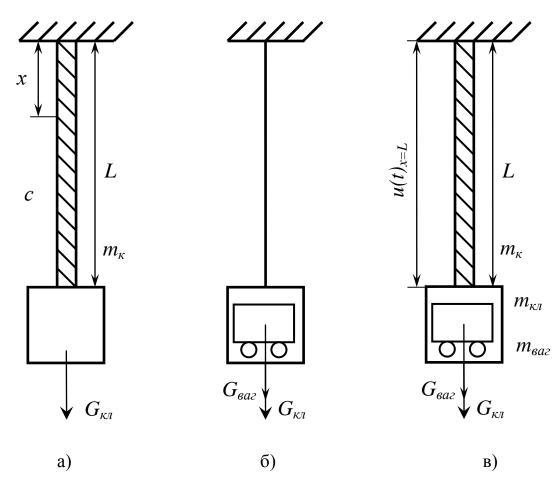
©Нестеров А.П., Осипова Т.Н.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСПРЕДЕЛЕННОЙ МАССЫ КАНАТА НА КОЛЕБАНИЯ ГРУЗА НА НЕВЕСОМОМ КАНАТЕ

1. Постановка задачи


Ряд авторов [1, 2, 3, 4, 5, 6] исследовали влияние распределенной массы каната (пружины) на частоту колебания груза, висящего на нем. Ими определено, что с достаточной степенью точностью (в пределах 90 %) эту частоту можно получить, рассматривая канат невесомым, а часть его веса прибавить к весу груза. Однако, численная оценка величины амплитуды колебания груза с учетом этого допущения для большой длины каната (порядка 1500 м) не проводилась.

В настоящей работе выполняется оценка погрешности колебаний клети при невесомом канате по сравнению с весомым, если часть его массы прибавляется к массе клети.

2. Содержание исследования

К исследованию принимается одноконцевая клетевая шахтная подъемная установка типа 1-6х2,4 Д со следующими параметрами: длина каната до органа навивки $L=120\dots 1420$ м; масса клети $m_{\kappa \pi}=120\dots 1420$

7300 кг; масса груженой вагонетки $m_{\text{ваг}} = 7260$ кг; погонная масса одного метра каната p = 8,4 кг/м. Ее динамическая схема с весомым канатом представлена на рис. 1а, а с невесомым на рис. 1б.

Рис. 1 — Эквивалентная динамическая схема одноконцевой подъемной установки: m_{κ} — масса всего каната; c — жесткость каната; $G_{\kappa D}$, $G_{\theta a c}$ — соответственно вес клети и вагонетки

На рис. 1в рассмотрена схема, где в висящую на канате клеть, вкатывается груженая вагонетка. Это случай внезапного приложения постоянной силы к клети (к концу каната).

Для определения перемещения u(t) клети от постоянной, внезапно приложенной силы $G_{\it gaz}$, используем выражение, поученное С.П. Тимошенко [2] (см. рис. 1в) для первой формы колебаний

$$u(t)_{x=L} = \frac{4gG_{\hat{a}\hat{a}\hat{a}}L}{Fa^2\gamma} \cdot \frac{\sin^2\beta_1}{\beta_1 \cdot (2\beta_1 + \sin 2\beta_1)} \left(1 - \cos \frac{a \cdot \beta_1 \cdot t}{L}\right), \quad (1)$$

где $u(t)_{x=L}$ – перемещение нижнего конца каната;

g – ускорение свободного падения;

F – площадь поперечного сечения проволок каната;

 γ – вес единицы объема каната;

 eta_{I} — собственное число, определяемое по графику [5] в функции lpha;

 α – отношение массы каната к концевой массе;

а – скорость распространения деформации в канате;

t — время.

Выражение (1) достигает максимума в функции времени, когда составляющая

$$1 - \cos \frac{a \cdot \beta_1 \cdot t}{L} = 2. \tag{2}$$

Принимая $sin\beta_I = \beta_I$ и $sin2\beta_I = 2\beta_I$, получим [2]

$$u(t)_{x=L}^{\max} = \frac{2 \cdot g \cdot G_{\hat{a}\hat{a}\tilde{a}}L}{F \cdot a^2 \gamma} = \frac{2 \cdot G_{\hat{a}\hat{a}\tilde{a}} \cdot L}{F \cdot E} = \frac{2 \cdot G_{\hat{a}\hat{a}\tilde{a}}}{c},$$
(3)

то есть наибольшее динамическое перемещение клети, вызванное внезапно приложенной силой от веса вагонетки, в два раза больше

перемещения от статической силы
$$\dfrac{G_{_{\hat{a}\hat{a}\tilde{a}}}}{c}$$
 .

Рассмотрим колебания груза на невесомом канате по схеме 16, прибавляя к массе груза одну треть массы каната, исходя из равенства кинетических энергий системы с весомым и невесомым канатом [2, 3, 6].

Дифференциальные уравнения, описывающие вынужденные колебания клети, статически уравновешенной канатом при вкатывании в неё вагонетки имеет вид:

$$\left(m_{\hat{e}\hat{e}} + m_{\hat{a}\hat{a}\hat{a}} + \frac{1}{3}m_{\hat{e}}\right)^{\bullet\bullet} x + cx = G_{\hat{a}\hat{a}\hat{a}}.$$
(4)

Решение неоднородного обыкновенного дифференциального уравнения с постоянными коэффициентами (4) состоит из суммы общего решения однородного и частного решения неоднородного уравнений.

Общее решение однородного уравнения

$$\left(m_{\hat{e}\hat{e}} + m_{\hat{a}\hat{a}\hat{a}} + \frac{1}{3}m_{\hat{e}}\right)^{\bullet\bullet} x + cx = 0 \tag{5}$$

равно [2]:

$$x(t) = x_0 \cos pt + \frac{x_0}{p} \sin pt, \tag{6}$$

где x_0 , x_0 - начальные условия при t=0;

$$p = \sqrt{\frac{c}{m_{\hat{e}\hat{e}} + m_{\hat{a}\hat{a}\hat{a}} + \frac{1}{3}m_{\hat{e}}}}$$
 - частота свободных колебаний.

Частное решение неоднородного дифференциального уравнения (4) равно $\frac{G_{\hat{a}\hat{a}\tilde{a}}}{C}$.

Тогда общее решение неоднородного уравнения (4) запишем в виде

$$x(t) = B \cdot \cos pt + C \cdot \sin pt + \frac{G_{\hat{\alpha}\hat{\alpha}\tilde{\alpha}}}{c}, \tag{7}$$

$$x(t) = -p \cdot B \cdot \sin pt + p \cdot C \cdot \cos pt,$$

где B и C – произвольные постоянные.

При начальных условиях: t=0; $x(t)=x_0$; $x(t)=x_0$ найдем произвольные постоянные B, C:

$$x_{0} = B + \frac{G_{\hat{\alpha}\hat{\alpha}\tilde{\alpha}}}{c};$$

$$x_{0} = p \cdot C$$
(8)

и
$$B=x_0-\frac{G_{\hat{\alpha}\hat{\alpha}\bar{\alpha}}}{c}\;;\;C=\frac{x_0}{p}$$
.

Учитывая (7) и (8), получим:

$$x(t) = \left(x_0 - \frac{G_{\hat{a}\hat{a}\tilde{a}}}{c}\right)\cos pt + \frac{x_0}{p}\sin pt + \frac{G_{\hat{a}\hat{a}\tilde{a}}}{c}\left(1 - \cos pt\right). \tag{9}$$

Из (9) при $x_0 = 0$ и $x_0 = 0$ имеем:

$$x_{\text{max}} = \frac{2 \cdot G_{\hat{a}\hat{a}\tilde{a}}}{c}.\tag{10}$$

Следовательно, максимальные вынужденные колебания рассматриваемой системы с весомым канатом при внезапном приложении постоянной силы $G_{\textit{ваг}}$ в случае принятия допущений (3), можно рассчитывать по формуле(10) для невесомого каната.

Определим погрешность колебаний процесса клети, подсчитанного по формулам (1) и (10) для весомого и невесомого канатов.

Данные расчета внесем в табл. 1

Таблица 1 – Погрешность вычисления по частоте и перемещению

Длина каната L, м	Масса длины каната, m_{κ_5} кг	Масса концевого груза с учетом 1/3 массы каната, кг	α	β_1	Максимальное перемещение, м		Частота, с ⁻¹		Погрешность, %	
					<i>u(t)</i> (весомый канат)	\mathcal{X}_{max} (невесомый канат)	p_I (весомый канат)	p (невесомый канат)	По перемещению	По частоте
1	2	3	4	5	6	7	8	9	10	11
120	1008	14896	0,069	0,25	0,1674	0,167	8,172	7,557	0	7,527
220	1848	15176	0,127	0,34	0,3069	0,307	6,06	5,53	0,032	8,745
320	2688	15456	0,185	0,41	0,4462	0,446	5,026	4,54	0,067	9,669
420	3528	15736	0,242	0,46	0,5854	0,586	4,29	3,93	0,102	8,392
520	4368	16016	0,3	0,517	0,7243	0,725	3,9	3,5	0,165	10,25
620	5208	16296	0,358	0,555	0,863	0,865	3,51	3,178	0,232	9,458

1	2	3	4	5	6	7	8	9	10	11
720	6048	16576	0,415	0,585	1,002	1,005	3,187	2,925	0,259	8,221
820	6888	16856	0,473	0,636	1,139	1,144	3,04	2,718	0,439	10,59
920	7728	17136	0,531	0,665	1,277	1,284	2,835	2,545	0,548	10,23
1020	8568	17416	0,588	0,695	1,415	1,423	2,673	2,397	0,565	10,32
1120	9408	17606	0,646	0,72	1,552	1,563	2,522	2,27	0,708	9,992
1220	10248	17976	0,704	0,75	1,688	1,702	2,41	2,157	0,829	10,49
1320	11088	18256	0,761	0,771	1,825	1,84	2,291	2,058	0,822	10,17
1420	11928	18536	0,82	0,79	1,962	1,981	2,182	1,969	0,968	9,762

Вывод

Анализ данных табл. 1 показывает, что погрешность по перемещению находится в пределах 0-0.968 %, а по частоте -7.52-10.592 % для длины каната, изменяющейся от 120-1420 м, что лежит в пределах, допускаемых для инженерных расчетов.

Список использованных источников

- 1. Рэлей Дж. У. Теория звука / Дж. У. Рэлей. –1-е изд. М. ; Л. : ГТТИ, 1940; Т. 1-2. 2-е изд. М., 1955.
- 2. Тимошенко С.П. Колебания в инженерном деле / С. П. Тимошенко. – М. : Машиностроение, 1959. – 439 с.
- 3. Степанов А. Г. Динамика шахтных подъёмных установок / А. Г. Степанов. Пермь: УРО РАН, 1994. 263 с.
- 4. Пановко Я. Г. Введение в теорию механических колебаний / Я. Г. Пановко. М.: Наука, 1971. 240 с.
- 5. Нестеров А.П. Погрешность колебательного процесса при присоединении распределенной массы каната к подъемному

- сосуду / А. П. Нестеров, Т. Н. Осипова // Восточно-Европейский журнал передовых технологий. 2007. N 2/4 (26). C. 19-22.
- 6. Федорова 3. М. Подъемники : учеб. пособие для машиностроит. спец. вузов / 3. М. Федорова, И. Ф. Лукин, А. П. Нестеров. К. : Вища шк., 1976. 294 с.

Нестеров А.П., Осипова Т.Н. «Исследование влияния распределенной массы каната на колебания груза на невесомом канате».

В статье рассмотрено влияние массы каната на амплитуду колебаний клети на канате для глубоких шахт и определены погрешности по частоте и перемещению подъемного сосуда.

Ключевые слова: подъемная установка, динамическая схема, распределенная масса каната, колебания, невесомый канат, погрешность.

Нестеров А.П., Осипова Т.М. «Дослідження впливу розподіленої маси каната на коливання вантажу на невагомому канаті».

У статті розглянутий вплив маси каната на амплітуду коливань клітини на канаті для глибоких шахт і визначені погрішності по частоті й переміщенню піднімальної посудини.

Ключові слова: піднімальна установка, динамічна схема, розподілена маса канату, коливання, невагомий канат, погрішність.

Nesterov A.P., Osypova T.N. «Research of influencing of the distributed mass of rope on vibrations of load on a weightless rope».

In the article influence of mass of rope is considered on amplitude of vibrations of cage on a rope for deep mines and errors are certain on frequency and moving of lifting vessel.

Key words: lifting setting, dynamic chart, distributed mass of rope, vibrations, weightless rope, error.

Стаття надійшла до редакції 18 березня 2009 р.