УДК 514.182

к.т.н.,доцент Мостовенко А.В., a.mostovenko25@gmail.com, ORCID: 0000-0002-3423-4126, Киевский национальный университет строительства и архитектуры

## ОПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА ЭНЕРГИИ В ПРОИЗВОЛЬНОЙ ТОЧКЕ ПРОСТРАНСТВА ОТ ТОЧЕЧНОГО ИСТОЧНИКА ЭНЕРГИИ И

ЕГО ОТРАЖЕНИЯ

Предложена геометрическая модель определения потенциала энергии в произвольной точке трехмерного пространства от точечного источника энергии и его отражения в экране, который представлен плоскостью общего положения, с учетом того, что не вся энергия от источника отражается в экране. Частично оставшуюся энергию экран поглощает.

Ключевые слова: отражение, поглощение, расстояние, функция от расстояния, влияние, потенциал энергии, точечный источник энергии, физическое поле, гиперповерхность.

Постановка проблемы. При решении различных инженерных задач, связанных с определением потенциала энергии в произвольной точке трехмерного пространства от различного вида точечных источников энергии, необходимо также учитывать как возможность отражения данного вида энергии от заданных в пространстве поверхностей (плоскостей), так и поглощения её теми же самыми поверхностями. Параметрами влияния таких поверхностей на степень поглощения (отражения) энергии могут быть: форма, цвет, текстура, материал поверхности и т.д.

**Формулирование целей и задач статьи.** Предложить геометрическую модель определения потенциала энергии в произвольной точке трехмерного пространства от точечного источника энергии и его отражения в плоском экране.

**Анализ последних исследований и публикаций.** В работах [1] и [2] изучалась проблема определения потенциала энергии в точках двумерного и трехмерного пространства при заданных источниках энергии.

В проанализированной литературе отсутствуют работы, связанные с определением потенциала в точке пространства от точечного источника энергии с учётом влияния расстояния между точкой физического поля и точечным источником энергии с возможностью отражения (поглощения) энергии от экрана.

**Основная часть.** Условие задачи. Задан точечный источник энергии M и отражающий экран в виде плоскости общего положения (рис.1):

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0. \tag{1}$$

Определить потенциал энергии в произвольной точке N от источника M и его отражения в экране M' при условии, что экран ABC отражает только часть энергии источника, а остальную энергию поглощает.

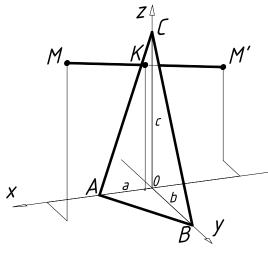



Рис. 1.

Пусть задан коэффициент отражения  $r \le 1$ . Тогда отраженная энергия источника M равна:

$$U_{o} = U \cdot r, \tag{2}$$

где U – энергия, излучаемая источником M.

Тогда для определения потенциала энергетического поля в любой точке пространства необходимо знать координаты отражения M' источника M.

Известно, что отражение источника M находится на перпендикуляре, опущенном из M на плоскость (1) отражающего экрана, причем расстояние от отражения M' равно расстоянию от источника M до этого экрана.

Точка K пересечения перпендикуляра, проходящего через точку M к плоскости (1), с этой плоскостью определяется по формулам:

$$x_{K} = \frac{a\left[ax_{M}(b^{2} + c^{2}) - bc^{2}y_{M} - b^{2}cz_{M} + b^{2}c^{2}\right]}{b^{2}c^{2} + a^{2}c^{2} + a^{2}b^{2}};$$
(3)

$$y_K = \frac{b\left[-ac^2x_M + by_M(c^2 + a^2) - a^2cz_M + a^2c^2\right]}{b^2c^2 + a^2c^2 + a^2b^2};$$
 (4)

$$z_K = \frac{c\left[cz_M(a^2 + b^2) - ab^2x_M - a^2by_M + a^2b^2\right]}{b^2c^2 + a^2c^2 + a^2b^2}.$$
 (5)

Учитывая равенство расстояний MK и M'K, определяем координаты точки M' из условия  $x_M'=2x_K-x_M$ ;  $y_M'=2y_K-y_M$ ;  $z_M'=2z_K-z_M$ :

$$x_{M'} = \frac{x_M (a^2b^2 + a^2c^2 - b^2c^2) + 2abc(bc - cy_M - bz_M)}{a^2b^2 + a^2c^2 + b^2c^2}; \quad (6)$$

$$y_{M'} = \frac{y_M(a^2b^2 - a^2c^2 + b^2c^2) + 2abc(ac - cx_M - az_M)}{a^2b^2 + a^2c^2 + b^2c^2}; \quad (7)$$

$$z_{M'} = \frac{z_M \left( -a^2 b^2 + a^2 c^2 + b^2 c^2 \right) + 2abc \left( ab - bx_M - ay_M \right)}{a^2 b^2 + a^2 c^2 + b^2 c^2}.$$
 (8)

Потенциал произвольной точки пространства:

$$U = U_M t_M + U_{M'} t_{M'}, (9)$$

где  $t_M$  и  $t_{M'}$  — параметры, учитывающие расстояние от точек M и M' до произвольной точки трехмерного пространства:

$$t_M = \frac{s}{s + f(l_M)};\tag{10}$$

$$t_{M'} = \frac{s}{s + f(l_{M'})},\tag{11}$$

где s,  $f(l_M)$  и  $f(l_{M'})$  — соответствуют [3].

Потенциал точки M':

$$U_{M'} = r \cdot U_{M}, \tag{12}$$

где r — коэффициент отражения.

Величина параметра t зависит от координат точек трехмерного пространства.

По уравнению (9) с учетом (12) определяется потенциал U произвольной точки трехмерного пространства.

Пример.

Рассмотрим гиперповерхность потенциалов энергии при заданном источнике энергии M (20; 10; 30) и заданном экране в виде плоскости общего положения:

$$\frac{x}{10} + \frac{y}{20} + \frac{z}{30} = 1. \tag{13}$$

В качестве исходных данных примем единичный параметр s=1, функцию f(l)=l, коэффициент отражения r=0,5 и потенциал энергии в точке M равен  $U_M=100$ .

Тогда параметр t определяется по формуле:

$$t = \frac{1}{1+l}.\tag{14}$$

Координаты отраженной точки M' определяем по формулам (6 – 8):

$$x_{M'} = -16,7347;$$
 $y_{M'} = -8,3673;$ 
 $z_{M'} = 17,7551.$ 
(15)

Тогда уравнение (9) принимает вид:

$$U = \frac{100}{1 + \sqrt{(x - 20)^2 + (y - 10)^2 + (z - 30)^2}} + \frac{50}{1 + \sqrt{(x + 16,7347)^2 + (y + 8,3673)^2 + (z - 17,7551)^2}},$$
(16)

которое является расчетным для определения потенциала энергии в произвольной точке трехмерного пространства. На рис. 2 показаны дискретные значения потенциалов с шагом  $h=z_i-z_{i-1}=10$  на интервале  $40 \ge x \ge 0$ ;  $20 \ge y \ge -20$ ;  $40 \ge z \ge 0$ .

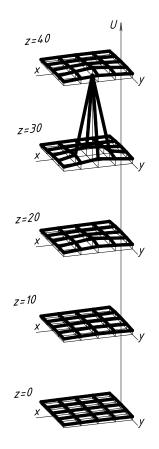



Рис. 2.

**Выводы и перспективы.** Вышеизложенное исследование показало, что при определении потенциала энергии в произвольной точке трехмерного пространства от точечного источника энергии и его отражения в экране необходимо также учитывать и отражение самого точечного источника в экране, несущее определенный потенциал, которое влияет на суммарный потенциал заданного источника.

## Список использованной литературы

- 1. Скочко В. І. Спеціальні геометричні моделі процесів, що розвиваються в суцільному середовищі: дис...к. техн. наук: 05.01.01. [Текст]:/ В.І. Скочко К.: КНУБА, 2012. 269с.
- 2. Сергейчук О.В. Геометричне моделювання фізичних процесів при оптимізації форми енергоефективних будинків. Дис...д. техн. наук: 05.01.01. [Текст]:/ О.В. Сергейчук К.: КНУБА, 2008. 425с.

3. Ковалёв С.Н. Интерполяция точек на плоскости с учётом коэффициентов влияния заданных точек / С.Н. Ковалёв, А.В. Мостовенко // Сучасні проблеми моделювання: зб. наук. праць. — Мелітополь: Видавництво МДПУ ім. Б. Хмельницького, 2018.— Вип. 13. — С. 69-75.

к.т.н. Мостовенко О.В., Київський національний університет будівництва та архітектури

## ВИЗНАЧЕННЯ ПОТЕНЦІАЛУ ЕНЕРГІЇ В ДОВІЛЬНІЙ ТОЧЦІ ПРОСТОРУ ВІД ТОЧКОВОГО ДЖЕРЕЛА ЕНЕРГІЇ ТА ЙОГО ВІДБИТТЯ

В даному дослідженні запропоновано геометричну модель визначення потенціалу енергії в довільній точці тривимірного простору від точкового джерела енергії та його відображення в екрані, який представлено площиною загального положення, з урахуванням того, що не вся енергія від джерела відбивається в екрані. Частково екран поглинає енергію, що залишилась.

Ключові слова: відбиття, поглинання, відстань, функція від відстані, вплив, потенціал енергії, точкове джерело енергії, фізичне поле, гіперповерхня.

PhD. A. Mostovenko, Kyiv national university of construction and architectural

## DETERMINATION OF THE POTENTIAL OF ENERGY IN AN ARBITRARY SPOT POINT FROM THE POINT SOURCE OF ENERGY AND ITS REFLECTION

In this study, a geometric model is proposed for determining the energy potential at an arbitrary point in three-dimensional space from a point source of energy and its reflection in the screen, which is represented by a general plane, taking into account the fact that not all the energy from the source is reflected in the screen. Partially remaining energy absorbs the screen.

Keywords: reflection, absorption, distance, function from distance, influence, energy potential, point source of energy, physical field, hypersurface.