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Abstract. Angular ellipsometric measurements of thin Ag, Cu films covered by HfO2 

protective layer were performed. The ellipsometric parameters ψ and ∆ were measured in 

θ = 43°…85° light incidence angle range, where ψ is the azimuth of restored linear 

polarization, ∆ is the phase shift between p- and s-components of reflected light. For 

comparison, thin Au film (traditional sensor for surface plasmon resonance (SPR)) was 

examined as well. The curve ∆(θ) for all the samples investigated falls down with 

increasing angle of light incidence, while ψ(θ) changes relatively weakly. It has been 

ascertained that the increase in the thickness of HfO2 layer affects the tan(ψ) value, while 

tan(ψ) deviation is mainly determined by the type of metallic film. With the growth of HfO2 

layer, the minimum position of tan(ψ) shifts to smaller angles. From these angular 

dependences, one could choose the appropriate SPR-compatible structure due to maximal 

deviation of tan(ψ). To optimize layer thickness for a high SPR-response, spectral 

measurements and additional calculations are required. 
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1. Introduction 

Thin metal films attract considerable interest in both 

science and technology. They often have optical 

properties different from the same bulk material. Partial 

transparency and conductivity allow using them as 

electrodes for solar cells [1] and other optoelectronic 

devices [2, 3]. Thin metal films are widely used in optical 

instrumentation (mirrors, beam splitters, different 

specific coatings and so on). 

But, perhaps, the most extensive field of their 

modern application is electrochemistry and bioanalysis 

[4]. Gas sensors acting due to conductivity changes upon 

interaction of molecules with the metal film surface are 

developed [5]. In surface acoustic waves or 

electrowetting process, thin metal films are used for 

precise manipulation of liquid microdroplets [6]. 

Electrosensing is notable for its sensitivity, relative 

simplicity and low power consumption. It is used for 

detection of simple molecules. Conductivity-based thin-

film sensors react to molecules adsorbed on the surface 

and are used for gas detection, for direct detection of 

DNA and in food quality controlling [6]. 

Of particular importance are sensors based on 

surface plasmon resonance (SPR), which are the subject 

of this work. SPR sensing has established itself as an 

important tool in characterization of biomolecular 

interactions [7, 8]. Such instruments allow real-time 

detection of various chemical and biological substances 

and their combinations. However, there still remains a 

considerable space for the improvement of these devices, 

particularly, increasing their resistance to external and 

explored environments as well as lifetime. The aim of 

this work is to examine hybrid multilayer noble metal-

dielectric structures by using the optical ellipsometry 

method to propose the physical and technical approach 

for developing more efficient SPR-sensors. 

 

2. About SPR 

The surface plasmon-polariton (SPP) is a quasi-particle 

corresponding to the quantization of the collective 

plasma oscillations of the electron gas in solids under 

action of p-polarized light. The area of their localization 

is near the interface of media, where surface charges are 

concentrated. Surface plasmon-polariton waves are the 

waves of changes in the electric charge density, which 

can arise and propagate in the electron plasma of metal 

along the interface of metal film surface. Surface 

plasmon (SP) is the extreme case of SPP, which is a two-

dimensional wave localized at the surface. 
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Fig. 1. Hybrid multilayer structure of the investigated samples 

based on Au (a), Ag (b) and Cu (c) thin films. 

 

Surface plasmonic resonance (SPR) usually occurs 

with total internal reflection when an electromagnetic 

wave propagates along the reflecting surface at a rate that 

depends on the angle of incidence. The resonant 

phenomenon consists in the transfer of energy from the 

photon flux to the electron plasma of the metal when 

light falls at a certain angle onto surface. In this case, a 

decrease in the intensity of the reflected light and a 

change in the azimuth of the restored linear polarization 

are observed [9]. 

Surface plasmons are extremely sensitive to their 

local dielectric environment. Adding nanoparticles of a 

certain size and shape, one can configure such a sensor to 

detect a given type of the adsorbed objects. That’s why 

SPR-sensors are so perspective in biotechnology. 

Gold has long been known as the highest quality 

plasmonic material for the visible and near-infrared 

applications. It does not oxidize, has a large value of the 

refractive index and a small imaginary part of the 

dielectric function, high adhesion and affinity for organic 

molecules. Thin Ag and Cu films has also similar SPR 

properties, sometimes even better [10], and lower cost. 

But they oxidize relatively quickly, limiting long-term 

device applications [11]. A potential solution to this is to 

use HfO2 very thin layer as a protection of the 

copper/silver plasmonic film. It was chosen HfO2 as a 

dielectric layer because of its very stable chemical 

behaviour and high refractive index about 1.9…2.0 in the 

visible spectrum [12]. Combination of plasmonic film 

with such dielectric layer has yielded significant 

advances in SPR sensing due to the interference of 

reflected waves on interfaces metal/dielectric and 

promotes the path extension of the plasmon wave 

propagation along thin surface layer. 

 

3. Samples and experiment 

All metal films studied in this work were deposited using 

electron-beam evaporation onto glass substrates of the 

thickness 1 mm. The films were grown in a commonly 

available deposition apparatus with base pressures within  
 

Table 1. The list of samples investigated. 
 

# Substrate Layer 1 Layer 2 Layer 3 

1 glass Cr (1.5 nm) Au (47 nm) – 

2 glass Cr (1.5 nm) Ag (45 nm) HfO2 (7 nm) 

3 glass Cr (1.5 nm) Ag (45 nm) HfO2 (8 nm) 

4 glass Cr (1.5 nm) Cu (43 nm) HfO2 (7 nm) 

5 glass Cr (3 nm)    Cu (35 nm) HfO2 (10 nm) 

 

10
–5

 to 10
–6

 Torr range. The growth of metal films was 

monitored using a calibrated quartz crystal microbalance 

(QCM). Before deposition of Au (Ag, Cu) films, thin 

adhesive layers with the thickness about of 1.5 nm (Cr) 

were also deposited onto the clean glass substrates by 

using electron beam evaporation. To achieve the best 

adhesion and smooth surface with good optical 

performance sputtering rates were selected as follows: 

0.14 nm/s for Au, 5…7 nm/s for Ag and 1 nm/s for Cu. 

On the top of Ag (Cu) films, HfO2 layer was deposited 

with the small rate 0.05…0.1 nm/s. The structure of the 

samples is shown in Fig. 1 schematically. 

In this paper, we will consider five heterostructures 

with different thicknesses of layers. The detailed list of 

samples investigated is given in Table 1. 

The research was carried out on a multifunctional 

automated goniopolarimetric installation, built on the 

basis of the goniometer Г5 [13]. The experiment is 

controlled by a personal computer using the NI6221 Data 

Acquisition Card manufactured by National 

Instruments®, our own electronic automation system and 

the LabVIEW graphical programming environment. 

The scheme of the experimental instrument is 

shown in Fig. 2. The radiation source is LED with λ = 

625 nm, ∆λ = 10 nm. The collimator lens forms a parallel 

beam of light, which then passes through the polarizer P 

and falls on the sample to be studied. After the reflection 

from the sample, light passes through the analyzer A and 

it focused by the chamber lens onto the surface of the 

sensor (photodiode). 

The ellipsometric studies are carried out as follows. 

The sample is installed on the table of the goniometer for 

performing its alignment and positioning. The polarizer P 

 

 
Fig. 2. Scheme of the experimental setup: collimator lens – Col, 

polarizer – P, analyzer – A, chamber lens – Cham. 
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Fig. 3. Angular dependences of parameters ψ and ∆ for the Au 

(reference) sample. 

 

 
Fig. 4. Angular dependences of parameters ψ and ∆ for 

Ag-based samples. 

 

 

 
Fig. 5. Angular dependences of parameters ψ and ∆ for 

Cu-based samples. 

 

is set to 45° relatively to the p-plane. With an automatic 

drive, the sample turns to the required incidence angle θ, 

and after that the analyzer A begins to rotate. During 

rotation of the analyzer, the signal from the photodetector 

is permanently recorded. Then, the sample is positioned 

at a subsequent angle of incidence, etc. Measurements 

are continued until all the required range of light 

incidence angles has been passed. Using the obtained 

data, the special computer program reproduces the shape 

of the polarization ellipse of the reflected light and 

displays the angular dependence of the ellipsometric 

parameters ψ and ∆ in the plot. 
 

 
Fig. 6. Angular dependences of tan(ψ) for all the samples 

investigated. 

 

 
Fig. 7. Spectral dependences of ellipsometric parameter ψ of 

the heterostructure Cr (3 nm), Au (30 nm), HfO2 (45 nm) for 

different angles of light incidence. 

 

4. Results and discussion 

For the above-mentioned samples (Fig. 1), the angular 

measurements of the ellipsometric parameters were 

performed within 43°…85° range. ψ is the azimuth of 

restored linear polarization, ∆ is the phase shift between 

p- and s-components of incident light. The samples were 

probed from the upper side (not through glass). The 

results of the measurements are shown in Figs. 3 to 6. 

As one can see from these plots (Figs. 3 to 5), the 

optical properties of these metal heterostructures are 

similar. There is slightly different principle of light 

incidence angle (the angles, where phase shift ∆ between 

p- and s-components is equal to 90°) for these samples. 

The curve ∆(θ) falls down with increasing angle of light 

incidence while ψ(θ) changes relatively weakly. 

Usually surface plasmon resonance manifests itself 

in the form of a sharp decrease in the intensity of the 

reflected p-polarized electromagnetic wave in the vicinity 

of the specific angle of incidence. The reflection 

efficiency for SPR depends on the thickness of dielectric 

(HfO2) and noble-metal films due to the former changes 

the electromagnetic field distribution of the surface 

plasma oscillations. The reflectivity spectra R(λ) of the 

sample reach the minimum at plasmonic resonances. To 

increase SPR efficiency, one should minimize the 

p-polarized reflection spectra and its full width at half 

maximum (FWHM) [14]. 
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Table 2. Characteristics of the samples and measurement data. 
 

Sample 

Principal 

angle*, 

deg. 

tan(ψ), 

minimal 

value 

Angular 

position**, 

deg. 

tan(ψ) 

deviation 

Cr 1.5 nm, 

Au 47 nm 
71.9 0.933 73.2 0.051 

Cr 1.5 nm, 

Ag 45 nm, 

HfO2 7 nm 

71.5 0.973 76.3 0.019 

Cr 1.5 nm, 

Ag 45 nm, 

HfO2 8nm 

72.9 0.989 72.0 0.019 

Cr 1.5 nm, 

Cu 43 nm, 

HfO2 7 nm 

70.8 0.970 74.8 0.067 

Cr     3 nm,  

Cu    35 nm, 

HfO2 10 nm 

70.2 0.887 69.8 0.055 

*
 Principal angle of light incidence 

**
 tan(ψ) minimal angular position, deg. 

 

The angular dependence of the reflection coefficient 

R(θ) as a shape of the resonance curve, in particular, the 

angular position of its minimum, depends on the 

wavelength λ, the optical constants n and κ of the sample 

and the ambient, as well as a film thickness d and optical 

characteristics of the film deposited on the top of this 

heterostructure. So, if we plot tan(ψ), which is expressed 

as a reflected p- and s-components ratio, these curves 

should demonstrate a depression at the resonant angle of 

light incidence. 

On the plots in Fig. 6, there are actually observed 

minima, but they are comparatively small in their 

amplitude (at the resonance, reflection must typically 

decrease close to 0). It is seen from Fig. 7, where 

appropriate minima are observed for spectral 

dependences ψ(λ) of similar specimen presented at [15], 

then it becomes obvious that the reason for the 

occurrence of such weak minima in Fig. 6 consists in the 

difference of our source wavelength (λ = 625 nm) from 

the resonant ones for the samples investigated. 

To create some effective SPR-sensor, it is necessary 

to optimize the thickness of appropriate layers. It is 

optimal near d = 47.5 nm for the film based on gold [16]. 

Hence, one should also explore the spectral dependences 

of ψ for this selection. From angular dependences, one 

could only choose the appropriate SPR-compatible 

structure due to a minimal value of tan(ψ). 

One can compare behavior of ellipsometric 

parameters for Au-, Ag- and Cu-based samples with 

different thicknesses of films of these metals (see 

Table 2). 

In Table 2, the principal angles of light incidence in 

appropriate heterostructure investigated, the angular 

positions and the values of tan(ψ) minima, as well as 

tan(ψ) amplitude deviations are presented. We can notice 

at comparison Au-based and Cr (3 nm), Cu (35 nm), 

HfO2 (10 nm) samples that the increase of the thickness 

of the HfO2 layer only weakly independently of selected 

metal for film affects the ψ amplitude. Namely, tan(ψ) 

deviation is mainly defined by the type of metallic layer 

of that film. With the growth of HfO2 layer, the minimum 

position of tan(ψ) for these structures shifts to the smaller 

angles θ. 

 

5. Conclusions 

The HfO2-protected Ag and Cu layers provide a possible 

alternative to the conventional noble metals (usually, 

pure Au) in plasmonics applications. In this case, they 

are relatively stable and high-quality plasmonic 

materials, which is suitable for effective sensor 

fabrication that requires low plasmonic losses. 

A few nm thick HfO2 layer on the top of Cu or Ag 

film improves its SPR stability and lifetime, though it 

changes SPR-response. From angular ellipsometrical 

measurements, one can suppose that the samples with 

greater tan(ψ) deviation are the best candidates for 

SPR-sensors among the heterostructures examined. 
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