

А.С.Макаров, д.т.н., профессор, зав. лабораторией игристых вин отдела технологии вин, коньяков и вторичных продуктов, **И.П.Лутков**, к.т.н., ст. н. с. лабораторией игристых вин отдела технологии вин, коньяков и вторичных продуктов, **Т.Р.Шалимова**, мл. н. с. лаборатории игристых вин отдела технологии вин, коньяков и вторичных продуктов Национальный институт винограда и вина «Магарач»

СРАВНИТЕЛЬНАЯ ОЦЕНКА РАЗЛИЧНЫХ СПОСОБОВ НАСЫЩЕНИЯ НАПИТКОВ ДИОКСИДОМ УГЛЕРОДА ПРИ СТАНДАРТИЗАЦИИ ОБЪЁМНОГО МЕТОДА ЕГО ОПРЕДЕЛЕНИЯ

Научные эксперименты, связанные с измерением массовой концентрации диоксида углерода в напитках, должны включать в себя периодическую калибровку приборов (установок) с использованием стандартных образцов, содержащих заданное количество СО₂. Как показали исследования, ранее проведённые в лаборатории игристых вин [1], приготовление стандартных образцов сопряжено с определёнными проблемами. Например, при использовании процесса вторичного брожения для насыщения напитков диоксидом углерода трудно добиться необходимой воспроизводимости результатов, в связи с тем, что процесс брожения проходит в течение длительного времени (более 14 сут.) и зависит от очень большого числа факторов, которые трудно стандартизировать. Кроме того, иногда брожение может проходить не до конца, с параллельным протеканием побочных процессов.

Использование прямого внесения твёрдого или жидкого диоксида углерода связано с определёнными сложностями при отборе заданного количества и растворении его в жидкости, поэтому без соответствующего оборудования не обойтись [2, 3]. Газообразный диоксид углерода также трудно дозируется и без специальных сатураторов насытить им раствор до заданной концентрации невозможно [4]. Химический способ позволяет, сделав правильный расчёт необходимого количества реагентов, добиться заданной массовой концентрации СО, в напитке [4]. Ещё одним положительным моментом данного способа является простота и быстрота приготовления стандартного образца. Для газирования водных модельных образцов с помощью химического способа можно использовать как органические, так и неорганические кислоты. А для газирова-

ния модельных образцов на основе виноматериалов необходимо использовать естественную для вина кислоту (например, винную, яблочную, янтарную или молочную). В качестве карбонизирующих агентов обычно используют соли щелочных и щелочноземельных металлов (Na₂CO₃, NaHCO₃, K₂CO₃, KHĆO₃, CaCO₃, BaCO₃, MgCO₃). При этом сле-

Статья посвящена использованию стандартных образцов напитков, насыщенных диоксидом углерода разными способами, при калибровке установок усовершенствованных методик определения СО2.

Ключевые слова: стандартный образец, СО2, калибровка, методика.

дует учитывать, что тартраты, сукцинаты, малаты натрия растворимы, а соли бария

А.А.Мержаниан [5] в своих экспериментах использовал мел и винную кислоту, которые помещались в папиросную бумагу. К недостаткам данного способа можно отнести тот факт, что мел плохо растворим, и в процессе взаимодействия с винной кислотой на его поверхности может образовываться слой тартрата кальция, препятствующий дальнейшему протеканию реакции. Наблюдается так называемое явление «коксования» особенно внутри «патрона» из папиросной бумаги. Чтобы этого избежать, луч-. ше использовать растворимые карбонаты, например, калия или натрия. Однако при этом следует учитывать, что в растворе кроме диоксида углерода будут накапливаться растворимые продукты реакции, а ионы солей снижают растворимость диоксида углерода согласно уравнению

 $S=S_o \cdot e^{-\kappa c}$,

где: S – растворимость CO_2 в растворе, содержащем электролит;

 S_{o} - растворимость CO_{2} в чистом растворителе; е - основание натурального логарифма; к - электрическая постоянная электролита; с – концентрация электролита.

Таким образом, использование химического метода для приготовления стандартных образцов наряду с классическим способом насыщения представляется весьма перспективным.

Целью работы являлась сравнитель-

ная оценка различных способов насыщения напитков диоксидом углерода при стандартизации модифицированного объёмного метода определения массовой концентрации различных форм CO_2 .

На первом этапе готовили стандартные образцы с использованием химического способа насыщения. При выборе реагентов для насыщения образцов диоксидом углерода важно, чтобы соблюдались следующие условия: реакция должна быть необратимой, не очень интенсивной, чтобы не разрушить бутылку; реагенты должны быть чистыми, химически стойкими при хранении и взвешивании, полностью расходоваться в ходе реакции без побочных процессов; реакция должна начинаться в бутылке только после укупоривания пробкой и мюзлевания. Для подкисления была выбрана янтарная кислота, поскольку в отличие от содержащейся в вине яблочной и винной кислоты она имеет меньшую молярную массу, молочная кислота доступна только в виде раствора, а уксусная кислота летуча. В качестве карбонизирующего агента использовали широко распространённый реагент соду, которая, взаимодействуя с янтарной кислотой, образует диоксид углерода:

 $Na_2CO_3+2C_4H_4O_4\rightarrow 2NaC_4H5O_4+H_2O+CO_2\uparrow$ Насыщение проводили из расчёта 5 и 7 г СО₂ в бутылке. После чего проводили измерения с помощью модифицированного объёмного метода определения СО, [6]. Результаты представлены в табл. 1.

Исходя из полученных данных, следует

Таблица 1

Различные формы СО, в стандартных образцах, полученных при химическом насыщении

Νº		Избыточное давление в бутылке*,	Объём, см ³				Массовая				
			выде- ливше-	вина в бутыл-	газа в бутыл-	общего (измерен-	общего (расчёт-	раство- рённо-	в га- зовой	свя-	доля свя- занного
		кПа	гося СО2	ке	ке	ная)	' ная)	. LO	фазе	ного	CO ₂ , %
1	Алиготе (насыщение 5г CO_2 в бутылке)	340(360)	2250	755	27	4,118	5,0	3,664	0,168	0,286	6,95
2	Рислинг Магарача (насыщение $5 \ r \ CO_2 \ в \ бутылке)$	350(350)	2250	755	28	4,118	5,0	3,664	0,180	0,274	6,65
3	Рислинг Магарача (насыщение 7 г ${\rm CO_2}$ в бутылке)	450(540)	3500	750	37	6,406	7,0	4,747	0,306	1,353	21,12

*В таблице указано равновесное давление СО₂, (в скобках указано давление, измеренное после встряхивания бутылки).

отметить, что измеренное содержание диоксида углерода отличалось от расчётной величины, что, по-видимому, связано с неполным протеканием реакции в вине. Ещё одним выявленным недостатком этого способа является то, что образующиеся в ходе реакции соли янтарной кислоты портят вкус вина. Поэтому параллельно были поставлены эксперименты по насыщению образцов виноматериалов диоксидом углерода при помощи вторичного брожения с использованием имеющихся в торговой сети (свободно доступных) сухих дрожжей (табл. 2), в которых затем проводили анализ физико-химических и органолептических показателей.

Исходя из полученных данных, было установлено, что в образцах №2,6,7 сахара практически полностью сбродили. А в образцах №3,4,5 сбродили только наполовину, поэтому использовать их в качестве стандартных образцов игристых вин нельзя. Это же подтверждает равновесное давление в бутылках и результаты органолептической оценки.

Известно, что реакция спиртового брожения описывается следующим уравнением:

C₄H₁₂O₆ → 2 C₂H₅OH + 2CO₂ 180 г/моль 2•46 г/моль 2•44 г/моль

Однако, в связи с тем, что в ходе вторичного брожения параллельно с ним проходят и другие реакции (например, глицеропировиноградное брожение), расчёт масы выделившегося CO_2 необходимо проводить не по количеству сбродившего сахара, а по фактическому приросту объёмной доли этилового спирта, которая, к примеру, в образце №2 составляла 0,9% (или с учётом плотности, 7,1034 г). Это соответствует 6,794 г CO_2 , а с учётом объёма вина в бутылке -5,062 г (табл. 3).

Из полученных данных (табл. 3) следует, что наиболее близкое к расчётной величине значение массовой концентрации ${\rm CO}_2$ дают образцы, приготовленные с использованием вторичного брожения в бутылке. Однако для расчёта необходимо знать точную объёмную долю этилового спирта в исходном виноматериале и в готовом образце. Стандартные образцы, приготовленные химическим способом, имеют меньшую по сравнению с расчётной концентрацию ${\rm CO}_2$.

Обращает на себя внимание то, что при близком значении равновесного давления в образцах с химическим насыщением под №1,2, а также в образцах с классическим спосонасыщения бом под №1,5,6 - в последних содержится большее количество диоксида углерода, в том числе и его связанных форм. Тем не менее связанные формы CO₂ в достаточном количестве образуются и при химическом способе насыщения, особенно в образце №3.

Таким образом, в зависимо-

Таблица 2 Физико-химические показатели стандартных образцов, насыщенных диоксидом углерода при вторичном брожении

	, , , , ,					
Nº		Объём-	Массов	Пописто		
	Наименование	ная доля этилового спирта, %	саха- ров	сброженных сахаров (вторичное брожение)	титруе- мых кислот	Дегуста- ционная оценка, балл
1	Исходный купаж в/м Алиготе+Рислинг рейнский (1:1) (контроль)	11,4	0,75	-	6,45	-
2	Игристое (французские винные дрожжи Litto Levure CHA Saccharamyces cerevisiae (bayanus)	12,30	1,5	21,25	6,15	9,13
3	Игристое (немецкие сухие дрожжи Dr. Oetker, TOB «Др Оеткер», Киев)	11,90	9,0	13,75	6,15	8,91
4	Игристое (Французские сухие дрожжи «Саф-момент», «ТОВ Лесафр Украина», Киев)	11,95	9,1	13,65	6,15	8,94
5	Игристое (французские сухие дрожжи «Саф-левюр» «ТОВ Лесафр Украина», Киев)	11,85	9,6	13,05	6,15	8,93
6	Игристое (львовские сухие дрожжи 3A0 «Энзим», Львов (Saccharamyces cerevisiae)	12,25	1,2	21,55	6,15	9,01
7	Игристое (Криворожские дрожжи (паста), ТУУ 15.8-00383295-005-2005 (LESAFRE GROUP, Кривой Рог)	12,25	1,6	21,15	6,08	9,04

сти от поставленных целей, имеющегося в распоряжении времени и, зная указанные особенности приготовления стандартных образцов, исследователь может использовать как первый, так и второй способ их приготовления. В результате использования в ходе измерений модифицированного объёмного метода определения диоксида углерода в напитках, насыщенных CO₂, подтверждена его эффективность.

На следующем этапе работы планируется провести сравнительный анализ стандартных образцов, приготовленных путём вторичного брожения и сатурации жидким диоксидом углерода с использованием модельной установки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лутков И.П. Совершенствование методов контроля качества игристых вин: Дисс. ... к.т.н. 05.18.07. Ялта: ИВиВ «Магарач». 2004. 225 с.
 - 2. Паршин Б.Д. Совершенствование технологии

газирования напитков с использованием жидкого диоксида углерода: Дисс. ... к. т. н. - Ялта: ИВиВ «Магарач». - 1991. - 177 с.

- 3. Арутюнян А.Ф. Разработка метода газирования вин и безалкогольных напитков с применением жидкого диоксида углерода: Дисс. ... к.т.н. 05.18.07. Ялта: ИВиВ «Магарач». 1985. 169 с.
- 4. Тихомиров В.Г. Технология пивоваренного и безалкогольного производств. М.: Колос, 1998. 448 с.
- 5. Мержаниан А.А. Физико-химия игристых вин. М.: Пищевая промышленность, 1979. - 271 с.
- 6. Лутков И.П. Совершенствование объёмного метода определения массовой концентрации диоксида углерода. Виноградарство и виноделие: Сб. науч. тр. НИВиВ «Магарач». Т.Х.І., ч. 1. Ялта, 2011. С. 71-74.

Поступила 28.01.2013

- © A.C.Макаров, 2013
- © И.П.Лутков, 2013
- © Т.Р.Шалимова, 2013

Таблица 3 Различные формы CO, в стандартных образцах, насыщенных диоксидом углерода в процессе вторичного брожения

Nº		Избыточ-	Объём, см ³				Macco-				
	Наименование	ное дав- ление в бутылке*, кПа	выде- ливше- гося ${\rm CO_2}$	вина в бутыл- ке	газа в бу- тылке	общего (изме- ренная)	общего (расчёт- ная)	1 '	в га- зовой фазе	свя- зан- ного	вая доля связан- ного СО ₂ , %
1	Игристое (французские винные дрожжи Litto Levure CHA Saccharamyces cerevisiae (bayanus)	360(450)	2770	745	37	5,09	5,06	3,84	0,25	1,005	19,74
2	Игристое (немецкие сухие дрожжи Dr. Oetker, TOB «Др Оеткер», Киев)	210(300)	1650	767	23	3,03	2,90	2,33	0,09	0,619	20,39
3	Игристое (французские сухие дрожжи «Сафмомент», «ТОВ Ле- сафр Украина», Киев)	230(300)	1700	770	28	3,12	3,20	2,55	0,12	0,452	14,46
4	Игристое (французские сухие дрожжи «Сафлевюр» «ТОВ Лесафр Украина», Киев)	190(240)	1400	767	21,5	2,57	2,61	2,10	0,08	0,394	15,32
5	Игристое (львовские сухие дрожжи ЗАО «Энзим», Львов (Saccharamyces cerevisiae)	330(410)	2670	770	21,5	4,90	4,85	3,65	0,13	1,132	23,07
6	Игристое (Криворожские дрожжи (паста), ТУУ 15.8-00383295-005-2005 (LESAFRE GROUP, Кривой Рог)	330(410)	2550	755	37	4,68	4,85	3,57	0,22	0,889	18,96

^{*}В таблице указано равновесное давление CO₂, (в скобках указано давление, измеренное после встряхивания бутылки).