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Abstract. Properties of the polaron functional obtained as a result of averaging the 
Fröhlich Hamiltonian on the translation-invariant function have been investigated. The 
polaron functional can be represented in two different forms. It has been shown that the 
functional of translationally invariant Gross–Tulub polaron cannot be applied in the 
strong coupling region, where the real part )(Re sD  of the complex quantity ( )2sD  takes 

negative values. The function ( )2sD  coincides in its structure with the dynamic 
susceptibility of degenerate electron gas. The necessary condition for obtaining correct 
results is investigation of the region of admissible values of the Gross–Tulub functional 
depending on properties of the function ( )2sD , variational parameters, and the electron-
phonon interaction parameter α (Fröhlich coupling constant). A simple and exact formula 
for the recoil energy of the translationally invariant polaron has been derived, which 
makes it possible to extend the range of admissible values of the parameters of the 
electron-phonon interaction to the region of extremely strong coupling (α > 10), where 

0)(Re ≤sD . Numerical investigation of different forms of polaron functionals obtained 
using the field theory methods has been carried out. 
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The study of properties of translationally invariant 
polaron was initiated in the classical work by Lee, Low, 
and Pines [1]. Consistent application of two canonical 
transformations to the electron Hamiltonian in the 
phonon field made it possible to describe the polaron 
moving in a phonon field for intermediate values of the 
electron-phonon interaction constant.  

The initial Hamiltonian has the form: 

pheHHH −+= 0 , (1) 

where 0H  includes electron kinetic energy operator and 
phonon field operator, and pheH −  – Hamiltonian of the 
electron-phonon interaction. 

The first canonical transformation proposed in [1] 
excluded the electron coordinate from the effective 
Hamiltonian, the second transformation described the 
displacement of phonon operators from the equilibrium 
position under action of electron-phonon interaction. 
Because the total momentum of the system Pop 
consisting of electron and phonons interacting with it 

pkP +=∑ +
kk kop aah  (where k  is the phonon wave 

vector, +
ka , ka - phonon creation and annihilation 

operators, ∇−= hip – electron momentum, *m – 
effective electron mass band) commutes with the 
Hamiltonian (1), then it is possible to go over to 
representation, in which Pop is the “c-number” P, and the 
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wave function (WF) of the original Hamiltonian will not 
depend on the electronic coordinates.  

The first canonical transformation changes the WF 
Φ  of the Hamiltonian (1) according to the rule: 

1) ( )[ ] )(exp)(),( QaaiQSQr
k kk Ψ−=Ψ=Φ ∑ + rkPh . 

The second is represented in the form: 

2) ( )[ ] 00 exp)( Ψ−=Ψ=Ψ ∑ ++
k kkkk fafaUQ , where 

kf  is the variational function. If the second unitary 
transformation is applied directly to the initial 
Hamiltonian (1), then after varying (1) on kf  and 
averaging over the phonon and electron variables, we 
obtain the Pecar strong coupling polaron functional [2]. 
For a multiplicative polaron wave function that allows 
separation of phonon and electronic coordinates, the 
variational function kf  is the Fourier component of the 
electron part in the polaron wave function. In this case, 
the second transformation is also called the strong-
coupling transformation.  

In the papers of Gross and Tulub [3-5], three 
canonical transformations are successively applied to the 
Hamiltonian (1). The first two are the transformations of 
Lee, Low, and Pines, the third transformation leads to 
the diagonal form expression: 

( )( ). 
2

1
* kkkkkk

kk
kkk aaaaff

m
aaH ′

+
′

+
′

+ ++′+ω= ∑∑ kk

 (2) 
Here and henceforth, following [3-5], it is assumed 

that P = 0, P is the eigenvalue of the operator Pop; 

m
k

kk 2

2
0 +ω=ω , 0

kω - the energy of longitudinal optical 

phonons.  
According to [3-6], after averaging over phonon 

variables, for P = 0 the polaron energy can be 
represented in the form: 

∑∑ ω++Δ=
k

kk
k

kkp ffVgEE 202 , (3) 

where 0
01 4 lkV kk παω= − h , 

0
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==α
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, 00 2 km
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The first term in (3) describing the shift of 
frequencies of the zero-point oscillations in the system 
under action of the electron-phonon interaction has the 
form [3, 4]: 

∫π
−=Δ

C

sD
s

ds
i

E )(ln
8
3 . (4) 

The integration contour is shown in Fig. 1. 

 

Fig. 1. The contour of integration in Eq. (4). 

The function ( )sD  coincides in its structure with 
the dynamic susceptibility of degenerate electron gas: 

∫
∞

−ω

ω

π
+=+=

0
2

24

23
11)(1)( dp

s
fp

sQsD
p

pp . (5) 

In the complex plane, 

( )
π

=ω
6

Im
23

2 k
k

fk
D , (6) 

[ ])(exp)()(Im)(Re)( sisDsDisDsD ϕ=+= , (7) 

22 )(Im)(Re)( sDsDsD +=   

for  

0)(Re ≥sD , 

( )
( ). )()(Imarcsin

)(Re)(Im)(arg)(
sDsD

sDsDarctgsDs
=

===ϕ
 (8) 

After substituting (6) and (7) into (4), one can 
obtain the expression for the recoil energy written in the 
Gross–Tulub form [3, 4]: 

[ ]

( ) ( )[ ]. ReImarctg
2
3

)(Re)(Imarctg
4
3

22

0

1

kk DDkdk

sDsD
s

dsE

ωω
π

π

⋅⋅=

==Δ

∫

∫
∞

∞

 

(9)

 

For numerical calculations, it is more convenient to 
express the argument of the function )(sD  through 

{ })()(Imarcsin sDsD  in relation with the fact that 

)(sD  does not vanish, when 0)(Re =sD . We rewrite 
the expression (9) in its equivalent form: 
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(9а)

 

According to (8), the expressions (9) and (9a) were 
written in [3, 4] only for the first quarter of the complex 
plane, although this was not specified by the authors of 
the works. Therefore, the use of (9) for variational 
calculations requires verification of the fact that for 
parameters obtained using the variational method, for the 
entire range of argument s changing the inequa-
lity 0)(Re ≥sD  is true.  

In order to extend the allowable range of 
parameters to the upper half-plane, it is necessary to take 
into account that in the second quarter of the complex 
plane, when 0)(Re <sD ,  

( )
( ). )()(Imarcsin

)(Re)(Imarctg)(arg)(
sDsD

sDsDsDs
−π=

=+π==ϕ
 

(10)
 

The change from integration on s  to integration 
with respect to the wave vector in (9) was carried out 

with allowance for the equality 21 2ks +=  ( 1=h , 

10 =ωk , 1* =m , and also for the convenience of the 
notation, we assume that the normalization volume of 
the crystal V = 1).  

The integrand in the expression (9) must be 
analytic in the complex plane, with exception of a finite 
number of removable singularities. It means that the 
variational function kf  minimizing the expression (3) 
must be substituted into the expression (5) in order to 
check properties of )(sD  and the integrand in (7). This 
check is necessary for a self-consistent calculation, 
because it is necessary to exclude from the consideration 
the range of parameters in which the integrand loses the 
properties of the analytic function. When 0)(Re →sD , 
the integrand in (9) tends to the maximum permissible 
value because of the fact that 2)(arctg π→x  for 

∞→x . This property of the expression (9) in the work 
by Gross [3] is called as the striving of the integrand to 
“saturation”. The author [3] did not assume the 
possibility of considering the range of parameters, for 
which ( ) 0Re 2 ≤ωkD . Gross chose ( )221 bkVf k

G
k +=  

as a trial function. As it has been shown in [3] for the 
weak and intermediate coupling regions b = 1, at the 
same time, we can assume that in the strong-coupling 
region the variation parameter b begins to depend on the 
magnitude of the coupling constant. Because the 
expression (9) has a saturation property, then it is 

impossible to go to the strong coupling limit when 
choosing a trial function in the form G

kf .  
In the work by Tulub [4], for the recoil terms the 

expression (9) is given without specifying the type of 
trial function. In [5] for the strong-coupling region, it 
was proposed to use as the trial function 

( )22 2exp akVf kk −−= . In the work of Pekar [2], 
several test functions for the strong-coupling polaron 
were proposed. The quantity ( )22 2exp akVf kk −−=  
corresponds to the Fourier component of the normalized 
electronic function chosen as a one-parameter Gaussian. 
In [5], the functional of the different type is derived, 
which is convenient for calculations of the strong-
coupling polaron energy: 
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ωωωω
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(11) 

The expression (11) was derived from other 
assumptions than those made in the derivation of the 
formula (9). As will be seen from further numerical 
calculations, the functional (11) has a more general 
character. In contrast to (9), the expression (11) allows a 
transition to the strong coupling region, since it has no 
“saturation” property, which was mentioned in the work 
by Gross. It, unlike (9), is not limited to the area for 
which 0)(Re >sD . 

The expression (9), in view of its simplicity in 
comparison with the expression (11), has a more 
convenient form for carrying out numerical calculations 
by using various test functions. In real crystals, the value 
of the Fröhlich constant of electron-phonon interaction α 
is bounded from the side of large values and can hardly 
exceed quantities 8 to 10. This circumstance was noted 
in [5, 6], where it was indicated that the strong-coupling 
region for polaron practically reduces to zero. 

The quantity )(sD  obtained in [5] for 

( )22 2exp akVf kk −−=  has the form: 

( ) )(1Re 2 yvD k λ+=ω , (13) 

tdeedteyeyv t
y

ty ∫∫
∞

ξ

−ξ− ξ−−=
2222

0

1)( ,  (14) 

π
=λ

23
4 2ag , 

a
ky = , 2

2 4
a

y +=ξ . 
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The strong-coupling polaron functional given in [5] 
was obtained by substituting the )(sD defined by the 
formula (13) in the expression (11). In ref. [5, 6], an 
approximate expression of the quantity EΔ  is given, 
which is obtained under assumption that the quantities of 
order 21 a can be omitted. One can calculate the polaron 
energy in the intermediate-coupling region after 
integrating in (11) without any approximations. Let’s 
choose the trial function in a two-parameter form 

( )22 2exp akNVf kk −−=′  [7], where N and a are the 
variational parameters. After calculating the integrals 
included in the expression (11), we obtain: 

( ) ( ) ( )αΔ+αΔ=αΔ 2
1

2
0 ,,,, NaENaENaE , (15) 
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In the expression (16), there is a plus sign before 
the third term in the denominator instead of the minus 
given in [8], wherein an error was made when typing the 
formulas. 

Expressions (16) and (17) for 0)(Re >sD  can be 
expanded in a series in 1/1 <<λ . Leaving the terms 

corresponding to the first term of the expansion, we 
obtain the following approximate functionals: 

⎟
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The functional Jps is obtained using the one-
parameter function ( )22 2exp akVf kk −−= , the 
functional psJ ′  corresponds to the two-parameter 

function ( )22 2exp akNVf kk −−=′ . The polaron 
energies that correspond to the minima of the functionals 
Jps and psJ ′  are denoted by Eps and psE ′ . Let’s pay 
attention to the fact that minimization of approximate 
functionals (21) and (22) that were obtained by 
expansion of functional (15) in 1−λ  does not guarantee 
finding the polaron energy upper bound.  

Since the expressions (9) and (15) are obtained 
from the same expression (4), the numerical results 
obtained using the formulas (9) and (15) when 
minimizing the functional (3) must coincide or have the 
region in which they coincide. After the numerical 
comparison, it is also necessary to determine the 
allowable range of parameters for which the identity 
requirement of the expression (4) with the expressions 
(9) and (15) is satisfied. Tulub [5, 6] draws attention to 
the fact that the value of the electron-phonon interaction 
parameter is bounded from above α ~ 8…10, since 1) the 
requirements for feasibility of continuum approximation 
are violated, 2) the restriction of the phonon spectrum to 
the limiting wave number also leads to approximately 
the same restriction on the electron-phonon interaction 
constant, and 3) the constraint on the coupling constant 
follows from the “resonant” scattering of phonons. All 
three reasons are considered in detail in [5, 6]. The study 
of the range of variational parameters admissible values 
for a given α leads to mathematical limitation on the 
electron-phonon interaction constant. As it shown by the 
numerical verification carried out by us, the expressions 
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(9) and (15) are identical only in the region for which 
0)(Re >sD . When the expression (3) is minimized with 

the recoil terms (9) for 5.10>α , a negative value region 
)(Re sD  appears, which leads to violation of the 

allowable range of (9), and equivalence of the 
expressions (9) and (15) is lost. Thus, for the selected 
type of trial function kf ′ , the range of admissible values 
of the variational parameters limits applicability of the 
formula (9) to the region 5.10≤α . Application of the 
expression (9) for the values 5.10>α  leads to the un-
derstated values of the polaron energy. So, if we try to 
apply the formula (9) for the strong coupling region, 
then the sign of EΔ  changes and the polaron energy 
“fails”, because the kinetic energy, the role of which in 
the effective polaron functional (3) in the strong-coup-
ling region is played by the expression (9), becomes  
negative. This circumstance allows us to immediately 
notice the error of the results. At the same time, if  
we express the argument )(sD  through 

[ ])()(Imarcsin sDsD , ignoring the verification of the 
admissible values range would lead to quite plausible re-
sults: approximately from 12=α , there is a significant 
decrease in energy with output under 15≈α  of polaron 
energy to the quadratic dependence on α: 

2135.0 α−=pE  for 11 <<λ . This dependence passes 
below the same given in [7], obtained using the formula 
(22) in the rang of 11 <<λ . 

Fig. 2a shows the polaron energy Ep obtained using 
the functional (3). Minimization was carried out with 
account of the expression (10), which makes it possible 
to extend the allowable range of function )(sD  to the 
entire upper half-plane. For the regions with 

0s)(Re >D , the argument was found using Eq. (8), and 
if 0s)(Re ≤D  by Eq. (10): 

( )2

0

arg
2
3

kDkdkE ω⋅⋅
π

=Δ ∫
∞

; 

[ ]
[ ] ⎪⎭

⎪
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⎪
⎨
⎧

<−π

≥
=

0)(Reif,)()(Imarcsin

0)(Reif,)()(Imarcsin
)(arg

sDsDsD

sDsDsD
sD . 

(23) 

Calculations were carried out including α = 26. For 
the accuracy of up to 6 significant digits, the results are 
the same as those obtained by us for calculations using 
Eq. (15).  

The questions devoted to investigation of the 
asymptotic behavior of the polaron energy obtained 
using the expression (15) in the strong coupling limit 
deserve special consideration. According to Klimin and 
Devriz calculations [9], in the limit α→∞ the polaron 
energy determined using the expression (15) goes to the 
asymptotics 3431683.0 α−=pE , and not to the quadra-
tic dependence for the strong coupling limit obtained by 
Tulub in [5]. At the same time, the authors of [9] refer to 
the work of Porsch and Röseler [10], which contains, as 
they believe, confirmation of their viewpoint. However, 
the authors of [10] do not criticize the work by Tulub, 
which they develop, reproducing the previously the 
results given in [5]. Moreover, in the abstract of ref. [10] 
it is indicated that the polaron energy in the strong-
coupling region is described by the well-known 
quadratic dependence on α. Tulub’s commentary, related 
to the remarks made in [4, 5], is given in [6]. 

The asymptotic behavior of the expressions (15) 
and (23) in the region of extremely large α deserves self-
examination and will be carried out by the author of this 
article in a separate work. 

The author is grateful to A.V. Tulub for numerous 
fruitful scientific advice and discussion of the results of 
work. 

 
Fig. 2. (a) Polaron energy Ep dependence on α; the energies Eps and E'ps correspond to the minima of the functionals Jps of Eq. (21) 
and J'ps of Eq. (22). (b) Dependence of the function ( )2

kD ω  on the dimensionless parameter aky = . (c) Dependence of the 

integrand (23) on y, the factor π23 2a  is omitted. 
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