-related positron lifetime component (2 are known to be 0.37 ns for g-As2Se3 [21] and 0.36 ns for g-As2S3 [22]. According to Eq. (6), the values of void radius R are 2.28 Å (D = 4.6 Å) for g-As2Se3 and 2.16 Å (D = 4.3 Å) for g-As2S3. The values of the FSDP position Q1 are known to be 1.25 Å
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 for g-As2S3 (see, for example [1, 2, 10, 23] and references therein). Thus, corresponding to Eq. (3), the values of the coefficient k are obtained to be 1.8 for g-As2Se3 and 1.7 for g-As2S3. In average, for pyramidal-type As2S(Se)3 glasses, the value of the coefficient k is 1.75 and modified correlation equation in the FSDP-related void-based model for these alloys can be written as


Q1 = 1.75× π/D. 
(7)


Therefore, using the newly modified positron lifetime-free volume correlation equation, Eq. (6), it is found that the established value of k = 1.75 for pyramidal type As2S(Se)3 glasses is very close to the above mentioned Elliott’s value of k = 1.5 for tetravalent AX2-type glasses. On the basis of this similarity in k values, it is suggested that the nature of the FSDP for pyramidal-type As2S(Se)3 glasses and tetravalent AX2-type glasses (e.g., A =  Ge, X = S, Se) is the same or very similar. In other words, in terms of the FSDP-related void-based model [3-5], the cation-centered nanovoids with the same or very similar size are responsible for the FSDP occurrence in the both pyramidal and tetrahedral type chalcogenide glasses. This finding gives a new insight on the explanation of experimental observation that the FSDP position in the mixed pyramidal-tetrahedral type chalcogenide glasses, such as As(Sb)2S3-GeS2 and As(Sb)2S3-Ge2S3, is determined exclusively by concentration of Ge cations, while As and Sb cations do not affect the FSDP occurrence [23, 24]. The most probably it is caused by the similar size of cation-centered nanovoids in the pyramidal and tetrahedral type chalcogenide glasses. 


From this viewpoint, the previously used Jensen et al. [9] theoretical calculations of positron annihilation lifetime versus open volume in application to chalcogenide glasses should be modified (see Eq. (4)). One of the reasons for this required modification can be a suggestion based on the two-component electron-positron density functional theoretical calculations [25, 26] that a symmetric fourfold tetravacancies formed during the clustering process have the positron lifetime similar to that of divacancies, and fourfold trivacancies have the positron lifetime similar to that of monovacancies. This suggestion shows the possible confusion in the interpretation of positron annihilation lifetime data and explains why the conclusion made using Eq. (4) [23] that the size of nanovoids changes from three atomic vacancies for pyramidal type chalcogenide glasses to di- and/or monovacancies for tetrahedral type and pyramidal-tetrahedral type chalcogenide glasses should be reconsidered.


Finally, on the basis of the modified correlation equation, Eq. (7), reported here, it is easy to calculate that the size of nanovoids in the pyramidal type As2S(Se)3 glasses with average value of radius R ( 2.22 Å (or volume V ( 46 Å3) corresponds to the size of di- and/or monovacancies similarly to the size of nanovoids in the tetrahedral type GeS(Se)2 glasses [23] and mixture of pyramidal and tetrahedral structural units in chalcogenide glassy network should not practically affect the size of nanovoids responsible for the FSDP occurrence within the FSDP-related void-based model [3-5], as it is indeed experimentally observed [23, 24]. This agreement between calculation and experimental results may be also considered for validity of linear Eq. (6) to be applied for (2 ( 0.35 to 0.40 ns in the case of inorganic polymers like to chalcogenide glasses. 
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Table. The values of positron lifetime (2 as typical for chalcogenide glasses as well as the void radius R and void volume V calculated from Eqs. (4) to (6).





(2 (ns)�

0.35�

0.36�

0.37�

0.38�

0.39�

0.40�

0.41�

�

Jensen’s et al. approach, Eq.(4)�

�

R (Å)�

2.73�

2.80�

2.88�

2.95�

3.02�

3.08�

3.15�

�

V (Å3)�

85�

92�

100�

108�

115�

123�

131�

�

Liao’s et al. approach, Eq.(5)�

�

R (Å)�

2.26�

2.40�

2.50�

2.60�

2.71�

2.81�

2.91�

�

V (Å3)�

48�

58�

65�

74�

83�

93�

103�

�

Liao’s et al. approach, Eq.(6)�

�

R (Å)�

2.05�

2.16�

2.28�

2.40�

2.51�

2.63�

2.75�

�

V (Å3)�

36�

42�

50�

58�

66�

76�

87�

�
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