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Abstract. The comparative analysis of optical characteristics inherent to TiO2/SiC and 

TiO2/por-SiC/SiC structures has been performed. It has been shown that, in these structures 

regardless of the substrate structure, formation of TiO2 layers with approximately the same 

width 60 nm takes place. In this case the TiO2 film composition is close to the 

stoichiometric one. At the same time, the presence of an additional porous layer in the 

TiO2/por-SiC/SiC structure leads to blurring the oxide film – substrate interface but 

promotes an increase in the intensity of the Raman scattering signal from the oxide film. 
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1. Introduction 

The continuing interest in silicon carbide as a material 

for fabrication of semiconductor devices operating under 

extreme conditions is explained by a combination of such 

factors as a wide forbidden band, high electron mobility, 

chemical and mechanical resistance [1-3]. All this 

determines the possibility to use it in devices capable to 

operate at elevated temperatures, elevated irradiation 

doses, with high speed and high stability of their 

properties in time. 

At present, the urgent task for high-temperature 

electronics based on silicon carbide is to develop stable 

high-quality dielectric layers, including those based on 

titanium oxide films. Despite the wide range of 

technological possibilities for creation of oxide metal 

films (from anodic to oxidation in air or in the 

atmosphere of oxygen, water and water vapor, in carbon 

dioxide or in various other gas mixtures [4]), the search 

for well-controlled, fast methods of formation with high 

reproducibility of parameters of oxide metal films with 

set properties are being performed up to date. 

It is known that the structural defects of a 

semiconductor substrate, which penetrate into a thin film 

grown on this substrate during a high-temperature 

process, can significantly worsen the characteristics of 

devices. One way for reducing this effect is to create a 

porous interlayer between the substrate and epitaxial 

layer [5, 6]. For example, the layers of porous silicon 

carbide (por-SiC) are used in complex structures to 

decrease the concentration of defects at the boundary 

‘porous layer – epitaxial film’ [6-10]. 

In addition, the pore-developed surface makes 

porous silicon carbide a promising material for sensitive 

elements of sensors with both the Schottky barriers and 

MIS structures [11]. The principle of operation of many 

devices is based on changes in the potential barrier of 

contact typical for porous SiC with metal or dielectric. In 

these cases, an important role is played by processes 

occurring at the boundary of the porous silicon carbide 

with metallic or dielectric layers. 

In this paper, we have performed the comparative 

studies of TiO2 films formed by rapid thermal annealing 

on silicon carbide substrates in the presence and absence 

of a porous SiC layer. 
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2. Samples and experimental procedure 

The oxide films TiO2 were prepared by oxidizing thin Ti 

metal films by using rapid thermal annealing at T = 

323 °C for 1, 3 and 5 s. 

To form the SiC/por-SiC/TiO2 structure on a silicon 

carbide substrate, a por-SiC layer was preliminarily 

prepared. Porous silicon carbide was created using 

anodic etching of silicon carbide in a hydro-alcohol 

solution of hydrofluoric acid: H2O:HF:C2H5OH = 1:1:2, 

the current density was 20 mA/cm
2
, and the etching time 

was 5 min. Then, the material was processed in the 

etchant KNO3+KОН to open the pores. Formation of the 

oxide film TiO2 was carried out in several technological 

stages. On the surface of porous silicon carbide, a 

titanium film was deposited using a thermal deposition 

method. Then, the samples of porous SiC with introduced 

Ti were annealed in vacuum at 1350 °C for 8 min, after 

which they were subjected to rapid thermal annealing in 

atmosphere of dry oxygen for 30 s at the temperatures 

700, 900 and 1000 °C [12, 13]. 

The thickness of the oxide layers was determined 

using the method of multibeam monochromatic 

ellipsometry. On all the samples, morphology of the 

coating was studied using the atomic force microscope 

NanoScopeIIIa (DJ). The atomic composition of the 

structures under investigation was measured using the 

Auger spectrometer LAS-2000, when layer-by-layer 

etching the samples with 1-keV Ar ions was used. 

The micro-Raman spectra of the samples were 

measured at room temperature in the backscattering 

geometry by using the Horba Jobin Yvon T64000 

spectrometer with a confocal microscope (100× lens, 

0.90 diaphragm) and cooled CCD detector. The Raman 

spectra were excited by an Ar-Kr laser λexc = 488.0 nm). 

In Raman studies, the laser beam was focused into a 

beam of diameter <1 µm. The accuracy of determining 

the frequency position of the phonon lines was 0.15 cm
–1

. 

 
3. Experimental results and discussion 

Calculation of the thickness of the oxide metal film was 

carried out using the method of multi-beam 

monochromatic ellipsometry (operating wavelength λ = 

632.8 nm). 

Parameters of the films were determined from the 

model of a single-layer film on a substrate as a result of 

fitting the calculated angular dependences of the 

polarization angles ψ and ∆ to the experimental 

dependences ψ(ϕ) and ∆(ϕ) by using the computer 

program for minimizing the special objective function 

S(x) [14]. 
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where ψ′(ϕi) and ∆′(ϕi) are the experimentally measured 

polarization angles at an angle of incidence ϕi; ψ′(x, ϕi) 
and ∆′(x, ϕi) are the results of calculation of the direct 

problem of ellipsometry for the angle ϕi and vector of 

optical parameters and layer thicknesses x; δψ′(ϕi) and 

δ∆′(ϕi) – measurement errors, N – total number of the 
used angles of incidence. 

As control data, the values of absorption and 
refractive indexes for silicon carbide were calculated. 
The refractive index nSiC calculated on the basis of the 
ellipsometric measurement data is in good agreement 
with the expected averaged value (without account of 

anisotropy), and the absorption index kSiC for λ = 
632.8 nm is very small, which is a confirmation of the 

accuracy inherent to the method. 
A comparison of the thicknesses of the oxide layers 

determined using the method of multi-beam ellipsometry 
has shown that, both in the case of the presence of a 
buffer layer and in its absence, layers of approximately 

the same width 60 nm were formed, which correlates 
with the Auger spectrometry data. 

Figs 1 (upper and lower) show AFM images of 
oxide titanium films on single-crystal and porous 
substrates, respectively. As can be seen from Fig. 1, the 
oxide film has an inhomogeneous character and granular 
structure. 

 

 
 

 
 

Fig. 1. AFM images of the surface of the SiC/TiO2 (upper) and 

SiC/por-SiC/TiO2 (lower) structures. 
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Fig. 2. The contents of elements in atomic percentages in the 

SiC/TiO2 (upper) and SiC/por-SiC/TiO2 (lower) structures. 
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Fig. 3. Raman spectra for the SiC/TiO2 (1) and SiC/por-

SiC/TiO2 (2) structures. 

 

Fig. 2 shows the atomic profiles of heterostructures 

formed by titanium oxide on the SiC substrate in the 

absence and presence of a por-SiC buffer layer at the 

oxide-semiconductor interface. 

According to [15, 16], the phase equilibrium in the 

titanium-oxygen system is characterized by the presence 

of several phases: TiO, Ti2O3, TiO2. Moreover, the TiO2 

phase can be available in one of three modifications: 

anatase, brookite and rutile [17, 18]. The low-

temperature modification – anatase – turns into rutile 

when heated. Typically, this transition to the rutile 

modification takes place within the temperature range 

from 650 to 900 °C. The second modification of titanium 

dioxide – brookite – turns also into rutile when heated to 

~1000 °C. In this case, the defect structure of the rutile 

itself depends essentially on the processing temperature 

[15, 16]. 

As can be seen from Fig. 2, the ratio of the Ti oxide 

components for the oxides, which form directly on the 

SiC crystal substrate and in the presence of the por-SiC 

buffer layer, is close to the stoichiometric composition of 

titanium dioxide: NO /NTi ≈ 1.98 and NO /NTi ≈ 2.2, 

respectively. 

As it follows from the analysis of the distribution of 

atomic components (Fig. 2), the stoichiometric 

composition of these oxide titanium layers corresponds 

to the modification of titanium dioxide with the rutile 

structure. At the same time, the chemical composition of 

oxide film – substrate interface differs from the bulk of 

oxides (Fig. 2).  

As in the case of SiC/Er2O3 and SiC/por-SiC/Er2O3 

structures [19], a sharper interface ‘oxide film – 

substrate’ is observed when the TiO2 is directly formed 

on the crystalline substrate. 

Fig. 3 shows the Raman spectra for SiC/TiO2 and 

SiC/por-SiC/TiO2 structures. 

As can be seen from Fig. 3, in the Raman spectra of 

the SiC/por-SiC/TiO2 structure in the 300…600 cm
–1

 

region (Fig. 3, curve 2), in addition to the lines with the 

frequencies 262.7, 502.37 and 511.07 cm
–1

 typical for 

por-SiC, we observe the lines with the frequencies of 435 

and 603 cm
–1

 that indicate formation of a titanium oxide 

film on the por-SiC surface [20, 21], which correlates 

with the Auger spectrometry data (Fig. 2b). At the same 

time, in the Raman scattering spectra of the SiC/TiO2 

structure, the lines characteristic for the Raman spectrum 

of TiO2 are not observed (Fig. 3, curve 2), although the 

Auger spectrometry data indicate the presence of 

titanium oxide in the thin film structure (Fig. 2a). It is 

caused by the fact that the intensity of the Raman spectra 

is proportional to the thickness of the layer, and for a 

very small thickness of the oxide film the intensity of the 

Raman signal from the TiO2 film is very small as 

compared to that of the signal from the substrate. At the 

same time, a surface-enhanced Raman scattering signal 

(SERS) is likely to occur due to the presence of a porous 

layer, as well as due to the presence of under-oxidized 

metal particles in it, as evidenced by the blurring of the 

interface in the SiC/por-SiC/TiO2 structure (Fig. 2b). 

In addition to the Raman bands caused by the 

titanium oxide film on the por-SiC surface, in the Raman 

spectra of the SiC/por-SiC/TiO2 structure, we observe the 

lines with the frequencies of 1345 and 1601 cm
–1

 (Fig. 3, 

curve 2), which are characteristic for the compounds of 

carbon [22, 23]. These lines are typical for the graphite 

phase in por-SiC, the appearance of which is associated 

with high-temperature annealing of por-SiC [24]. When 

being thermally treated in vacuum, the surface of SiC 
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tends to be graphitized during thermal decomposition of 

SiC and evaporation of Si atoms [24]. It was shown in 

[24] that graphitization of the por-SiC layer can begin at 

the temperatures close to 700 °C, and the quasi-

amorphous carbon phase of the graphitized type can 

appear on the pore surface. 

 

4. Conclusions 

Thus, regardless of the substrate structure, during the 

rapid thermal annealing, we have obtained the TiO2 

layers of approximately the same width 60 nm with the 

composition close to the stoichiometric one. In this case, 

in the SiC/por-SiC/TiO2 structures, the graphite phase is 

formed in the por-SiC/TiO2 interface, which degrades the 

quality of the interface. At the same time, the presence of 

a porous layer makes it possible to enhance the Raman 

signal from a thin TiO2 film, which opens the perspective 

of using the por-SiC buffer layer as a substrate for SERS. 
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