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Abstract. Local vibrational density of states for disordered graphene has been calculated 
via Green’s functions method. Disordered material has been modeled with Bethe lattice. 
Density of states does not include particularities specific for ideal graphene. 
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1. Introduction  

The Green functions (GF) method has been successfully 
applied for investigation of electronic [1, 2] and dynamic 
[3, 4] properties of disordered solids [5, 6]. It is 
impossible to use cyclic boundary conditions in these 
materials. In a real graphene, there are always some 
variations of chemical bounds lengths and valence 
angles magnitudes [5].   

The most simple model of structurally disordered 
graphene is the Bethe lattice [7-9] (Cayley tree). It is an 
infinite connected cycle-free dendritic system of atoms 
with remaining short-range order. We’ve used lattice 
potential model in Born’s approximation  
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The sums are on atoms i and its nearest neighbors j, 
and rj(i) is the unit vector joining they equilibrium 
positions; ui and uj – vectors of displacement of these 
atoms. 

In order to determine GF, it is necessary to solve 
infinite sequence of Dyson’s linear matrix equations: 
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Here, the sums are on all possible paths joining i-th 
and j-th atoms, Dij – matrices of force constants. 

The local density of states is given by 

∑ ω
⋅π⋅
⋅ω⋅

−=
k

kkG
n
mEg )(Im

3
2)( , 

where n is a number of atoms in a system, and Gii (ω) – 
diagonal matrix element of Green’s function for i-th 
degree of freedom. Each summand is a partial density of 
vibrational states, which characterize contribution of a 
given degree of freedom with a frequency ω in the total 
density of states.  
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2. Solution for the Bethe lattice 

In order to transform graphene into the Bethe lattice, we 
use the following technique: any random atom we 
choose as initial and mark him with subscript 0; next 
nearest neighbors will have indexes 1, 2, etc. To 
investigate dynamics of this lattice, we postulate that 
each bond with a nearest neighbor can be characterized 
via 3×3 symmetric matrices of force constants Dij: 
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Then, the local GF of 0-th atom can be determined 
from an infinite sequence of matrix equations [1, 2]: 
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Here, m is the mass of an atom, I – identity matrix, 
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joining atom with itself. 
This system of equations can be solved, if one 

introduces the transfer matrices Фji in the form:  
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Figure. Local density of vibrational states of graphene. Solid 
line – density of states for the Bethe lattice, dashed line – 
density of states of ideal graphene [10]. 
 
 
which satisfies equation 
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Then, the Green function is determined as 
1

2
−

⎥
⎦

⎤
⎢
⎣

⎡
−−ω= ∑

i
m 0i0i000 ΦDDIG . 

Matrix elements were determined in an analytical 
form (here we does not perform them due to their 
massiveness). 

The results of calculation of vibrational density of 
states for disordered graphene are represented in the 
figure. The dashed line represents density of states for 
ideal graphene [10]. Values of force constants have been 
selected due to the best proximity to X-ray inelastic 
scattering experimental data [11].  

3. Conclusions 

Local vibrational density of states describes well ZO, 
ZA, LO, TO modes. But TA and LA peaks are highly 
smoothed. 

In a presence of structural disorder, the expression 
for local density of states must be averaged over 
different local configurations.  

The Bethe lattice can be used in a cluster modeling 
calculations, including presence of cycles of bonds, as 
boundary conditions. 
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