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Abstract. Surface of highly oriented pyrolytic graphite with terrace steps was studied 
using scanning tunneling microscopy with high spatial resolution. Spots with positive 
and negative charges were found in the vicinity of the steps. Values of the charges 
depended both on the microscope needle scan velocity and on its motion direction. The 
observed effect was theoretically explained with account of London forces that arise 
between the needle tip and the graphite surface. In this scheme, a terrace step works as a 
nanoscale diode for surface electric currents. 
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1. Introduction 

Intermolecular forces have been known for centuries, but 
it’s only in recent years as a result of progress in 
nanoscience that researchers began paying closer 
attention to them. As it is well-known, tiny objects on a 
conducting surface experience the influence of short 
range (van der Waals) forces, which have to be taken 
into account as nanodevice constructions. Three similar 
phenomena were subsequently shown to contribute to 
these “van der Waals” interactions [1]: randomly 
orienting dipole-dipole (or orientation) interactions, 
described by Keesom [2-5]; randomly orienting dipole-
induced dipole (or induction) interactions, described by 
Debye [6, 7]; fluctuating dipole-induced dipole (or 
dispersion) interactions, described by London [8]. The 
Lifshitz theory of condensed media interaction [9] 
describes the short range forces based on continuum 
properties. The van der Waals pressure according to 
Lifshitz’s theory can be expressed in terms of the 
dielectric susceptibilities of interacting phases. Hamaker 
developed the theory of van der Waals–London 
interactions between macroscopic bodies in 1937 and 
showed that the additivity of these interactions renders 
them considerably more long-range [10]. If we have 
objects of complicated shape and mutual position, an 
image method allows computing the dispersion van der 

Waals interaction between a neutral but polarizable atom 
and a perfectly conducting surface of arbitrary shape. 
This method has the advantage of relating the quantum 
problem to a well-known classical one in electrostatics 
[11]. Casimir force between mirrors in vacuum can now 
be measured with good accuracy and according to 
theory, when the effect of imperfect reflection of mirrors 
is properly taken into account [12]. A simple case of 
bulk metallic mirrors can be described by a plasma 
model to show that simple scaling laws are obtained at 
the limits of long and short distances. The crossover 
between the short and long-distance laws is quite similar 
to the crossover between van der Waals and Casimir–
Polder forces for two atoms in vacuum. Mechanical 
effects in macroscopic physics and the archetype of 
these effects is the Casimir force between two mirrors at 
rest in vacuum. Casimir force, which operates at short 
distances, can be understood as the London interaction 
between the elementary excitations of both scatterers. 
And that is described as surface plasmons of the two 
bulk mirrors. At short distances, this is the van der 
Waals force, at large distances, the finite velocity of 
light becomes important (retardation effects) and the 
result is the Casimir force. Attractive Casimir forces 
were found between gold surfaces [13]. The forces were 
repulsive between gold and silica surfaces. The vacuum 
stress between closely spaced conducting surfaces, due 
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to the modification of the zeropoint fluctuations of the 
electromagnetic field in the 0.6 to 6 mm range, has been 
conclusively demonstrated [14]. The non-retarded 
Casimir–Polder interaction between a neutral but polari-
zable particle and a plane with a complicated topology – 
perfectly reacting sheet containing a circular hole was 
found [15]. The calculation reveals a strong dependence 
of the interaction on the orientation of the particle’s 
electric dipole moment with respect to the surface.  

Scanning probe microscopies (scanning tunneling 
microscopy (STM) and especially atomic force 
microscopy (AFM)) proved to be a basic tool to study 
nanoobjects while taking into account van der Waals 
forces. Significant progress has been made both in 
experiments and in theoretical modeling of scanning 
probe microscopies. See, for example, review [16] with 
discussions and comparison of the present status of 
computational modeling of scanning tunneling 
microscopy and scanning force microscopy in relation 
with their studies of surface structure and properties with 
atomic spatial resolution. The first stage of performing 
nanoscale measurements is ascertaining a good quality 
of the surface being studied. Metal and semiconductor 
crystals with lattice planes on its surface can play an 
important role taking into account both fabrication of 
nanostructures and quality of STM/AFM experiments. 
From the point of view, highly oriented pyrolytic 
graphite (HOPG) was chosen for experiments because of 
its close to perfect crystal lattice, which allows 
controlling the nanometer scale distance between 
interacting bodies – HOPG surface and scanning needle 
tip. Lattice planes on HOPG surface with sharp edges 
were detected applying STM in [17]. The terrace steps 
were characterized as crystal lattice defect though the 
organic impurities were mostly studied. Coiled 
structures with a helix pattern were studied by STM in 
[18]. The terraces morphology was changed by applying 
electrochemical reductive etching [19]. The lattice plane 
edges were proposed to be carbon based electrodes. The 
two terrace planes – edge and basal planes taken as 
electrodes – would exhibit different kinetics because of 
edge plane sites/defects [20]. 

The goal of this article is to study short range 
intermolecular forces applying atomic spatial resolution 
STM for lattice planes on the HOPG surface. 

2. Experimental 

To study the HOPG structure, we applied STM tech-
nique, which allowed us to reach an atomic spatial scale 
resolution. A microscope INTEGRA NT-MDT was used 
to conduct measurements in tunneling microscopy 
regime. Scanning tunneling microscopy spatial 
resolution reached up to 0.2 nm. A sharp needle for STM 
measurements was fabricated from 0.5 mm Pt0.8Ir0.2 wire 
by mechanically cutting its end. We performed our 
measurements in a regime when STM setup supported a 
constant tunneling current through the needle, which was 
completed by tuning the sample position along the 

vertical direction. Sample of HOPG had rectangular 
shape with 1 cm sides. STM measurements were 
performed in different places of the sample surface with 
a particular interest toward lattice planes edges in order 
to study surface effects in these spots. HOPG samples 
were cleaved by applying scotch tape, and the 
measurements were performed during the following days 
in order to avoid the sample surface degradation. 

Examples of the HOPG surface profile studied by 
STM with different spatial resolution are presented in 
Figs 1 to 3. In Fig. 1, we can see lattice planes that form 
perfectly shaped terrace steps having the maximal length 
up to ten micrometers. The steps visible as direct straight 
lines separate two neighboring lattice planes that have 
distinct difference in brightness. The terrace steps have 
narrow black and white “shadows”, beside which they 
are visible as straight and narrow bands. Fig. 2 demon-
strates a high spatial resolution STM scan of a terrace 
step that is formed by two neighboring lattice planes. 
HOPG crystal lattice structure is visible on the planes. 
The white and black neighboring bands from Fig. 1 are 
marked in 3D Fig. 2 by W and B arrows that indicate 
sharp maximum and minimum on the edge of the step. 
The value of the height of the terrace step equals to 6…7 
lattice parameters (~2 nm). The crystal lattice orientation 
of this HOPG sample was close to [101]. The terrace 
steps were formed during mechanical HOPG cleaving 
and a few terrace steps may form a group – parallel rows 
containing a few parallel terrace steps separated by a 
space interval of ten nanometers (Fig. 3). For Fig. 3 
experiments, we chose terrace steps with small terrace 
step heights that reached 1 to 2 lattice parameters. It 
allowed us to register artifacts in the vicinity of the steps 
more noticeably. Figs 3a and 3b show the same spot of 
HOPG surface with parallel terrace steps, which was 
measured with different velocities and with different 
directions of needle movement along the HOPG surface.  

 
Fig. 1. STM scan of HOPG surface. Spatial resolution 60 nm. 
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Fig. 2. STM scan of a terrace step on HOPG surface. Spatial 
resolution 0.2 nm. SD indicates direction of scans, W and B 
arrows indicate dark and white bands near the terrace step 
edges. 
 

White and black areas near the terrace steps on 
HOPG surface are visible in Fig. 3a and have distinctly 
higher contrast in Fig. 3b as a result of higher scanning 
velocity in the latter case. The widths of the white/black 
bands in Fig. 3b reach 10 nm. The white/black bands are 
absent in Fig. 3c due to the opposite directions of the 
needle movement, despite the needle had the same scan-
ning velocity as in Fig. 3b. The white spots on the two 
neighboring atomic planes beside of its edges indicate 
higher concentration of the surface charges in these areas. 
The electric charges contributed to the tunneling current 
and resulted in the large distances between the needle tip 
and sample surface (experimental set-up worked in the 
constant tunneling current regime). The dark spot 
similarly indicates lower surface charges in this point.  

Cross sections of Fig. 3 STM scans are presented in 
Fig. 4. The cross sections are marked in Fig. 3 as white 
straight lines. The cross sections are taken in the same 
spot of the scanned terrace step. As we can see from 
plots of Fig. 4, the differences in Z coordinate near the 
terrace steps reach 7 nm for (a) curve and is almost 
unnoticeable for (c) curve (STM scan with opposite 
direction). For lower scan velocity ((b) curve) ΔZ is 
approximately 2 nm. ΔZ numbers for Fig. 4 (a) and (b) 
curves exceed HOPG crystal lattice parameter by almost 
one order of magnitude. 

3. Discussion 

Randomly appearing dipole on the STM needle tip 
induces electrical charge on the surface of HOPG. If we 
introduce the Green function which satisfies the 
expression  

( ) ( )rrrrG
rrrr ′′−′δ−=′′′∇ ,2  (1) 

for the non-retarded interacting energy in this case 
between an atom with a dipole moment oriented along Z 
axis, and the conducting surface can be written as a 
simplified ratio obtained in [21] 

( )( )
0

41,
2
1 2
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ε
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a       b       c 

Fig. 3. STM scan of the HOPG terrace step. (a) Direction of scan from the upper part of the figure to the lower part. Velocity of 
scan 0.6 µm/s. Spatial resolution 0.8 nm. W and B arrows indicate dark and white bands near the terrace step edges. (b) Direction 
of scan from the upper part of the figure to the lower part. The velocity of scan 6 μm/s. Spatial resolution is 0.8 nm. W and B 
arrows indicate dark and white bands near the terrace step edges. (c) Direction of scan from the lower part of the figure to the 
upper part. The velocity of scan 6 μm/s. Spatial resolution is 0.8 nm. 
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Fig. 4. Cross sections of STM scans for: a) Fig. 3b, b) Fig. 3a, 
c) Fig. 3c. 
 
 

Here, d is a quantum operator of dipole moment 
that in classical approximation is equal to ql (Fig. 5), and 
the energy depends on its projection on Z axis. 
Orthogonal to the sample surface electric field E can be 
found with account of the image method [11], which 
enables to reduce the quantum mechanical problem to 
the related classical electrostatic one by putting 
additional point charges into specific places in bulk 
media. The electric potential in this configuration can be 
calculated as being induced by the original dipole and 
the image dipole (Fig. 4). Two dipole vectors of the both 
original and image dipoles are co-linear and orthogonal 
to the perfectly conducted sample surface in order to 
minimize the dipole interaction electric energy. The 
electric field vector in the vicinity of the sample surface 
is orthogonal to the surface. If applying the Coulomb 
law, one can calculate the electric field in an arbitrary 
point of the surface: 
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The electrical vector in (x, y) point near the surface 
in Eq. (3) is orthogonal to the surface and is produced by 
the both local surface charges and the electric dipole in 
the needle tip. The local electric charge density on the 
surface σ(x, y) and the electric field vector E(x, y) satisfy 
the relationship: 

( ) ( ) 02,2, εσ= yxyxE . (4) 

Here, only half value of the electric field E(x, y) is 
generated by the surface charge and another half – by the 
dipole in the needle tip. In the image method formalism, 

the former part of the electric field is formed by the 
image dipole beneath the surface. In assumption of small 
l (comparing to the distance between the needle tie and 
the surface), we can obtain a ratio for the surface electric 
charge density: 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ++−+
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−− 232
0

2225222
03

2
, zyxyxzdyx . (5) 

If we put an electrical dipole near a terrace step that 
is formed by two conducting planes, the electric field 
distribution cannot be found by applying the image 
method. First, let us take a closer look at a simple case of 
an electric charge near the corner of two infinite 
conducting semi-planes (Fig. 6a), which can be solved 
using the image method. In this configuration, the 
distribution of electric potential is generated by the real 
charge +q(x0, y0) and additionally by the three mirror 
image charges (–q(x0, –y0), –q(–x0, y0), +q(–x0, –y0)).  

The electric potential is equal to zero on the two 
conducting semi-planes – x = 0 (y ≥ 0) and y = 0 (x ≥ 0)). 
One real charge and three image charges form the 
quadruple configuration. As a result, the electric field as 
well as the electric charge surface density in the corner 
point (x = 0, y = 0 – the geometrical center of the four 
charges in the quadrupole) are equal to zero. If the 
needle tip slides along the sample surface during STM 
experiments, the induced surface charges on the surface 
also move following the moving tip. As a result, a 
surface current is formed.  

The corner point with zero surface charge density 
represents a barrier or a trap, which prevents surface 
charge displacement from the right to the left side and 
from left to right. The induced surface current is equal to 
zero in the corner point, because as we can see from 
Fig. 5 calculations, surface charge density in the point is 
equal to zero. 

 

 
 
Fig. 5. A conducting needle tip with induced dipole near 
the conducting plane. 
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A terrace step on a surface plane is a more 
complicated topological configuration as compared 
with that of the corner that is formed by two semi-
infinite steps. We cannot apply the image method to 
obtain the electric potential distribution in this case. 
We tried to model the electric potential distribution in 
this configuration by solving numerically the Maxwell 
equations. The result of numerical simulation of a 
dipole on the STM needle tip near the terrace step on a 
conducting surface is presented in Fig. 6b. The 
calculations were performed using MEEP software in 
Debian Linux environment. The field distribution is 
shown both as equilines and gray scale surface plot. 
The obtained field distribution is to some extent similar 
to the scheme in Fig. 6a. The equilines allow us 
evaluating qualitatively the electric vector numbers by 
counting the space gap between the lines. The electric 
field is zero in the corner of the terrace step (similar to 
the scheme in Fig. 6a) and has high values near the 
terrace step rim. The arrow in Fig. 6b indicates possible 
surface charge movements through the substrate bulk 
material, when STM scan is performed from right to 
the left side. The opposite direction (from the left to the 
right) of surface charges movement is impossible, 
because the charges cannot move through the air. This 
scheme of surface charges movement could be a 
possible explanation of Fig. 3 effect, when charge is 
collected near the terrace step on a conducting surface, 
when the needle moves in one direction, and freely 
passes the terrace step, when the needle moves in the 
opposite direction. The terrace step is operating in a 
regime that creates a barrier (or trap) for the electric 
charge moving in one direction. Basically, it works as a 
surface nanoscale diode. 

The electric current in STM experiments is formed 
by electrons from conduction graphite band. These 
electrons form ideal Fermi gas with the temperature that 
is below the Fermi temperature. Because of the degene-
racy of the gas, we cannot register edge or defect states 
in the valence band of our sample similarly to [22, 23] 
results. If the localized surface states are registered 
either by spreading resistance atomic force microscopy 
or by Kelvin probe force microscopy, the results have to 
be invariant to the both scan velocity and direction. 

Charges are localized near HOPG terrace steps, be-
cause the surface charges cannot move across this linear 
surface defect. A possible qualitative explanation can be 
based on a high surface curvature near terrace steps on 
HOPG surface and, as a result, higher values of electric 
field in the spots near the rims of the terrace step. The 
field prevents the induced surface charges from moving. 
In more general terms, we usually have dipole configura-
tions of induced charge distributions in macroscopic 
volumes of an electric circuit, because the charges are in-
duced there by bipolar voltage source. In nanoscale 
volumes, induced charges may form higher order multi-
pole moments because of non-planar (e.g., a terrace) sur-
face topology in some spots of the surface. The induced 
charges in the corner of two semi-infinite conducting 
planes may form quadrupole configuration (quadrupole 
polarizability) having the zero dipole moment. This in-
duced quadrupole forms a barrier for surface currents. The 
extra charges on HOPG surface are accumulated during 
STM needle movement and the changing local electric 
potential in the vicinities of terraces, which results in 
white/black artifact bands on STM scans. Actually, the 
pairs of black/white bands localized near the terrace steps 
indicate presence of surface nanodipoles with the vector 
oriented perpendicular to the terrace step direction. 

 

 

 

 

 

 

 

 

 

a            b 

Fig. 6. A charge near the corner of two conducting planes (a), electric potential distribution induced by a dipole near 
a terrace step (b). 
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4. Conclusions 

London forces which arise between the needle tip and a 
conducting crystal surface during STM experiments 
result in induced charge in the spot beneath the needle 
tip. The charged spot below the needle tip on the sample 
surface follows the needle movement along the sample 
lattice plane creating a surface current. If the lattice 
plane has linear defects (e.g., terrace steps on the 
surface), it can result in the electric charges 
accumulation along the surface defect lines, when the 
needle moves in a specific direction. A step on a surface 
that forms an electric junction allows flowing surface 
electric current only in one direction. Practically, this 
effect can be used as a basic element for nanoscale diode 
construction. The diode dimensions could be as small as 
crystal lattice primitive vectors lengths. Applying 
another voltage polarity, one can induce a nanodipole 
along a sharp edge of the terrace. From pure practical 
point of view, it can be used as a nanoscale voltage 
source. This effect takes place in nanoscale volumes 
near the surface, because it is originated from second-
order term of multipole expansion. At large distances 
comparing to dimensions of charge distribution the 
electric potential and field are dominated by the main 
dipole term of the expansion, and high order terms are 
negligible. 
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