

А.Я.Яланецкий, к.т.н., ст.н.с., зав. сектором коньяка отдела технологии вин, коньяков и вторичных продуктов,

Г.В.Таран, инженер-технолог отдела технологии вин, коньяков и вторичных продуктов,

В.А.Загоруйко, доктор, профессор, член-корр. НААН, и.о. директора, **В.А.Таран**, к.т.н., ст.н.с. лаборатории вторичных продуктов отдела технологии вин, коньяков и вторичных продуктов,

Н.А. Шмигельская, м.н.с. лаборатории тихих вин отдела технологии вин, коньяков и вторичных продуктов

Национальный институт винограда и вина «Магарач»

ИЗМЕНЕНИЕ ФЕНОЛЬНОГО КОМПЛЕКСА СТОЛОВЫХ ВИНОМАТЕРИАЛОВ ИЗ ВИНОГРАДА СОРТА ЦИТРОННЫЙ МАГАРАЧА ПРИ ОБРАБОТКЕ БЕНТОНИТОМ

Классические сорта винограда составляют основную долю площадей виноградников в странах развитого виноградарства и виноделия. В условиях Украины классические сорта винограда вместе с преимуществами имеют ряд недостатков: невысокая урожайность, слабая устойчивость к морозам, склонность к различного рода забо-

Развитие виноделия в Украине, как это показала отечественная и зарубежная практика, возможно путем закладки новых виноградников саженцами высоких селекционных категорий. В НИВиВ «Магарач» создана группа новых технических сортов винограда с улучшенными агробиологическими свойствами, одним из которых является Цитронный Магарача. Однако, технологические свойства Цитронного Магарача малоизучены, что обуславливает необходимость разработки индивидуальных параметров технологии выработки вин.

Исследование заключалось в изучении технологических параметров производства столовых вин из винограда сорта Цитронный Магарача с применением различных доз бентонита на стадиях: виноград, мезга, сусло, их влияние на фенольный комплекс получаемых виноматериалов, разработка рекомендаций при производстве столовых вин из сорта Цитронный Магарача

Объектом исследований являлись столовые виноматериалы из сорта винограда Цитронный Магарача, выработанные методом микровиноделия в сезоны виноделия 2009-2012 гг. в условиях ГП АФ «Магарач», с. Вилино, Бахчисарайский район, АР Крым (Вилино) и ГП «Ливадия», п. Ливадия, г. Ялта (Ливадия).

Контролем служил виноматериал из Цитронного Магарача, выработанный по той же технологической схеме, без обработок бентонитом.

Физико-химические характеристики виноматериалов исследовали общепринятыми в виноделии методами анализа, общее содержание фенольных веществ определяли фотоколометрически с использованием реактива Фолина-Чокальтеу. Идентификацию полифенолов производили меИзучено влияние обработок различными дозами бентонита винограда, мезги и сусла для выработки виноматериалов Цитронного Магарача. Оптимальные результаты получены при обработке мезги дозами 0,5-0,75 г/дм³.

Ключевые слова: сусло, мезга, органолептический анализ, полимерные фенольные вещества.

тодом ВЭЖХ с использованием хроматографической системы Аджилент 1100 с диодно-матричным детектором. Полученные экспериментальные данные подвергали математической обработке.

Виноматериалы рабатывали по следующей технологии: сбор винограда осуществляли по мере достижения им технологической зрелости в соответствии с ДСТУ 2366:2009 Виноград свежий технический. Технические условия и перерабатывали «по - белому» способу. Рабочий водный раствор диоксида серы вводили в мезгу в количестве 50 мг/дм 3 во все варианты, а бентонит - в виде суспензии (массовой концентрации 10 г/100 см³) в виноград, мезгу и сусло в количестве: 0,25; 0,5; 0,75; 1,0; 1,5 и 2,0 г/дм³. Отбор сусла проводили из расчета 55 дал из 1 т винограда. Сусло осветляли путем отстаивания при температуре 18-20°С в течение 18 ч. Сбраживание проводили "насухо" при температуре 18-20°C с использованием расы дрожжей 47К. После осветления и брожения виноматериалы снимали с дрожжей с введением диоксида серы в количестве 50 мг/дм³. В изучаемых образцах объемная доля этилового спирта была в пре-

Таблица 1 Массовая концентрация фенольных веществ в столовых виноматериалах Цитронный Магарача, обработанных различными дозами бентонита

Доза бентонита, внесённая в виноград	Массовая концентрация фенольных веществ, мг/дм³								
(г/кг) мезгу, сусло (г/дм³)	суммы	мономерных форм	полимерных форм						
Ливадия									
Контроль (без обработки)	665	428	237						
Виноград									
0,25	610	393	217						
0,75	570	378	191						
1,5	390	275	115						
Мезга									
0,25	650	421	229						
0,75	585	370	215						
1,5	597	374	223						
Сусло									
0,25	640	418	222						
0,75	590	373	217						
1,5	593	372	221						
	Вили	но							
Контроль (без обработки)	670	460	210						
Виноград									
0,5	655	450	205						
1,0	605	410	195						
2,0	540	377	163						
Мезга									
0,5	645	448	197						
1,0	633	427	206						
2,0	650	459	191						
Сусло									
0,5	632	436	196						
1,0	620	421	199						
2,0	645	458	187						

ВИНОДЕЛИЕ

31

делах 11,8-13,0% (Вилино) и 12,5-14,0% (Ливадия); а массовая концентрация титруемых кислот 6,5 и 5,5 г/дм³ соответ-

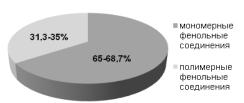
ственно

Известно, что фенольные вещества влитипа, качества, стабильности и органолептических характеристик вина. При обработке бентони-

том удаляются белковые вещества, в том числе окислительные ферменты, вследствие чего поглощение кислорода суслом почти полностью прекращается, что предотвращает окисление полифенолов и других веществ, тем самым препятствуя образованию темноокрашенных продуктов конденсации хинонов, что положительно влияет на качество вина [3].

В связи с этим была изучена массовая концентрация фенольных веществ в столовых виноматериалах Цитронный Магарача, при приготовлении которых использовали бентонит на различных этапах. Результаты приведены в табл.1.

Из табл.1 следует, что массовая концентрация суммы фенольных веществ в контрольных виноматериалах из сорта винограда Цитронный Магарача наблюдается на уровне 665-670 мг/дм³ не зависимо от

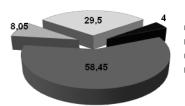

почвенно-климатических условий произрастания, в т.ч. 31,3-35,6% полимерных и 64,4-68,7% мономерных форм фенольных веществ (рис. 1).

Установлено, что обработка бентонитом винограда перед его дроблением способствует снижению массовой концентрации фенольных веществ в виноматериале, прямо пропорционально количеству заданного бентонита:

> - при 0,25 г/дм³ - от 2,2-8,3%, - при $0.75 \, \Gamma/дм^3$ - от 9.7-14.3%, - при 1,5 г/дм³ - от 19,4-41,4%.

Снижение доли (%) фенольных веществ в виноматериалах из винограда, обработанного бентонитом, приведены в табл. 2 и на рис.2. Вероятно, что снижение фенольного комплекса происходит по причине ингибирования пектолитических ферментов винограда, которые разрушают стенки клеток ягоды.

При обработке мезги и сусла дозами бентонита 0,25-1,0 г/дм³ содержание суммы фенольных веществ в полученных виноматериалах несколько снижается, а при повышенных дозах 1,5-2,0 г/дм³ снижение содержания фенольных веществ происходит в меньшей степени, т.к. реагирующая часть фенольных веществ с бентонитом удалена при меньших его концентрациях. Оптимальная доза



яют на формирование Рис. 1 Содержание фенольных соединений в виноматериале Цитронный Магарача, в том числе их полимерных и мономерных форм.

бентонита при обработке мезги и сусла составляет 0,5-0,75 г/дм³.

Для изучения качественного состава фенольных веществ, входящих в фенольный комплекс винограда Цитронный Магарача и реагирующих с бентонитом, были определены их отдельные компоненты. Результаты представлены в табл. 3.

Из табл. 3 следует, что в виноматериалах идентифицированы: класс оксибензойных кислот - галловая и сиреневая кислоты, а также оксикоричные кислоты - кафтаровая кислота, каутаровая кислота. Установлено, что при повышении дозировок бентонита происходит снижение количества каутаровой (до 58,8%) и кафтаровой (до 39%) кислот. Массовая концентрация остальных компонентов существенно не изме-

■остаточные мономеры шудаленные мономеры □остаточные полимеры ■удаленные полимеры

Рис. 2. Среднее значение форм фенольных веществ (%) в виноматериалах Цитронный Магарача при обработке винограда бентонитом (0,75 г/дм³).

Таблица 2 Снижение содержания форм фенольных веществ в виноматериалах Цитронный Магарача при обработке винограда бентонитом

Доза бентонита, г/кг	Снижение доли форм фенольных веществ, %						
	онита, мономерных		полимерных форм				
Ливадия							
0,25	8,3	6,3	2,0				
0,75	14,3	8,6	5,9				
1,5	41,4	24,1	17,3				
Вилино							
0,5	2,2	1,5	0,7				
1	9,7	7,5	2,2				
2	19,4	12,4	7,0				

Массовая концентрация компонентов фенольных веществ в столовых виноматериалах Цитронный Магарача при обработке различными дозами бентонита винограда, мезги и сусла

Доза	Массовая концентрация, мг/дм³								
бентонита, г/дм³/ г/кг	Галловая кислота	Сирене- вая кислота	Кафтаро- вая кислота	Каутаровая кислота	(-)-Эпика- техин	(+)-D- Катехин	Кверцетин- 3-0- гликозид	Кверцетин	
	•	,		Ливадия	,	•		`	
Контроль	1,3	3,2	87,2	17,7	9,4	50,3	1,9	0,25	
виноград									
0,25	1,0	2,9	86,9	17,0	11,7	48,4	2,3	0,2	
0,75	-	3,5	73,1	12,6	10,1	47,7	3,3	0,4	
1,5	-	2,3	52,9	7,1	4,6	26,6	2,0	-	
мезга									
0,25	1,5	3,0	85,4	16,2	10,0	50	3,1	0,5	
0,75	1,2	3,8	83,2	15,4	9,6	46	3,0	0,3	
1,5	-	2,3	77,3	14,5	9,4	44	2,7	-	
				сусло					
0,25	-	2,9	82,4	14,8	9,7	45,1	3,0	-	
0,75	-	2,5	79,9	13,5	10,0	43,0	2,8	-	
1,5	1,2	3,2	72,7	11,6	8,9	41,4	2,9	-	
				Вилино					
Контроль	1,95	3,4	159,0	23,6	7,5	65,8	3,3	0,6	
				виноград					
0,5	1,8	3,2	153,0	23,6	7,1	65,8	3,2	0,6	
1,0	1,5	3,0	140,3	22,4	6,5	58,4	3,0	0,4	
2,0	1,2	2,8	125,8	22,0	5,2	44,9	2,7	0,4	
				мезга					
0,5	1,5	3,3	150,2	23,7	6,2	63,2	3,2	0,4	
1,0	1,3	3,4	145,2	22,3	7,3	60,1	3,3	0,3	
2,0	1,2	3,1	130,3	20,0	4,5	58,6	2,2	0,3	
				сусло					
0,5	0,9	3,0	152,3	20,5	2,4	57,1	2,7	0,7	
1,0	0,9	3,2	140,2	24,8	5,5	69,4	3,4	0,5	
2,0	-	3,3	135,2	19,8	4,7	60,1	2,0	0,5	

нилась

Результаты органолептического анализа столовых виноматериалов Цитронный Магарача в зависимости от количества заданного бентонита и от места его внесения в технологической схеме приготовления виноматериалов (виноград, мезгу и сусло) представлены на рис. 3.

При изучении влияния дозы бентонита при различных технологических этапах в процессе приготовления столовых виноматериалов на их дегустационную оценку установлено:

- обработка винограда бентонитом существенно не влияет на дегустационную оценку виноматериалов и находится на уровне 7,6 баллов;
- при внесении бентонита в мезгу наблюдается тенденция снижения дегустационной оценки пропорционально увеличению дозы бентонита;
- при обработке бентонитом сусла имеется тенденция увеличения дегустационной оценки, которая наблюдается при дозе бентонита в пределах 0,75-1,25 г/дм³ соответственно по Ливадии и Вилино.

Дегустационные оценки образцов из Вилино в зависимости от применяемых доз бентонита находились в диапазоне от 7,55 до 7,85 баллов. Контрольный образец оценен в 7,78 баллов. Образцы характеризовались соломенным цветом с ярким, пряноцитронным ароматом и гармоничным, мягким, плодово-цитронным вкусом.

Образцы из Ливадии оценены в диапазоне от 7,63 до 7,8 баллов с соломенным цветом и ярким, пряно-плодовотравянистым ароматом, гармоничным, мягким, плодовым вкусом. Контрольный образец получил 7,75 баллов.

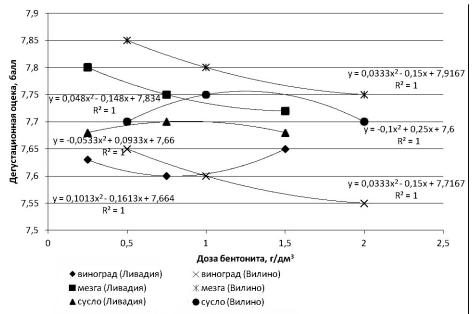


Рис. 3. Органолептический анализ столовых виноматериалов Цитронный Магарача, в зависимости от количества введенного бентонита (Вилино, Ливадия).

Таким образом, обработка различными дозами бентонита винограда, мезги и сусла значительно влияет на фенольный комплекс и органолептическую характеристику приготовленных виноматериалов из сорта винограда Цитронный Магарача. Оптимальные результаты получены при обработке мезги дозами 0,5- 0,75 г/дм³.

СПИСОК ЛИТЕРАТУРЫ

1. Методы технохимического контроля в виноделии/ Под ред. В.Г. Гержиковой. — Симферополь: Таврида, 2002. — 260 с.

- 2. Запрометов М.Н. Основы биохимии фенольных соединений. М.: Высшая школа, 1974. 214 с.
- 3. Кишковский З.Н. Химия вина/ З.Н. Кишковский, И.М. Скурихин. М.: Агропромиздат, 1988. 254 с.
- 4. Маркосов В.А., Агеева Н.М. Биохимия, технология и медико-биологические особенности красных вин. Краснодар, 2008. 224 с.

Поступила 05.04.2013

- © А.Я. Яланецкий, 2013
- © Г.В.Таран, 2013
- © В.А.Загоруйко, 2013
- © В.А.Таран, 2013
- © Н.А.Шмигельская, 2013