УДК 535.211:669.14

д.т.н., професор Божидарнік В.В., Луцький національний технічний університет д.т.н., професор Добрянський І.М., Львівський національний аграрний університет

ОЦІНКА ВПЛИВУ РАДІОАКТИВНОГО ОПРОМІНЕННЯ НА МІЦНІСТЬ ЕЛЕМЕНТІВ КОНСТРУКЦІЙ

Наводиться розв'язок задачі про визначення залишкового ресурсу труби з поверхневою тріщиною в її стінці, яка піддана дії довготривалого внутрішнього тиску, високої температури і радіаційного опромінення.

Ключові слова: конструктивні елементи, температура, напруженодеформований стан, радіаційне опромінення, розрахункові моделі, тріщини, енергетичний підхід

Вступ. Конструктивні елементи атомних електростанцій, будівель та інженерних споруд, виготовлені з металу, бетону і залізобетону, можуть знаходитись під дією не тільки експлуатаційних технологічних силових навантажень і температури, а й радіаційного опромінення. Численні результати експериментальних досліджень і натурних спостережень свідчать про те, що дія радіаційних чинників призводить до істотних змін механічних властивостей матеріалу конструкції, а в деяких випадках до зміни роботи самої конструкції. У міру дії радіації змінюються властивості металу й бетону, відбувається розпухання матеріалів. У результаті напружений стан конструкції змінюється, а термін «життя» зменшується. Під дією радіаційного опромінення знаходяться конструкції в зоні дії наслідків аварії на Чорнобильській АЕС, конструкції ядерних реакторів, конструкції могильників і сховищ, що слугують для складування відпрацьованого палива і поховання інших радіоактивних відходів. Усі ці конструкції повинні забезпечувати захист від негативної дії радіаційних чинників, а також зберігати свої функціональні властивості на певний період експлуатації. Оскільки під впливом радіаційного опромінення змінюється напружено-деформований стан елементів конструкцій, то для прогнозування цієї зміни необхідно мати розрахункові моделі і методи розрахунку, що враховують негативну дію радіаційних чинників. З цією метою пропонуються такі розрахункові моделі.

Аналіз досліджень і публікацій, в яких започатковано вивчення проблеми впливу радіаційного опромінення на довготривалу високотемпературну міцність металевих елементів конструкцій атомних електростанцій. Сьогодні низка енергоблоків в Україні вже виробила свій

проектний термін служби (30 років) або наближається до нього. Для подальшої експлуатації енергоблоків, що досягли проектного терміну служби, а також для розробки проектів АЕС нового покоління з терміном служби понад 30 років необхідне забезпечення безпечної експлуатації устаткування АЕС на нові, триваліші терміни служби [1]. Тому питання обґрунтування продовження терміну служби атомного енергоустаткування із забезпеченням його безпечної експлуатації стають в даний час все більш важливими і актуальними. За нормативними документами РДЕО 0185-2006 і РДЕО 0330-2001, що існують в атомній енергетиці, продовження терміну служби енергоблоків AEC проводиться за виконання великого комплексу регламентованих заходів, що включають, зокрема, оцінку технічного стану й розрахунок залишкового ресурсу елементів енергоблоків з урахуванням фактичного рівня механічних під властивостей i виявлених час експлуатації дефектів. Розрахунок визначення розмірів дефектів, що допускаються, залишкового pecypcy, виконують з урахуванням підростання тріщиноподібних дефектів у процесі експлуатації. Оскільки устаткування АЕС експлуатується в умовах термічної, механічної, корозійної і радіаційної дій, то необхідно визначити вплив експлуатаційної дії на зміну властивостей металу устаткування і трубопроводів у процесі експлуатації, що дозволить прогнозувати їх зміну на продовжуваний термін служби. У зв'язку з цим для забезпечення безпечної експлуатації актуальним стає вдосконалення розрахунків на міцність для обґрунтування продовження терміну служби з урахуванням тривалих термінів експлуатації.

Відсутність надійних даних про зміну характеристик жароміцності конструкційних сталей під дією нейтронного опромінення спричинює велику невизначеність у проектуванні активних зон ядерних апаратів, розрахунках їх на міцність і необхідність введення в розрахунок завищених коефіцієнтів запасу, що врешті знижує нейтронно-фізичні характеристики реакторів і їх економічність. При цьому велике значення мають питання, пов'язані з впливом нейтронного опромінення на високотемпературну повзучість матеріалів і їх довготривалу міцність. Особливо великий інтерес становлять ті нечисленні дослідження повзучості і довготривалої міцності, які проведені безпосередньо в Вони потоках реакторних випромінювань. необхідні для розрахунку залишкового ресурсу елементів атомних електростанцій, які контактують з першим контуром. До таких елементів належить віднести внутрішню частину корпусу реактора і різного типу трубопроводів, якими тече реакторна вода. В їх стінках утворюються поверхневі тріщини, що розвиваються в результаті високотемпературної повзучості, яка посилюється за рахунок радіоактивного опромінення.

Як показують результати експериментальних досліджень [2; 3], збільшення швидкості усталеної повзучості сталі типу 304 за температури T=650 °C може бути у два-п'ять разів за інтенсивності потоку швидких нейтронів, що складає $5 \cdot 10^{12}$ н·см⁻²·с⁻¹. В оглядових частинах робіт [2; 3] наведено і багато інших прикладів збільшення швидкості усталеної високотемпературної повзучості за рахунок опромінення швидкими нейтронами.

Постановка проблеми. У зв'язку з викладеним, важливим для інженерної практики, зокрема для атомної енергетики, буде розв'язок задачі про визначення залишкового ресурсу труби з поверхневою тріщиною в її стінці, яка піддана дії довготривалого внутрішнього тиску, високої температури і радіаційного опромінення. Для цього побудуємо розрахункову модель, суть якої полягає в наступному.

основного матеріалу. Ставиться Виклад задача про визначення радіуса внутрішнього залишкового pecypcy труби $r = 0.5d_{1}$ товщини $h_1 = 0.5(d_2 - d_1)$, яка піддана дії внутрішнього довготривалого статичного тиску *p*, температури *T* і радіоактивного опромінення в дозі Ф (флюенс). Вважається, що на внутрішній стінці труби вздовж її твірної розміщена поверхнева півеліптична тріщина з півосями a_0 і b_0 з площею S_0 (рис. 1).

Рис. 1. Схема навантаження труби з півеліптичною тріщиною.

В умовах дії зовнішніх факторів, за яких реалізується явище високотемпературної повзучості, тріщина буде поширюватися і труба втратить герметичність. Задача полягає у визначенні часу $t = t_*$, коли площа тріщини S в результаті високотемпературної повзучості підросте до критичного розміру $S = S_*$, тобто $b(t_*) = h_1$ і труба розгерметизується.

Для розв'язання такої задачі побудуємо математичну модель опису кінетики поширення тріщини високотемпературної повзучості у трубі і визначення періоду її докритичного росту $t = t_*$.

Суть цієї розрахункової моделі полягає в наступному. Застосуємо для цього випадку загальний енергетичний підхід, який сформульований у роботі

[4]. На основі цього для опису докритичного росту тріщини високотемпературної повзучості отримаємо диференціальне рівняння

$$\frac{dS}{dt} = A_m \left[\frac{K_{\rm I}}{K_{\rm IC}} \right]^{2m} \left[1 - \frac{K_{\rm I}^2}{K_{\rm IC}^2} \right]^{-1}.$$
 (1)

Для повноти математичної моделі до рівняння (1) додамо початкову і кінцеві умови

$$t = 0, \quad S(0) = S_0,$$
 (2)

$$t = t_*, \quad S(t_*) = S_*,$$
 (3)

де критична площа тріщини S = S_{*} визначається з критерію Ірвіна

$$K_I(S_*) = K_{IC}, \qquad (4)$$

A_m, m – характеристики високотемпературної повзучості [4; 5]; *K_I* – коефіцієнт інтенсивності напружень біля контуру тріщини; *K_{IC}* – його критичне значення.

Таким чином, період докритичного росту тріщин високотемпературної повзучості в стінці труби визначається на основі співвідношень (1)-(4).

Щоб знайти залишковий ресурс труби (час до розгерметизації), застосуємо відомий [4] метод еквівалентних площ: зміна площі рухомої тріщини розглядуваної конфігурації наближено така, як для півкругової тріщини радіуса а рівної площі. Це значно спрощує розрахунки, але, як показано в [4], забезпечить для розрахунків достатню точність. Оскільки товщина стінки труби h_1 набагато менша від її внутрішнього радіуса r (r >> h), то таку трубу з тріщиною під внутрішнім тиском р будемо моделювати пластиною товщини поверхневою тріщиною, яка розтягується рівнорозподіленими h_1 3 напруженнями $\sigma_1 = rh_1^{-1}p$. На основі цього та результатів роботи [4] рівняння (1) матиме вигляд

$$\frac{d\xi}{dt} = \frac{A_m}{h_1} \left[\frac{K_1}{K_{\rm IC}} \right]^{2m} \left[1 - \frac{K_1^2}{K_{\rm IC}^2} \right]^{-1},\tag{5}$$

$$\xi = a/h_1; \ K_1 = 0.7 \, prh_1^{-1} \sqrt{\pi h_1 \xi} \left(1 + 0.32 \xi^2 \right) \left(1.04 + 0.23 \xi^2 - 0.11 \xi^4 \right) \tag{6}$$

за початкової і кінцевої умов

$$t = 0, \quad \xi(0) = \xi_0;$$
 (7)

$$t = t_*, \ \xi(t_*) = 1.$$
 (8)

Підставляючи (6) у (5) та інтегруючи за умов (7), (8), отримаємо розв'язок у такому вигляді:

$$t_{*} = \frac{h_{1}}{A_{m}} \int_{\xi_{0}}^{1} \left[\frac{K_{I}}{K_{IC}} \right]^{-2m} \left[1 - \frac{K_{I}^{2}}{K_{IC}^{2}} \right] d\xi \cdot$$
(9)

Для апробації формули (9) розглянемо конкретний випадок, коли досліджувана труба, виготовлена із сталі ОХ16Н15М3Б, експлуатується за температури 650 °С, нейтронного опромінення $\Phi = 5.3 \cdot 10^{12}$ н·см⁻²·с⁻¹, потужністю

 $E \ge 0.85$ Мев, має геометричні параметри $h_1 = 8$ мм, r = 20 мм і навантажена тиском p, що задовольняє умову $\sigma_1 = 200$ МПа (при $\xi_0 = 0.1$). Для згаданої сталі в роботі [2] наведені результати експериментальних досліджень високотемпературної повзучості цієї сталі за таких самих параметрів нейтронного опромінення. При цьому отримані дані для високотемпературної повзучості (усталена ділянка повзучості) добре описуються формулою

$$\varepsilon = \dot{\varepsilon}t , \qquad (10)$$

де ε – значення деформації; є – швидкість повзучості на усталеній ділянці; *t* – час. У свою чергу швидкість повзучості на усталеній ділянці є визначається через напруження σ таким чином:

$$\dot{\varepsilon} = A(\sigma \sigma_{0,2}^{-1})^n, \tag{11}$$

де $\sigma_{0,2}$ – границя текучості сталі; $A = 3,98 \cdot 10^{24}$ 1/год; n = 17,8; $\sigma_{0,2} = 930$ МПа і $A = 4,29 \cdot 10^9$ 1/год; n = 7,2; $\sigma_{0,2} = 1100$ МПа відповідно, для зразків неопромінених і опромінених. На основі результатів робіт [5, 6] можна записати таку залежність:

$$\dot{\delta}_t = \delta_C \dot{\epsilon} \varepsilon_C^{-1}. \tag{12}$$

Аналізуючи задачу Грифітса, в якій пластинка з тріщиною розтягується зусиллями σ, можемо записати наступне співвідношення:

$$\frac{K_I(\sigma,l)}{K_I(\sigma_*,l)} = \frac{\sigma\sqrt{\pi l}}{\sigma_*\sqrt{\pi l}} = \sigma\sigma_*^{-1}.$$
(13)

Для багатьох матеріалів приймається [6] $\sigma_* \approx \sigma_{0,2}$, $K_I(\sigma_*, l) = K_{IC}$. Тоді на основі співвідношень (11)–(13) запишемо таку формулу:

$$\dot{\delta}_{t} = \delta_{C} \varepsilon_{C}^{-1} A \left[\frac{K_{I}}{K_{IC}} \right]^{n}.$$
(14)

На основі результатів робіт [4, 5] і формули (14) співвідношення (9) можемо записати так:

$$t_{*} = \frac{h_{1}\varepsilon_{C}}{\delta_{C}A} \int_{\xi_{0}}^{1} \left[\frac{K_{I}}{K_{IC}} \right]^{-n} \left[1 - \frac{K_{I}^{2}}{K_{IC}^{2}} \right] d\xi \cdot$$
(15)

Величини $\varepsilon_c, \delta_c, K_{IC}$, які входять у формулу (15), визначаємо на основі результатів робіт [2; 7; 8] у такому вигляді: $K_{IC} = 251 \text{ МПа·м}^{1/2}$; $\varepsilon_c = 0,1$; $\delta_c = 0,3$ і $K_{IC} = 198 \text{ МПа·м}^{1/2}$; $\varepsilon_c = 0,25$; $\delta_c = 0,83 \text{ мм}$ відповідно для зразків неопромінених і опромінених. Підставляючи значення наведених характеристик у формулу (15), отримаємо:

для неопроміненої труби

$$t_* = 3,46 \cdot 10^{18} \int_{\varepsilon_0}^1 K_I^{-15,8} (K_I^{-2} - 1,59 \cdot 10^{-5}) d\xi, \qquad (16)$$

для опроміненої труби

$$t_* = 4,60 \cdot 10^8 \int_{I}^{1} K_I^{-5,2} (K_I^{-2} - 2,55 \cdot 10^{-5}) d\xi, \qquad (17)$$

де у формулі (17) $K_I = 22,19\sqrt{\xi}(1+0,32\xi^2)(1,04+0.03\xi^2-0.01\xi^4)$.

На основі обчислень за формулами (16) і (17) отримано графіки, наведені на рис. 2, де показано графічні залежності довговічності t_* труби з тріщиною від її початкового розміру ε_0 . Як видно з рис. 2 радіаційне опромінення труби значно скорочує її довговічність.

Рис. 2. Графічна залежність залишкового ресурсу труби t_* від ε_0 : 1 – неопромінена труба; 2 – опромінена труба

Розглянемо вплив радіаційного опромінення на руйнування i деформування бетонних елементів конструкцій. Вище було показано, як знижує радіаційне опромінення довговічність металевих елементів конструкцій. Треба зазначити, що таке опромінення відчутно впливає і на бетонні матеріали, особливо ті, з яких виготовлені конструкції могильників і сховищ, що слугують для складування відпрацьованого палива і поховання інших радіоактивних відходів. Аналіз експериментальних даних, що проведений у роботі [1], показує, що в міру збільшення дози опромінювання змінюються модуль пружності матеріалу, діаграма деформації, характер кривих повзучості і тривалої міцності.

Для побудови могильників і сховищ для радіоактивних відходів у великій кількості використовуються плити, які слугують перекриттям і накриттям таких об'єктів. Тому важливим є розрахунок таких елементів конструкцій за радіоактивного опромінення. У роботі [1] отримано таке рівняння згину бетонної пластини з урахуванням радіаційного опромінення:

$$\frac{\partial^{2}}{\partial x^{2}} \left(D_{1} \frac{\partial^{2} W}{\partial x^{2}} \right) + \frac{\partial^{2}}{\partial x^{2}} \left(D_{2} \frac{\partial^{2} W}{\partial x^{2}} \right) + 2 \frac{\partial^{2}}{\partial x \partial y} \left(D_{6} \frac{\partial^{2}}{\partial x \partial y} \right) + \frac{\partial^{2}}{\partial y^{2}} \left(D_{2} \frac{\partial^{2} W}{\partial x^{2}} \right) + \frac{\partial^{2}}{\partial y^{2}} \left(D_{1} \frac{\partial^{2} W}{\partial y^{2}} \right) = p(x, y) + q(x, y),$$
(18)

де W – прогин пластини; x, y – декартові координати в площині пластини; p(x, y) – інтенсивність зовнішнього навантаження; q(x, y) – фіктивне радіаційне навантаження, радіаційна добавка; D_1, D_2, D_6 – змінні жорсткості. З допомогою

рівняння (18) і даних роботи [1] можна визначити зміну деформування і руйнування бетонної плити за радіоактивного опромінення.

Висновки. На основі аналізу впливу радіаційного опромінення на характеристики високотемпературної міцності конструкційних матеріалів, а також енергетичного підходу побудована розрахункова модель для визначення періоду докритичного росту тріщин високотемпературної повзучості конструкцій довготривалого статичного навантаження i елементах 3a опромінення. Конкретний розрахунок радіаційного pecypcy елемента радіаційне опромінення може конструкції показав, ЩО знизити його залишковий ресурс на декілька порядків.

Література

1. Грибов Р. Б. Моделирование поведения армированных элементов конструкций с учетом влияния радиационного облучения / Р. Б. Грибов, А. В. Матора // Вестник Самарского государственного технического университета. – 2005. – № 38. – С. 35–41. – (Серия физ.-мат. науки).

2. Влияние реакторных излучений на сопротивление ползучести и длительную прочность аустенитной нержавеющей стали ОХ16Н15М3Б / [Писаренко Г.С., Кисельовский В.Н., Полевой Д.В.] // Проблемы прочности.–1974.–№4. – С.3–8.

3. Ибрагимов Ш. Ш. Радиационные повреждения металлов и сплавов / Ш. Ш. Ибрагимов, В.В. Кирсанов, Ю.С. Пятилетов.–М.: Энергоатомиздат, 1985.–240с.

4. Андрейків О.Є. Механіка руйнування металічних пластин при високотем-пературній повзучості / О.Є. Андрейків, Н. Б. Сас // Фіз.-хім. механіка матеріалів. – 2006. – № 2. – С. 62–68.

5. Андрейків О. Є. Математична модель для визначення періоду докритичного поширення тріщин високотемпературної повзучості в твердих тілах / О. Є. Андрейків, Н. Б. Сас // Доп. НАН України. – 2006. – № 5. – С. 47–52.

6. Андрейків О. Є. Визначення залишкової довговічності тонкостінних елементів конструкцій при двохосьовому навантаженні / О. Є. Андрейків, М. Б. Кіт // Фіз.-хім. механіка матеріалів. – 2006. – № 1. – С. 11–16.

7. Ковчик С.Е. Характеристики кратковременной трещиностойкости материалов и методы их определения. Механика разрушения и прочность материалов : справ.пособие / С.Е. Ковчик, Е.М. Морозов.–К.: Наук.думка, 1988. – Т.З. – 436с.

 Оценка вязкости разрушения корпусных материалов реактора ВВЭР-1000 / [Гринник Э. У., Ревка В. Н., Чирко Л. И., Чайковский Ю. В.] // Ядерна фізика та енергетика. – 2007. – Т. 19, № 1. – С. 83–88.

Аннотация

Приводится решение задачи определения остаточного рессурса трубы с поверхностной трещиной в ее стенке, пребывающая в условиях воздействия долгодлительного внутреннего давления, высокой температуры и радиационного облучения.

Ключевые слова: конструктивные элементы, температура, напряженнодеформированное состояние, радиационное облучение, расчетные модели, трещины, энергетический поход