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1. Introduction 

Theoretical investigation of kinetics is based on kinetic 
equation (KE) for a non-equilibrium distribution 
function (see [1-4]). Two fundamental problems appear 
from the very beginning. The first is the well-grounded 
deducing the kinetic equation. The second is acceptable 
solution of this equation and calculation of kinetic 
coefficients (see [5-9]). Both problems, especially the 
second one, are sufficiently far for the total satisfaction. 

The main trouble is related with the mathematical 
form of KE for general use, which is an integer-
differential equation with specific derivatives. To find 
analytical precise solution of that is not possible in 
practice without very significant approximations. So, 
every time we have to find suitable approximate 
solution and to prove its validity. One way to improve 
results is to use several distinguished methods of 
solution and compare the obtained data. If this 
comparison appears efficient, we find some base to rely 
on obtained material. 

2. Total Hamiltonian and one-particle density matrix 
for no equilibrium many-particle system of charged 
carriers  

Design by the symbols А, В etc. some quantum numbers 
that characterize states of separate particles, which 
makes up a system of charged band carriers. For uniform 
space, we assume AkA

r
→ , where Ak

r
 is the wave 

vector. The values )(rA
r

Ψ are basic one-particle wave-
functions. In what follows, spin variables and spin 
quantum numbers are not used, since any processes of 
spin overturn are not considered here.   

One-particle density matrix is defined by the 
following expression:  

)()()( tatat ABAB
+=ρ . (2.1) 

Here, t is time, +
Aa  and Aa  are operators of 

generation and annihilation of band particle at the state 
A. The averaged value of shown density matrix is  
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〉〈=〉ρ〈= + )()()()( tatattf ABABAB .  (2.2) 

The act of averaging, we designate by angle 
brackets; formally this procedure is performed using a 
statistical operator related to total systems of band 
carriers and to the whole external system, represented by 
external microscopic accidental fields (scattering 
system) and macroscopic electrical field E

r
(see [1-5]).   

The base of our investigation is the set of equations 
for one-particle density matrices )(tABρ  for non-
equilibrium system of considered particles. As the start 
point, we used the standard motion equations for 
operators )(tABρ  at Heisenberg representation (see, for 
instance [3]): 

[ ] . )(ˆˆ)(ˆ,)(
)(

tHHtHt
t

t
i AB

tottot
AB

tot
AB

AB ρ−ρ≡ρ=
∂

ρ∂
h

 (2.3) 

One can represent the total Hamiltonian totH  of 
the whole considered  system as the sum of four parts:  

eeeSSe
tot HHHHH ˆˆˆˆˆ +++= .                              (2.4) 

Here, the Hamiltonian eH  concerns carriers non-
interacting with microscopic scattering fields, individual 
Hamiltonian SH  relates to external scattering system of 
impurities and phonons (see, for instance [6]) and 
Hamiltonian SeS eH ϕ=  describes the interaction of 
carriers (we call them as electrons) with this scattering 
system, Hamiltonian eeH  represents e-e-interaction. 

The macroscopic electric field )0,0,( xEE =
r

. Then, the 
first term in right part of (2.4) is 

( ) ( ) ( )[ ]
[ ] . )(

ˆˆˆˆ )()0(

BA
AB

ABxABAB

AB
BAAB

E
eABeBA

AB
ABee

aaxeE

aaHHaaHH

+

++

∑

∑∑

−δε=

=+==

 (2.5) 

Hamiltonian of Coulomb interaction of band 
carriers has the form (see [10]):  

∑ ++=
''

''''
ˆ

BABA
BBAABABAee aaaaVH , (2.6) 

. )()'(
'

1)'()('
2 '

33
2

''

rr
rr

rrrdrde

V

BBAA
L

BABA

rr
rr

rrr
ΨΨ

−
ΨΨ−=

=

′
∗∗∫ ∫ε

(2.7) 

Hamiltonian that concerns e-S-interaction has the 
form 

( ) ( )∑∑ ρϕ=ϕ= +

AB
BAAB

S
B

AB
AAB

S
eS eaaeH )()( ˆˆˆ . (2.8) 

Below we omit the term that shows simply a shift 
of origin for count out the kinetic energy. As result, one 
obtains total Hamiltonian in the form  

( ) ( ){ }

[ ] , ˆˆ,ˆ

ˆˆˆˆ

''
''

)(

SABAB
BABA

BABA

AB
BAAB

S
ABe

tot

HV

eHH

+ρρ+

+ρϕ+=

+′′∑

∑
 

(2.9)
 

where ))(2/1(],[ DCCDDC +=+ . Consider the 
following commutators and anticommutators: 

ALMBMBALMLAB ρδ−ρδ=ρρ ],[ ,  (2.10) 

.],[],[],[
],[]],[,[

+′′+′′+′′

+′′+′′

ρρδ−ρρδ−ρρδ+
+ρρδ=ρρρ

AMLLBMMMALBLBMLLAM

MMBLALMMLLAB

 
Substituting (2.8) − (2.10) to (2.3) and performing 

necessary commutations, one can obtain the equation  

( ) ( )[ ]
( )[ ] ( )[ ]{ }∑

∑
+ϕρ−ρϕ+

+ρ−ρ=
∂

ρ∂

++
C

CB
S

ACBCBAC
S

A

C
CBACCBAC

AB

ttette

HttH
t

t
i

)(ˆ),()(,)(ˆ

ˆ)()(ˆ)(

)()(

h

 
[ ]{

[ ] }. )(),(

)(),(

+′′′′

′′
+′′′′

−

−+∑∑
ttV

ttV

BAACBACB

C BA
CBBAABAC

ρρ

ρρ
                   

(2.11)
 

 Separating the density matrix )(tABρ  and external 
scattering potential Sϕ  into averaged values and 
corresponding fluctuations, one obtains the equation for 
the one-particle density matrix 〉ρ〈= AAAf : 

AA
A ff
t

f
St)(ˆ =Ω−

∂
∂

, (2.12) 

where  

( ) ( ) ( )[ ]∑ −=Ω
C

ACCBCBACA fHfHf ˆˆˆ (at AB → ),  

  (2.13) 

)(St)(St)(St tftftf AeeAeSA += , (2.14) 
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( ) ( )( ) ( )( )[ ] ;)(,)()(,)(/)(St ∑ ++ δρδϕ−δρδϕ=
B

ABBASBAABSAeS ttttietf h   (2.15) 

( ) ( ) ( )( )[ ] .)(,)()(),(/1)(St ∑
′′

+′′′′+′′′′ δρδρ−δρδρ=
BAB

ABABABBABABAABABAee ttVttVitf h   (2.16) 

 

3. Matrix elements of Hamiltonian He  
 
Accept the quantum numbers A as the components 

of wave vector k
r

: 

( )AzAyAxA kkkkA ,,=→
r

.  (3.1) 

For the following calculations it is very convenient 
to use the wave functions (plane waves)  

( ) ( ) ( ) ( ); exp2/1∏∏ −=Ψ=Ψ=Ψ
w

Aw
w

AwAA wkiLwkrkr
rrr

  (3.2) 

here and farther zyxw ,,=  and 2/2/ LwL ≤≤− . 
Every linear dimension L of the system exceeds utmost 
every characteristic length and tends to infinity. The 
functions )(rA

r
Ψ  are proper functions for the operator of 

momentum kp ˆˆ r
h

r
=  and operator of kinetic energy ( )p̂

r
ε :  

( ) ( )wkkwki AwAwAww ;; Ψ=Ψ∇− , 

( ) ( )wkkwk AwAwAwx ;; 22 Ψ−=Ψ∇ ; (3.3) 

at the parabolic law of dispersion 

( ) ( ) ( ) ( )rkmkrkrk AAAAA
rr

h
rrrr

;2/;;ˆ 22 Ψ=Ψε=Ψε . (3.4) 

Note that Hamiltonian eĤ  evidently depends on 
spatial coordinates (see Eq. (2.5)). In spite of all points 
in r

r
-space are equivalent, this Hamiltonian containing 

the field dependent term )(ˆ EH  is not arbitrary invariant 
in space. Therefore, a specific problem appears for 
collision integral. Usually, in calculations of kf rSt  the 

field term )(ˆ EH is simply omitted in collision integral 
(and we call that way as “standard variant”, see, for 
instance, [2, 3] and [7-9]). In this paper, we also consider 
other, the so-called “non-standard variant” (see [11]), for 
which the field term ( )AC

EH )(ˆ in kf rSt  is retained. 
Farther, inside the collision integral we use the 
designation  

( ) ( ) ( )AB
E

ABABe HHH )()0( ˆˆˆ χ+= .                            (3.5) 

Here,  

0=χ  for the standard variant, 
1=χ  for the non-standard variant.                           (3.6) 

Note at first that the wave functions (3.4) are 
invariant to the definite shift of argument w on the length 
equal to DeBroglie wavelength wλ : 

( ) ( )[ ] )(exp2/1 wwkiLw AAwAwAwA Ψ=λ+=λ+Ψ − , 
 (3.7) 

here,  

AwAw kπ=λ 2 . (3.8) 

It is easy to convince that matrix element of 
coordinate w is proportional to the diagonal one at 

0/ →λ L : 

( ) ( ) BAAA

L

L
BwAwAB wdwwkwkww ,

2/

2/

)(;;*)( δ=ΨΨ= ∫
−

             

 (3.9)  

(here BA,δ  is Kronecker symbol). 
Using the formulae (3.7) and (3.8) and shifting 

space of integration from the area 2/2/ LwL ≤≤−  to 
)()( +≤≤− AwAw LwL , calculate the diagonal matrix 

element for components of the radius-vector:  

( ) ( ) dwwkwkww
Aw

Aw

L

L
AwAwAA ∫

+

−

ΨΨ=
)(

)(

;;*)( .  (3.10) 

Here  

AwAw LL λ+±=± 2/)( .  (3.11) 

As a result, we obtain: 

( ) ( )

AwAw

L

L

L

L
AwAwAA

kwdwL

dwwkwkww

Aw

Aw

Aw

Aw

/2

;;*)(

)(

)(

1

)(

)(

πλ ===

=ΨΨ=

∫

∫
+

−

−

+

−
  

(3.12)

 

and 

( ) ABAwAB kw δπ= 2)( .                 (3.13) 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2017. V. 20, N 4. P. 447-457. 

doi: https://doi.org/10.15407/spqeo20.04.447 
 

 

© 2017, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

450 

Represent the matrix element of Hamiltonian eĤ  
by the form (see (3.5)) 

( ) BA
Ax

x
ABAAABe k

Ee
H ,,

2ˆ δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
χ−ε=δε= ,   

mk AA 222
r

h=ε . (3.14) 

Using the designations kkA

rr
→  and qkkB

rrr
−→ , 

one obtains the formula 

( ) ( )qkqqk
mqkkBAAB

rvrrh
rrr ,2

2
2

2
Θχ+−=ε−ε→ε−ε=ε − ,

 (3.15) 

( ) ( )xxxxx qkkqEeqk −π=Θ 2,
rv . (3.16) 

Now, we make some approximation. For second 
order over q and simplifying the expression (3.16) by 
averaging the values, one obtains: 

( ) mqkqk x
E

x
)(2, h

rv
→Θ ,  

. )()(33 2/1B2/1
22)( ηηππ TFkFEekEemk xx

E
x −

− == h

  (3.17) 

Here  

∫
∞

η−++Γ
=η

0
)exp(1)1(

1)(
w

dww
r

F
r

r ,   TkBFε=η .  (3.18) 

As a result, we obtain the following approximate 
form of the equation (4.17): 

( ) ( )[ ] .22)(2 qqkqkqkkm zzyyx
E

xxqkk −+++=− − χεε hrrr

 (3.19) 

Introduce the new vector ( )k
rr

κ : 

( ) ( ) ( ) ( )( )kkkk zyx

rrrrr
κκκ=κ ,, , (3.20) 

here 

( ) )(E
xxx kkk χ+=κ

r
, ( ) yy kk =κ

r
, ( ) zz kk =κ

r
.         (3.21) 

Let hAA ε=ω  and BAAB ω−ω=ω . Then (at 
approximations shown before), one obtains from (3.19) 
and (3.21): 

( )
( ) ( )[ ] .222

,

qqkm

qkkqkkqkk

−=

==−=− −−−

rrr
h

hh rrrrrrrrr

κ

ωωωεε
  

(3.22)
 

4. Collision integral 
 

Below we consider the averaged distribution function to 
be smooth in comparison with fluctuating values. Using 
the Laplace transformation (see [8]) 

∫
∞

=
0

)exp()()( dttit ωξωξ , 

∫
+∞

+∞−

ωω−ωξ
π

=ξ
0

0

)exp()(
2
1)(

i

i

dtit , (4.1) 

one obtains from Eq. (2.11): 

( )

( ) ( ) . )(

)(
)()0(

)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+

+−=
=+=−

∑
′′

′′′′
BA

BAABABAB
S

AB

ABBA

ABAB

Veff

ti

ωδρδϕ

ωδρεε
ωωδρδρ hh

 

(4.2)

 

Let us introduce the following designations: 

( )0
)(,

0
)0()()0(

i
ffM

i
ti

AB

AB
AB

AB

AB
AB

+ω−ω

−
=ω

+ω−ω
=ρ

=ωδρ
h

. 

Then, we find the lowest terms in the set of 
perturbations theory: 

( ) . )()()(

)()(

)0()(

)0(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

+=

∑
′′

′′′′
BA

BAABABAB
S

AB

ABAB

VeM ωδρωδϕω

ωδρωδρ

 
(4.3)

 

In agreement with uniformity of time, the correlator 
of fluctuations )()( ωδϕ S  can be represented as follows: 

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ,2

,,,

2

2,)(

,
2232

)()(

336

2)()(

qSABqAB

SS

BAqABqAB

AB
S

S
BA

S
AB

bqd

qq

bbqdqd

r
r

rr

r

rr

rr

ω

−

′
−

ω

δϕω′+ωδπδ=

=′ω′δϕωδϕ×

×′πδ=

=δϕω′+ωπδ=ω′δϕωδϕ

∫

∫∫
 

(4.4)

 

where 

( ) rdrrqirb BAABq
rrrrr

r 3)()exp()( ΨΨ= ∫ ∗ . (4.5) 

In the second order of simplified theory of 
perturbation (see, for instance, [5]) 

( )ABBABABAAB fftt −δδ→=δρ=δρ ′′′′ 1)0()0( . (4.6) 

As a result, the collision integral for equilibrium 
external scattering system has the form ( AkA

r
→  and 

)BkB
r

→  
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( ) ( )[ ]∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−=

− BA
AB

ABBAkkSBAeS ff
Tk

ffffkdef
BAAB B,

23
23

2

2
tanh11

8
St ωδϕ

π ω

hr

h
rr .         (4.7) 

For elastic scattering  

( )
BABABAAB

kkkkSkkS
rrrrrr ,

2
,

2 ωδδϕ=δϕ
−−ω

, (4.8) 

then it follows from Eq. (4.7): 

( )( ) ( )∫ ωδδϕ−
π

−= − BABA kkkkSBABAeS ffkdef rrrr
r

h ,
23

23

2

8
St .                        

 (4.9) 

Collision integral for e-e-scattering can be 
presented by the form  

( )
( ) ( )

( )
( ) ( ) ( ) ( )[ ] .1111

,
4St

22

24

3

32

4

ABBABAAB

BAAB

BAqABq
BAB AB

Aee

ffffffff

bb
qq

qd
L

ef

′′′′

′′

′′
′′

−−−−−×
×−×

×= ∑∫
ωωδ

ωε
rr

r

r

h

     

 (4.10) 

Show several correlators for different external 
scattering potentials (see Refs. [5, 6]). They have the 
simple forms   

a
SqS q)(

2 Φ=δϕ r      )0or2or4( =a . (4.11) 

For the system of charged impurities with 
concentration nI 

( )  ;32 2
0

23
)( LICI qqne ε−ϑπ=Φ (a = 4) (4.12) 

for piezoelectric scattering by longitudinal acoustic 
phonons 

TGkB)( =Φ Π     )2( =a ;  (4.13) 

at high temperature )( BTkph <<ωh  for quasi-ellastical 
scattering by polar optical phonons one can use the 
expression  

*8 B
2

)( επ=Φ TkOpt       )2( =a ; (4.14) 

at quasi-elastic scattering on acoustic phonons 
)( BTksq <<h  

22
B

2
)( 2 seTkEAAc ρπ=Φ      )0( =a ; (4.15) 

for neutral impurities (see [13]) 

( )[ ] 1)3(
)(

425
)( exp18 −η+η−+π=Φ DDBNI nre   )0( =a  (4.16) 

(here TkDD Bε=η  and 0<εD represents the energetic 
level of a donor).  

Consider the static kinetic equation. Then it has the 
form (see Eq. (2.12))  

keekeS
k ff
k

f
Ee

rr
r

r
r

h
StSt +=

∂

∂
.                                      (4.17) 

To find the approximate solution of presented 
kinetic equation we consider three different ways. 

The first method of approach. Here we accept to 
consideration only the carriers scattering with small 
transfer of wave vector: 〉〈<<〉〈 kq . By this way we 
obtain Fokker–Plank equation. This situation is 
essentially typical for band carriers scattering by charged 
impurities.   

The second method of approach. By this way one 
uses the distribution function in the form   

( ) ( ) ( ) ( ) ( ) Ekkgkfkfkfkffk

rrrrrr
r +=+=≡ 0

1
0 , (4.18) 

here ( )kf
r

0  is equilibrium distribution function. This 
approach is nucleus of the so-called “method of effective 
relaxation time” (see, for instance, [7]). 

The third method of approach. This way concerns 
the model of non-equilibrium distribution function that 
has the form of Fermi-distribution with a shifted 
argument (see, for instance, [14]): 

( ) ( )u
k kkfkff

rrr
r −=≡ 0 ; (4.19) 

here the shift 

h
rr
umk u =  (4.20) 

and u
r

 is the macroscopic drift velocity of carriers: 

( )∫π
= kdfkv

n
u k

rrrr
r 3

3)2(
2 . (4.21) 
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5. Solution of kinetic equation in the Fokker–Plank 
form 

In this part (the first method of approach), we limit the 
scattering of carriers by different microscopic fields and 
neglect there e-e-scattering. The only possible basis of 
the last approximation is total absence of relaxation for 
total carriers momentum at the absence of external 
sources. Practically, we don’t know which losses we 
obtain using mentioned simplification.  

Here, we consider only the relaxation for which 
small transferred wave vectors q

r
 play the main role. 

Therefore, we use the expansions   

.
2
1

,
2
1

2

2

k
k

kqk

k
k

kqk

k
q

k
q

f
k

q
k

f
qff

r
r

rrr

r
r

rrr

r
r

r
r

r
r

r
r

ε
ε

εε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
−→

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
−→

−

−

 

(5.1)

 

Then, the stationary kinetic equation (4.18) accepts 
the form: 

( )

( ) ( ) ( )[ ] ( ). 21
k

)2(2

2

B

2

3)(
33

2

qqkfkf
Tm
qk

k
kfq

qd
q

me
k
kfEe

a
S

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

∂
∂

×

×
Φ

=
∂
∂

∫
rrrrrr

h
r

r
r

r

h
r

r
r

h

κδ

π
 

(5.2) 

Carrying out in the equation (5.2) integration over 
q
r

, we obtain: 

( ) ( ) ( ) ( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

∂
∂

κπ

ςΦκ
=

∂
∂

−
kfkf

Tmk
k

k
kfame

k
kfE a

S rr
r

h
r

r

h

r

r

r
r

1
8

)(

B

2

122
)( .           

 (5.3) 

Represent farther the distribution function ( )kf
r

 in 
the form, containing equilibrium part )(0 kf  and 

additional non-equilibrium term ( )kf S r)(
1 : 

( ) ( ) ( )
( )[ ] ( ). 2exp1 )(

1
1

B
22

)(
10

kfTkmk

kfkfkf
S

S

r
h

rr

++−+=

=+=
−

η
           

(5.4)
 

The density of band carriers 

( ) ( )
( ) ( )[ ]

( )
. )(

2

exp1
2

4
1

4
1

2/132/3

2/3
B

1

0
32

3
B

3
03

3
3

η
π

η
π

ππ

F
Tmk

dwww
Tmk

kdkfkdkfn

h

h

rrrr

=

=−+=

===

−
∞

∫

∫∫

 

(5.5) 

Let electric field )0,0,( xEE =
r

. For the small Ex, 
the linearized over this field kinetic equation has the 
form 

( )

( ) ( )[ ] . 21
8

)( 0)(
1

B

22)(
1

122
)(

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+
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(5.6) 

where   

( )0ln)4( qqa M==ς , )4(2)4( 4 aa a −=<ς − . (5.7) 

Note that linearized FP-equation (5.6) does not 
contain the vector ( )Ek

r
 (see Eq. (3.17)). Therefore, the 

collision integral and kinetic equation relate here only to 
“standard” case (that is 0=χ ; see (3.6)). 

Note that in the general case the value and the form 
of non-equilibrium distribution function ( )kf

r
 substan-

tially depend on specifics of scattering system S. 
Therefore, farther we mark off the symbols f, f 0, f1 and 
other symbols by the index (S). 

Accept the artificial form (for the first method of 
approach): 
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Here and further one uses the designations:  
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Then, it follows from the equation (5.6): 
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(5.11)  

Suitable solution of the equation (5.11) is (at 
number a > 0) 

( ) ( )22cosh)( 22
)(

)( η−−=Λ − KKEEK a
Sx

S .     (5.12) 

Then, the solution of linearized kinetic equation 
(5.6) is  
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Determine the mobility )(Sμ  by using the relation 
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It follows from here: 
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Нere  )(
)/(

S
NDFPμ  is mobility for non-degenerated 

carriers (see below Fig. 1) . 
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Fig. 1. ―  M(τ, FP)(a, η), - - -  M(SFD)(a, η); a = 4 (1), a = 0 (2), 
a = 2 (3). 

Remember that Fokker–Plank approach is 
acceptable on practice only at sufficiently large positive 
parameter a. Note also that for small electric field the 
non-standard variant ( 1=χ ) disappears.  

6. Model of effective relaxation time 

Here, we again neglect e-e-collisions, as that was per-
formed before (see also remark at p.5). Using the elastic 
scattering and starting from the equation (4.9), we obtain 
the kinetic equation  
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Use farther the model having the form 

( ) ( ) ( ) ( ) ( ) Ekkgkfkfkfkff S
k

rrrrrr
r )(0

1
0 +=+=≡ . (6.2) 

After linearization of the equation (6.1) over the 
small external electrical field E (see (3.17) and (4.11)), 
one obtains the equation for unknown function ( )kg S )( : 
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where 
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At )0,0,( xEE =
r

, it follows from here (see p. 5): 
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where   

( ) heTkmET 232/3
B

2/1 π= . (6.7) 

As a result, one obtains (see Figs. 1 and 2) 
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 For standard variant considered here mobility  
)(
)(

)(
)( )0( ss

ττ μ==χμ  is presented by the form (see (5.14))  
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 Note the following relation between distribution 
functions )(),(

1 kf S r
τ  and )(),(

1 kf FPS r
 at 0=χ  (see 

(5.13) and (6.3)):  

)(2)( ),(
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1 kfkf SFPS rr

τ= .                                        (6.12) 

The same relation for mobilities follows from the 
determination (5.14) (see also [13] ): 
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)( 2 SS

FP τμ=μ .  (6.13) 

7. Model of shifted Fermi-distribution (SFD).  
Balance of forces  

 
Here, as the sufficiently simple model of non-
equilibrium distribution function ( )kf S

r
)(  we accept 

Fermi-function with a shifted argument (see (4.19)): 
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It follows from (2.8) and (4.10):   
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Note, at this expression we don’t neglect e-e-
scattering.  

To find the relation between vectors )(Su
r

(drift 
velocity) and E

r
 (electrical field), apply to both sides of 

Eq. (7.2) the operator 
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3322 . 

For the form (4.10), it is easy to see that  
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Performing some uncomplicated transformations, 
we obtain the following balance of forces:  
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Using (7.4) − (7.6), we have 
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The condition (7.3) does not mean that e-e-
collisions do not play any role in the equation (7.7). 
These collisions practically have introduced their 
influence in the formula (7.1). In what follows, we will 
limit our consideration by the small external electric 
field )0,0,( xEE =

r
 and construct the corresponding 

linearized form for the non-equilibrium distribution 
function:  
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Here (see (3.17)), 
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The mobility of carriers is 
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From the equations (7.8) and (7.11), it follows the 
form of linear non-equilibrium supplement for 
distribution function: 
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This formula appreciably differs from the obtained 
before expression (6.6) (see also (6.7) and (6.8)). 

Now remember that SFD-method, in distinction of 
two previous methods, allows two different variants (see 
[11-13]): “standard” ( 0=χ ) and “non-standard” 
( 1=χ ). Below, at calculation of the mobility, we 
consider both variants.  

7.1. Standard variant ( )0=χ  
For this variant, one finds from (7.11): 

a
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a
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Then, from (7.7) and (7.8) it follows the balance of 
field and dissipative forces:  
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As a result (see (7.12)),  
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where (see the Fig. 2) 
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( ) 1,)( →∞−→ηaM SFD . 

The relation between mobilities calculated for three 
different considered methods is represented in Figs. 1 
and 2. One can see that distinction of these mobilities is 
sufficiently evident.   

 
Fig. 2. 1 – μ(τ)(a, η)/μ(FP)(a, η); 2 – μ(τ)(a, η)/μ(SDF)(a, η), 
a = 2 and a = 0; 3 – μ(τ)(a, η)/μ(SDF)(a, η), a = 4. 
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7.2. Non-standard variant ( )0≠χ  
Introducing the expressions (7.8) and (7.11) into 

the equation of balance (7.7), we obtain the following 
linearized form: 
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where (see also (3.17), (4.7), (5.7) and (7.12)) 
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Here (see Eqs. (4.12) − (4.17) and Figs. 3 and 4), 
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Then, the mobility for non-standard variant has the 
form (see (7.19)) 
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or 
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where (see Fig. 5) 
2

B0 2 TkeTmke hh ==μ , (7.25) 

( ) ( ) ( ) ( ) ( )232,,3, 2/5 aaaaMag a −ΓςηΞηπ=η .    (7.26) 

 
Fig. 3. a = 4 (1), a = 2 (2), a = 0 (3). 
 
 

 
Fig. 4. 1 – (S(μ)) = (CI); 2 – (S(μ)) = (Ac); 3 – (S(μ)) = (S(R)) = 
(NI, Opt, Π); 4 – (S(R)) = (Ac). 

 

 
Fig. 5. a = 4 (1); a = 2, a = 0 (2). 

 

As it follows from (7.9), (7.21) and (4.12) − (4.17): 
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( ) ( ) ,,0
2/1)(

)(
),,(

),(
−Π == SOptNI

NDSFD TTT μχμ  

( ) ( ) 2/3)(
)(

)(
),( ,0

−
μ==χμ SAc

NDSFD TTT ,   

( ) ( ) 2/5)(
)(

)(
),( ,0

−
μ==χμ SNP

NDSFD TTT ; (7.27) 

( ) ( ) 2/5)(
)(

)( −
= S

R
CI TTTR , ( ) ( ) 2/1)(

)(
),,( −Π = S

R
OptNI TTTR ,   

( ) ( ) 2/1)(
)(

)( S
R

Ac TTTR = , ( ) ( ) 2/3)(
)(

)( S
R

NP TTTR = . (7.28) 

At ( ) 1,,)( =ηξ TaS , the mobility ( )1)(
)( =χμ S

SFD  
becomes zero and macroscopic movement of carriers 
breaks off. Only the microscopic movement of plasma is 
left.  

Plots in Figs. 3 and 4 are calculated on the base of 
relations (5.7) and (7.20) − (7.28). In numerical 
calculations, we have taken for simplicity: 
( ) ( ) 2ln4 0 ===ς qqa M . 

Now represent free-path L  and average length of 
DeBroglie wave 〉λ〈=λ  by the following forms: 
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Then, in agreement with the expressions (7.25), 
(7.29) and (7.30) 
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It follows from (7.31) that mobility of carriers 
( )χμ )(
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S
SFD  reaches small value close to 0μ , when free 

path )(
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DeBroglie wave λ . 
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8. Discussion 

Presented results show that the obtained non-equilibrium 
distribution functions and following calculated mobility 
are distinct for different methods of solution of kinetic 
equation. Therefore, in real practice any obtained 
popular solution cannot be confidently considered as 
guaranteeing reliable result. One of the most interesting 
point is specific influence of macroscopic electric field 
on the collision integral with possible total disappea-
rance of carriers mobility at characteristic situation. That 
appears at the non-standard variant and concerns the 
kinetic equation for the non-equilibrium distribution 
function that contains e-e-collisions by any way (evident 
or hidden). Two non-standard cases are related to the 
method of effective relaxation time (see Sec. 6) and to 
the method of distribution function having the form of 
Fermi-distribution with shifted argument (see Sec. 7). 
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