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Abstract. We show that a nanoparticle with a “giant” polarizability α  (i.e., with the 
polarizability volume 04πεα=α′  significantly exceeding the particle volume) placed 
in the vicinity of a surface experiences a strongly increased van der Waals force at 
distances comparable or smaller than the characteristic scale ( ) 31

0 α′∝R . At distances 
close to R0, the oscillation mode of the particle dipole moment softens, so nonlinear 
polarizability must be taken into account to describe the particle-surface interaction. It is 
shown that a proper treatment of nonlinear effects results in the van der Waals force that 
is free of divergences and repulsive contributions. 
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1. Introduction  

Although van der Waals forces are usually too small to 
play significant role in interactions between 
macroscopically large objects, they can become 
dominant at nanoscale. For example, van der Waals 
forces are responsible for self-assembly of molecules 
and nanoparticle arrays, which have been actively 
studied in recent years [1-4]. In this work, we revisit the 
well-known problem of the van der Waals interaction 
between surface and nanoparticle, focusing on the 
previously unexplored case of a particle with giant 
polarizability. Here, the term “giant” means that the 
polarizability volume is significantly larger than the 
effective volume of the nanoparticle. Lately, giant 
polarizability has been observed in Na14F13 molecular 
clusters and in a number of other alkali-halide clusters 
with MnXn–1 composition [5, 6]. The polarizability 

volume of these clusters may be up to 30 times larger 
than the effective volume of the cluster. Another 
example could be nanoparticles made of ferroelectric 
materials, under the conditions close to the ferroelectric 
transition. We will show that the van der Waals force 
between a surface and a nanoparticle with a giant 
polarizability α increases significantly comparing to the 
standard result when the distance between the particle and 
surface becomes smaller than the certain characteristic 
scale ( ) 31

00 εα∝R , where 0ε  is the vacuum 
permittivity. The reason for this behavior is softening one 
of the dipole oscillation modes, which occurs at distances 
close to R0. Within the description including only the 
linear part of the polarizability, this softening signals an 
instability (and would lead to a divergence in the van der 
Waals force). This implies the necessity to take into 
account the nonlinear polarizability, which would lead to 
stabilization of the system.  
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A similar setup, considering interaction of a 
nonlinearly polarizable ellipsoidal nanoparticle with a 
surface or with another nanoparticle has been recently 
studied in several articles [7-9]. According to the results 
of Refs. [7, 8], nonlinearity generates repulsive 
contributions to the van der Waals force that become 
dominant at small distances and lead to the emergence of 
a minimum in the total van der Waals potential at 
distances about R0. However, nonlinear contributions in 
Refs. [7, 8] have been taken into account only 
perturbatively. In our previous paper [9], we have 
considered interaction between two point-like 
nanoparticles with giant polarizability, and have 
concluded that a careful treatment of nonlinearity does 
not lead to repulsive forces: on the contrary, the van der 
Waals force is strongly enhanced at distances less or 
about R0, remaining purely attractive at the same time. In 
this paper, we show that essentially the same conclusion 
remains valid in the case of a particle interacting with a 
surface. We argue that the appearance of the repulsive 
component in the van der Waals force, reported in [7, 8], 
is an artifact of the weak coupling perturbation theory.  

2. Model and its analysis in harmonic approximation 

We consider an isotropic point-like particle placed in a 
medium with the relative permittivity mε  at distance R 
from the surface of a substrate (infinitely thick) with the 
relative permittivity sε  (see Fig. 1). The case of a 
metallic substrate can be obtained by formally setting 

−∞=εs .We assume that the particle has a linear 
polarizability α and third-order nonlinear polarizability 
β− . We further assume that the particle has an inversion 

center, so the second-order nonlinear polarizability 
vanishes, and we set 0>β  to ensure stability, so the 

response of the dipole moment d
r

 of the particle to the 
local field E

r
 is described by the expression 

EEEd
rrr

2β−α= .  
 
 

 

Fig. 1. Schematic view of the system considered: a point-like 
polarizable particle at the distance R from the interface 
between two media with different relative permittivities. 

We are primarily interested in the case of small 
distances mscR ,ω<< , where ( )ms ωω  are the 
characteristic frequencies of the polarization 
oscillations in the substrate (medium), and the 
characteristic frequency of the dipole oscillations 0ω  
of the particle is supposed to be much smaller than 

ms,ω . Thus, the retardation effects can be safely 
neglected. We further assume that nonlinear 
polarizabilities of both media are small as compared to 
the nonlinear polarizability of the particle and can be 
neglected.  

In absence of retardation, interaction between the 
particle and surface can be conveniently described by the 
method of image charges [10]. If the dipole moment of 
particle is ( )zyx dddd ,,

r
, with z axis perpendicular to the 

surface, then the image dipole situated at a distance R 
below the surface can be written as 

( )zyxim kdkdkdd ,,−−
r

, where
sm

smk
ε+ε
ε−ε

= . Then, the 

energy of the system can be written as: 
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where RRn /
rr

=  is the unit vector along z axis. The 
minimum of the energy determined by Eq. (1) is reached 
for npd

rr
0±= , where, as we shall see below, the 

“equilibrium” value p0 depends on the distance R. 
Considering small harmonic fluctuations, we write 

pnpd
rrr

+±= 0 , where ( )zyx pppp ,,
r

 describes the 
fluctuations around p0. A standard quantization 
procedure yields the following Hamiltonian of the 
system described by Eq. (1): 
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where iπ̂  are the momenta, canonically conjugate to the 
fluctuations ip̂ , ( )0pE  is the “static” part of the energy 
(see below), and for convenience we have introduced the 

“effective mass” ( ) 12
0
−

αω=m . Further, iω  are the 
harmonic normal mode frequencies of the dipole 
fluctuations: 
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One can see that z-mode becomes soft at R = R0. It 
is easy to see that in the standard case, when the 
“polarizability volume” 04πεα  is roughly about the 
physical volume of the particle, R0 is close to the linear 
dimension of the particle or even smaller, so the regime 
of small distances 0RR ≤  is either completely 
unphysical or cannot be considered in the approximation 
of a point-like particle. In what follows, we concentrate 
on the opposite case of a giant polarizability, when R0 is 
significantly larger than the linear dimensions of the 
particle. 

The static part of the energy, denoted ( )0pE  in 
Eq. (3), is given by the following expression:  
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where ( ) 213 βα=mp  is a characteristic dipole moment 
value (its physical sense is that for mpd ≅  the 3-rd 
order nonlinear contribution to the energy becomes of 
the same order of magnitude as the linear contribution, 
and thus higher order nonlinear terms should be taken 
into consideration; in other words, our approximation 
that is restricted to the 3-rd order nonlinearity is, strictly 
speaking, applicable only for mpd << ). It is easy to see 
that for R > R0 the potential function ( )0pE  has only 
one minimum at p0 = 0, and has two symmetrical 
minima for R < R0 (see Fig. 2). 

The equilibrium dipole value p0 and the 
corresponding static energy can be obtained by the 
minimization of ( )0pE , which yields the following 
expressions: 
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that are valid only when p0 is small as compared to pm 
(i.e., when ( ) 11 <<−s ). Far from the softening point, 
anharmonic terms can be neglected, and one can obtain 
the Hamiltonian in the second quantization terms in the 
harmonic approximation: 

∑
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Here, the dipole fluctuation operators and their 
canonically conjugate momenta are related with creation 
and annihilation operators via the standard relations: 
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The ground state energy in the harmonic 
approximation takes the form  
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=

ω+=
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iharm pEE
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0 2
1

h ,   (8) 

which, for R > R0 (s < 1), transforms into the following 
one: 
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At large distances R >> R0 (s << 1), one can expand 
square roots in (9), and obtain the standard 31 R  
dependence for the van der Waals potential, obtained by 
Lennard-Jones for interaction between inert gas atom 
and metallic surface [11-13]: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−ω=−ω≈

3
0

00 3
2
13

2
1

R
RsEst hh  .  (10) 

In the case of small distances R < R0 (s > 1), 
harmonic approximation for the energy yields: 
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where we have introduced the dimensionless 
nonlinearity parameter λ  for the sake of later 
convenience. Both for large and small distances, the 
ground state energy contains a term proportional 

to 3
0
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z-mode), which leads to a divergence in the van der 
Waals force REF harm ∂−∂=  at 0RR → , due to  
z-mode softening. However, fluctuations of the dipole 
momenta become large close to the softening point, so 
one can expect that nonlinear terms will play an 
increasingly important role in proximity to this point. 
Further, for R < R0 there are two energetically equivalent 
states npd

rr
0±= , which are separated by a barrier that 

vanishes at 0RR → . Therefore, when R is just slightly 
smaller than R0, tunneling processes between these states 
become dominant (and also determined by the nonlinear 
terms). It means that the naive harmonic approximation 
is not applicable in the close vicinity of the softening 
point. 

3. Effect of nonlinear polarizability 

3.1. Weak coupling regime: perturbation theory  

Consider first the corrections coming from the last two 
terms in the Hamiltonian described by Eq. (2). It makes 
sense, if the system is far from the softening point. In 
this regime, all modes are “hard”, so one can simply 
calculate the leading corrections using the first-order 
perturbation theory in λ  (for this calculation, we assume 
that 1<<λ , otherwise the perturbative approach is 
completely inapplicable). The corrections can be easily 
obtained using the following averages: 
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We will restrict ourselves to the leading corrections 
(first order in λ ), so the last but one term in (2) 
containing odd powers of pi gives no contribution in this 
order. 

a) Weakly nonlinear single-well regime occurs 
when λ>>− 23)1( s . This condition ensures that the z-
mode remains “hard” and can be treated perturbatively. 
In this case, the potential for the dipole moment is of a 
single-well type (see Fig. 3, large dashes) and the ground 
state energy, with the account taken of corrections from 
nonlinear terms, has the form  
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where we have introduced the following notation: 
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Fig. 2. Potential given by Eq. (4), for different values of R/R0. 
 
 

Frequencies for those correction functions should 
be taken from Eq. (3) for the case when )1(0 <> sRR . 
Note that ωz vanishes at )1(0 →→ sRR , so ( )sf1  is 
divergent at the softening point, while the function 

( )sf2  remains regular. The contribution from nonlinear 
terms in Eq. (13) corresponds to repulsive forces, and, 
formally taken, the full expression Eq. (13) describes a 
potential with a minimum (see the dash-dotted curve in 
Fig. 3), similar to that obtained in Refs. [7, 8]. However, 
this minimum occurs close to R = R0, which is outside 
the applicability range of the perturbation theory. As we 
shall see below, the proper description in the vicinity of 
the softening point does not exhibit any repulsive 
contributions, so this minimum should be regarded as an 
artifact of the perturbation theory. Moreover, including 
the perturbative corrections of higher order in λ  would 
add increasingly more and more singular contributions 
(diverging at R = R0), with alternating signs. 

b) Weakly nonlinear double-well regime occurs 
when ( ) λ>>− 231s . Similarly to the previous case, this 
condition ensures that z-mode remains “hard” and can be 
treated perturbatively. In this case the potential for the 
particle dipole moment is of a double-well type with 
“deep” wells (see the short-dashed curve in Fig. 2). The 
average magnitude of the dipole moment fluctuations 
inside a well is roughly equal to zmω2h and is, in this 
regime, much smaller than the equilibrium dipole 
moment p0, which determines the distance between the 
wells, so for the purpose of calculating the ground state 
energy the tunneling effects can be neglected. The 
ground state energy is a sum of the harmonic 
approximation expression Eq. (11) and the leading 
corrections in λ : 
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Here the frequencies for correction functions f1,2(s) 
should be taken from Eq. (3) for the case when R < R0  
(s > 1). Since p0 should be small comparing to the pm, 
one has to require that (s – 1) << 1, so the theory is 
applicable only to a small range of R values.   

3.2. Strong coupling expansion  

When λ<<− 231 s , one may speak of the strongly 
nonlinear regime, corresponding to a proximity to the 
softening point R = R0, where the potential is almost flat 
(dominated by nonlinear terms) for a range of dipole 
moments (Fig. 2, dot-dashed and solid lines). In this case, 
harmonic approximation is not a good starting point, and 
perturbation theory in λ  is no longer applicable. The 
dipole moment fluctuations are large (comparable to p0), 
so it does not make sense to consider oscillations around a 
single-well minimum. Without expanding the dipole 

moment d̂
r

 around 0p± , the Hamiltonian corresponding 
to Eq. (1) has the following form:  
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In this regime, x- and y-modes remain “hard” and 
can still be treated perturbativelly, but z-mode is “soft”. 
To make use of the known results for quartic oscillator, 
it is convenient to rewrite the Hamiltonian in 

dimensionless variables ( ) 21
0 /ˆ~̂
hω= mdd ii  and their 

conjugate momenta iπ̂
~ . The Hamiltonian can be 

represented as a sum of “soft” and “hard” mode parts 
plus interaction terms, as follows: 
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                     (18) 
where sg −= 10  and λ  are the quadratic and quartic 
dimensionless coupling constants.  

The “soft” mode is “slow” comparing to “hard 
(fast)” modes, so we can perform averaging over the 
“hard” dx,y modes, regarding the dipole moment dz 
corresponding to the “soft” mode as a constant. 
Averages of the “hard” modes can be calculated to the 
first order in λ  (we, as before, assume that 1<<λ ), in 
the harmonic approximation according to the formulas 
of the same type as Eq. (12). Such a procedure, applied 
to the term ( )1

intĥ  describing interaction between “soft” 
and “hard” modes, leads to a renormalization of the 
quadratic coupling g0: 

21
110 s

sgg
−

λ+−=a .  (19) 

The soft z-mode can be now treated using the 
strong-coupling expansion for quartic anharmonic 
oscillator [14] that is a power series in the 
parameter ( ) 32/4 λg . Then the ground state energy can 
be obtained as follows: 
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where nc are the coefficients of the strong coupling 
expansion (listed in Ref. [14] up to n = 22), the 
correction involving ( )sf2  stems from the interaction 
( )2
intĥ  in Eq. (18), and the function ( )sf2  is given by 

Eq. (14) with the frequencies defined by Eq. (17). From 
the above results, we can see that there is actually no 
singularity at 1→s  (at the softening point).  

4. Discussion and summary 

It is instructive to compare the above results obtained 
within different approximations. Fig. 3 shows the van 
der Waals potential calculated for a particle in vacuum 
( 1=εm ) near a metallic surface ( −∞=εs ), with the 
nonlinear coupling constant set to 005.0=λ , and Fig. 4 
shows the corresponding force. One can see that 
harmonic approximation (Eq. (9) and Eq. (11), shown in 
Figs. 3 and 4 as a dotted line) works well far from the 
mode softening point R = R0, but obviously fails in the 
proximity of R0 (note the singularity in force), because 
anharmonic terms play crucial role near the softening 
point. Weak-coupling first-order perturbation result  
(Eq. (13) and Eq. (15), shown with a dash-dotted line in 
Figs. 3 and 4) leads to a small correction to the harmonic 
approximation far from the softening point, but shows 
unphysical divergence in the vicinity of R0 (in the first 
order by λ , this diverging contribution happens to 
correspond to a repulsive force, but the sign of the 
divergence alternates when higher-order corrections are 
included). The reason for this behavior is the divergence 
of fluctuations at 0RR →  due to the vanishing harmonic 
frequency of the z-mode (see Eq. (12)). At a formal 
mathematical level, one can say that the actual small 
parameter for the weak-coupling perturbation theory is 
not λ  but rather ( ) 231/ s−λ , and it is not small for 
distances close to R0 even when 1<<λ . We remark that 
the spurious short-distance repulsion that appears in our 
first-order perturbation theory, strongly resembles the 
nonlinearity-induced repulsion obtained in Refs. [7, 8] 
on the basis of a quite different phenomenological 
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electrodynamics approach (the essential point, though, is 
that the contribution of nonlinear terms to the energy has 
been computed to the first order in the nonlinear 
polarizability constant).  

The results of the “hybrid” approach of Eq. (20) 
combining the strong-coupling expansion for the soft 
mode and first-order weak-coupling corrections from hard 
modes, including the renormalization of the quadratic 
coupling of the soft mode, are shown in Figs. 3 and 4 with 
a dashed line. One can see that this approximation 
complements the weak-coupling results: it fails to 
describe the situation far from the softening point, but 
gives correct results close to R = R0. It is easy to see that if  
 
 

 
 

Fig. 3. The potential of van der Waals interaction between a 
point-like particle and metallic surface separated by the 
distance R, for the model described by Eq. (1), at the value 
λ = 0.005 of the quartic coupling parameter obtained in various 
approximations. The solid line indicates the standard result Eq. 
(10) valid at R >> R0; the dotted line corresponds to the 
harmonic approximation given by Eqs (9) and (11); dash-
dotted lines show the results obtained within the weak coupling 
perturbation theory for R > R0 (Eq. (13)) and R < R0 (Eq. (15)), 
and the dashed line shows the result Eq. (20) obtained by 
means of the strong-coupling expansion with the renormalized 
quadratic coupling Eq. (19). 
 
 

 
 
Fig. 4. The van der Waals force F = – ∂E/∂R between a point-
like particle and metallic surface separated by the distance R, 
all notations are the same as in Fig. 3. 

one takes the weak-coupling result far from the softening 
point and joins it with the strong-coupling result near R0, 
one ends up with a smooth monotonic curve which is free 
from any singularities and describes the van der Waals 
interaction that remains attractive at all distances. 

Comparing the standard 1/R3 expression for the van 
der Waals interaction (Eq. (10), shown with solid line in 
Figs. 3 and 4) to the results obtained in other approaches, 
one can see that the standard result works well at large 
distances R >> R0, but strongly underestimates the van 
der Waals force at distances comparable to R0 and 
smaller. One can define the enhancement factor η  as the 
ratio of the force calculated using appropriate formulas 
for each region (Eq. (13), (15), (16)) to the force 
calculated from the standard result (Eq. (10)): 

RE
RE

st ∂∂
∂∂

=η . (21) 

This enhancement factor behaves as 31−λ∝η  in 
the vicinity of the softening point.  

To summarize, we have shown that the van der 
Waals force between a particle with a giant linear 
polarizability α  and a surface is significantly enhanced 
at short distances of the order of ( ) 31

00 εα∝R . This 
result is derived in a simplified microscopic model 
assuming single-oscillator approximation for the particle 
and including a stabilizing third-order nonlinear 
polarizability. We also show that a careful treatment of 
nonlinearity does not lead to any repulsive forces, 
contrary to some recent theoretical claims [8]. This 
result may be important for theoretical understanding the 
van der Waals interactions in systems of alkali-halide 
molecular clusters with giant linear polarizability [5, 6]. 
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