УДК 519.213.2+517.53

M. I. PAROLYA, M. M. SHEREMETA

ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

M. I. Parolya, M. M. Sheremeta. *Estimates from below for characteristic functions of probability laws*, Mat. Stud. **39** (2013), 54–66.

Let φ be the characteristic function of a probability law F that is analytic in $\mathbb{D}_R = \{z : |z| < R\}, 0 < R \le +\infty, M(r, \varphi) = \max\{|\varphi(z)| : |z| = r < R\} \text{ and } W_F(x) = 1 - F(x) + F(-x), x \ge 0.$ A connection between the growth of $M(r, \varphi)$ and the decrease it of $W_F(x)$ is investigated in terms of estimates from below. For entire characteristic functions it is proved, for example, that if $\ln x_k \ge \lambda \ln(\frac{1}{x_k} \ln \frac{1}{W_F(x_k)})$ for some increasing sequence (x_k) such that $x_{k+1} = O(x_k), k \to \infty$, then $\ln \frac{\ln M(r, \varphi)}{r} \ge (1 + o(1))\lambda \ln r$ as $r \to +\infty$.

М. И. Пароля, М. М. Шеремета. Оценки снизу характеристических функций вероятностних законов // Мат. Студії. – 2013. – Т.39, №1. – С.54–66.

Пусть φ — аналитическая в $\mathbb{D}_R = \{z: |z| < R\}, 0 < R \leq +\infty$, характеристическая функция вероятностного закона F, $M(r,\varphi) = \max\{|\varphi(z)|: |z| = r < R\}$ и $W_F(x) = 1 - -F(x) + F(-x), x \geq 0$. В терминах оценок снизу изучена связь между ростом $M(r,\varphi)$ и убыванием $W_F(x)$. Например, для целых характеристических функций доказано, что если $\ln x_k \geq \lambda \ln(\frac{1}{x_k} \ln \frac{1}{W_F(x_k)})$ для некоторой возрастающей последовательности (x_k) такой, что $x_{k+1} = O(x_k), k \to \infty$, то $\ln \frac{\ln M(r,\varphi)}{r} \geq (1 + o(1))\lambda \ln r$ при $r \to +\infty$.

1. Introduction. A non-decreasing function F continuous on the left on $(-\infty, \infty)$ is said ([1, p. 10]) to be a probability law, if $\lim_{x \to +\infty} F(-x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$, and the function $\varphi(z) = \int_{-\infty}^{\infty} e^{izx} dF(x)$ defined for real z is called ([1, p. 12]) a characteristic function of this law. If φ has an analytic continuation on the disk $\mathbb{D}_R = \{z : |z| < R\}, 0 < R \le +\infty$, then we call φ an analytic in \mathbb{D}_R characteristic function of the law F. Further we always assume that \mathbb{D}_R is the maximal disk of the analyticity of φ . It is known that φ is an analytic in \mathbb{D}_R characteristic function of the probability law F if and only if for every $r \in [0, R)$

$$W_F(x) =: 1 - F(x) + F(-x) = O(e^{-rx}), \ x \to +\infty.$$

Hence it follows that

$$\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{W_F(x)} = R.$$

If we put $M(r, \varphi) = \max \{ |\varphi(z)| : |z| = r \}$ for r < R then $W_F(x)e^{rx} \le 2M(r, \varphi)$ for all $x \ge 0$ and $r \in [0, R)$. For $R = +\infty$ this inequality is proved in [1, p.54] and for $R < +\infty$ the proof is analogous. Therefore, if we define (see also [2]) $\mu(r, \varphi) = \sup \{ W_F(x)e^{rx} : x \ge 0 \}$

²⁰¹⁰ Mathematics Subject Classification: 30D99, 60E10.

Keywords: characteristic function, probability law, lower estimate.

then $\mu(r,\varphi) \leq 2M(r,\varphi)$. Thus, the estimates from below for $\ln M(r,\varphi)$ follow from such estimates for $\ln \mu(r, \varphi)$. For entire characteristic functions N. I. Jakovleva ([3]) proved that, if $\lim_{x \to +\infty} \frac{\ln \ln(1/W_F(x))}{\ln x} = 1 + \frac{1}{\lambda}$ then $\lim_{r \to +\infty} \frac{\ln \ln M(r,\varphi)}{\ln r} \ge 1 + \lambda$. Hence it follows that if

$$\ln x \ge \lambda \ln \left(\frac{1}{x} \ln \frac{1}{W_F(x)}\right), \ x \ge x_0,\tag{1}$$

then

$$\ln \frac{\ln M(r,\varphi)}{r} \ge (1+o(1))\lambda \ln r, \ r \to +\infty.$$
⁽²⁾

The question arises, whether asymptotical inequality (2) is valid if condition (1) holds not necessarily for all $x \ge x_0$ but only for some increasing unbounded sequence (x_k) . In view of the inequality $\ln M(r,\varphi) \geq \ln \mu(r,\varphi) - \ln 2$, the following assertion gives a positive answer to this question.

Proposition 1. If there exists an increasing to $+\infty$ sequence (x_k) such that $\ln x_k \geq \infty$ $\lambda \ln \left(\frac{1}{x_k} \ln \frac{1}{W_F(x_k)}\right) \text{ for all } k \ge 1 \text{ and } x_{k+1} = O\left(x_k\right) \text{ as } k \to \infty \text{ then } \ln \frac{\ln \mu(r,\varphi)}{r} \ge (1+o(1))\lambda \ln r$ as $r \to +\infty$.

We obtain Proposition 1 from main results proved below for characteristic functions that are entire or analytic in the disk characteristic functions.

2. Auxiliary results. If φ is an entire characteristic function and $\varphi \neq \text{const}$ then ([1, p. 45]) lim $r^{-1} \ln M(r, \varphi) = \sigma \in (0, +\infty]$. If $\sigma < +\infty$ then the estimate $\ln M(r, \varphi)$ from below is trivial. It can be shown that $\sigma < +\infty$ provided $W_F(x) = 0$ for all $x \ge x_0$. Therefore we assume in what follows that $W_F(x) \neq 0$ for all $x \geq 0$ and, thus, $W_F(x) \searrow 0$ $(x \to +\infty)$. Then $\frac{\ln \mu(r,\varphi)}{r} \to +\infty$ as $r \to +\infty$. In the case, when $0 < R < +\infty$, the function $\mu(r,\varphi)$ may be bounded and it is easy to

show that $\ln \mu(r, \varphi) \uparrow +\infty$ as $r \uparrow R$ if and only if

$$\overline{\lim}_{x \to +\infty} W_F(x) e^{Rx} = +\infty.$$
(3)

Further we assume that (3) holds and for the investigation of the growth of $\ln \mu(r,\varphi)$ we use the results from [4]. By $\Omega(0,R)$, $0 < R \leq +\infty$, we denote the class of positive unbounded functions Φ on $[r_0, R]$ for some $r_0 \in [0, R]$ such that the derivative Φ' is positively continuously differentiable and increasing to $+\infty$ on $[r_0, R)$. For $\Phi \in \Omega(0, R)$ let $\Psi(r) =$ $r - \frac{\Phi(r)}{\Phi'(r)}$ be a function associated with Φ in the sense of Newton and ϕ be the inverse function to Φ' . For the numbers $\Phi'(r_0) < a < b < +\infty$ we put

$$G_1(a, b, \Phi) = \frac{ab}{b-a} \int_a^b \frac{\Phi(\phi(t))}{t^2} dt, \quad G_2(a, b, \Phi) = \Phi\left(\frac{1}{b-a} \int_a^b \phi(t) dt\right).$$

Lemma 1. Let $\Phi \in \Omega(0, R)$, $0 < R \leq +\infty$, and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F satisfying condition (3) and

$$\ln W_F(x_k) \ge -x_k \Psi(\phi(x_k)) \tag{4}$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers. Then $(\forall r \in [\phi(x_k), \phi(x_{k+1})])$ and $(\forall k \geq k_0)$ the following estimates are valid

$$\ln \mu(r,\varphi) \ge \Phi(r) - (G_2(x_k, x_{k+1}, \Phi) - G_1(x_k, x_{k+1}, \Phi)), \qquad (5)$$

$$\ln \mu(r,\varphi) \ge \Phi(r) \frac{G_1(x_k, x_{k+1}, \Phi)}{G_2(x_k, x_{k+1}, \Phi)}$$

$$\tag{6}$$

and

$$\Phi^{-1}(\ln \mu(r,\varphi)) \ge r - (\Phi^{-1}(G_2(x_k, x_{k+1}, \Phi)) - \Phi^{-1}(G_1(x_k, x_{k+1}, \Phi))), \tag{7}$$

$$\Phi^{-1}(\ln \mu(r,\varphi)) \ge r \frac{\Phi^{-1}(G_2(x_k, x_{k+1}, \Phi))}{\Phi^{-1}(G_1(x_k, x_{k+1}, \Phi))},$$
(8)

where Φ^{-1} is the inverse function to Φ .

Proof. Let P be an arbitrary function defined on $(0, +\infty)$ and different from $+\infty$ (it can take on the value $-\infty$ but $P \not\equiv -\infty$) and let $Q(r) = \sup \{P(x) + rx : x \ge 0\}$, $-\infty < r < R$, be the function conjugated to P in the sense of Young. By $\Omega(-\infty, R)$, as in [4], we denote the class of positive unbounded functions on $(-\infty, R)$ such that the derivative Φ' is positive continuously differentiable and increasing to $+\infty$ on $(-\infty, R)$. The functions Ψ, ϕ and the quantities $G_1(a, b, \Phi)$, $G_2(a, b, \Phi)$ we define as above. Then from Theorem 1 in [4] it follows that if $P(x_k) \ge -x_k \Psi(\phi(x_k))$ for some increasing to $+\infty$ sequence (x_k) of positive numbers then for all $r \in [\phi(x_k), \phi(x_{k+1})]$ and all $k \ge 1$ the estimates (5)–(8) hold with Q(r) instead of $\ln \mu(r, \varphi)$. It is clear that the functions $\ln \mu(r, \varphi)$ and $\ln W_F(x)$ are conjugated in the sense of Young, and in view of the definition of $\Omega(0, R)$ for each function $\Phi \in \Omega(0, R)$ there exists $\Phi_1 \in \Omega(-\infty, R)$ such that $\Phi_1(r) = \Phi(r)$ for $r \in [r_0, R)$. Since $\Psi_1(r) = \Psi(r)$ for $r \in [r_0, R)$ and $\phi_1(r) = \phi(r)$ for $x \ge x_0 = x_0(r_0)$, Proposition 1 follows from the quoted result in [4]. \Box

We note in passing that ([4]) $G_1(a, b, \Phi) < G_2(a, b, \Phi)$ and the following lemma is hold ([4]–[6]).

Lemma 2. For x > a let $G_*(x) = G_2(a, x, \Phi) - G_1(a, x, \Phi)$, $G_{**}(x) = \frac{G_2(a, x, \Phi)}{G_1(a, x, \Phi)}$ and for $x \in [a, b)$ let $G^*(x) = G_2(x, b, \Phi) - G_1(x, b, \Phi)$, $G^{**}(x) = \frac{G_2(x, b, \Phi)}{G_1(x, b, \Phi)}$. Then the functions G_* and G_{**} are increasing on $(a, +\infty)$ and the functions G^* and G^{**} are decreasing on (a, b).

3. Estimates from below of $\ln \mu(r, \varphi)$ for the functions of finite order. We begin with a theorem, which is a generalization of Proposition 1.

Theorem 1. Let φ be an entire characteristic function of a probability law F such that

$$\ln W_F(x_k) \ge -\frac{\rho - 1}{\rho} \left(\frac{1}{T\rho}\right)^{\frac{1}{\rho - 1}} x_k^{\frac{\rho}{\rho - 1}}, \ \rho > 1, \ T > 0,$$
(9)

for some increasing to $+\infty$ sequence (x_k) of positive numbers. Then

1) if $x_{k+1} - x_k \leq h(x_k)$ for $k \geq 1$, where the function h is positive continuous and nondecreasing on $[0, +\infty)$ and h(x) = o(x) as $x \to +\infty$, then

$$\ln \mu(r,\varphi) \ge Tr^{\rho} - \frac{(1+o(1))}{8T\rho(\rho-1)}r^{2-\rho}h^2(T\rho r^{\rho-1}), \ r \to +\infty;$$
(10)

2) if $x_{k+1} \leq x_k \omega(x_{k+1})$ for $k \geq 1$, where the function ω is continuous and non-decreasing on $[0, +\infty)$ and $\omega(x) > 1$ for all $x \geq 0$, then for all large enough r

$$\ln \mu(r,\varphi) \ge \frac{T\rho^{\rho}r^{\rho}}{(\rho-1)^{\rho-1}} f\left(\omega(T\rho r^{\rho-1})\right), \quad f(\omega) = \frac{\omega(\omega-1)^{\rho-1}(\omega^{\frac{1}{\rho-1}}-1)}{(\omega^{\frac{\rho}{\rho-1}}-1)^{\rho}}$$

Proof. It is easy to check that for the function $\Phi(r) = Tr^{\rho}$ with $\rho > 1$ the following equalities are true $\phi(x) = (\frac{x}{\rho T})^{\frac{1}{\rho-1}}, x \Psi(\phi(x)) = \frac{\rho-1}{\rho} (\frac{1}{T\rho})^{\frac{1}{\rho-1}} x^{\frac{\rho}{\rho-1}},$ $G_1(a,b,\Phi) = (\rho-1) \left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} \frac{ab}{b-a} \left(b^{\frac{1}{\rho-1}} - a^{\frac{1}{\rho-1}}\right),$ $G_2(a, b, \Phi) = (\rho - 1)^{\rho} \left(\frac{1}{T \rho^{\rho^2}}\right)^{\frac{1}{\rho - 1}} \left(\frac{b^{\frac{\rho}{\rho - 1}} - a^{\frac{\rho}{\rho - 1}}}{b - a}\right)^{\rho}.$

Therefore,

$$\begin{split} G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) &= (\rho - 1) \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho}{\rho - 1}} \left(1 + \frac{h(x_{k})}{x_{k}}\right) \frac{x_{k}}{h(x_{k})} \left(\left(1 + \frac{h(x_{k})}{x_{k}}\right)\right)^{\frac{1}{\rho - 1}} - 1\right) &= \\ &= (\rho - 1) \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho}{\rho - 1}} \left(1 + \frac{h(x_{k})}{x_{k}}\right) \frac{x_{k}}{h(x_{k})} \times \\ &\times \left\{\frac{1}{\rho - 1} \frac{h(x_{k})}{x_{k}} + \frac{2 - \rho}{2(\rho - 1)^{2}} \frac{h^{2}(x_{k})}{x_{k}^{2}} + \frac{(2 - \rho)(3 - 2\rho)}{6(\rho - 1)^{3}} \frac{h^{3}(x_{k})}{x_{k}^{3}} + O\left(\frac{h^{4}(x_{k})}{x_{k}^{4}}\right)\right\} &= \\ &= \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho}{\rho - 1}} \left(1 + \frac{h(x_{k})}{x_{k}}\right) \left\{1 + \frac{2 - \rho}{2(\rho - 1)} \frac{h(x_{k})}{x_{k}} + \frac{(2 - \rho)(3 - 2\rho)}{6(\rho - 1)^{2}} \frac{h^{2}(x_{k})}{x_{k}^{2}} + \\ &+ O\left(\frac{h^{3}(x_{k})}{x_{k}^{3}}\right)\right\} &= \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho}{\rho - 1}} \left\{1 + \frac{\rho}{2(\rho - 1)} \frac{h(x_{k})}{x_{k}} + \frac{\rho(2 - \rho)}{6(\rho - 1)^{2}} \frac{h^{2}(x_{k})}{x_{k}^{2}} + O\left(\frac{h^{3}(x_{k})}{x_{k}^{3}}\right)\right\}, \\ &G_{2}(x_{k}, x_{k} + h(x_{k}), \Phi) &= (\rho - 1)^{\rho} \left(\frac{1}{T\rho^{\rho^{2}}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho^{2}}{\rho - 1}} \frac{1}{n(x_{k})} + \frac{\rho}{2(\rho - 1)^{2}} \frac{h^{2}(x_{k})}{x_{k}^{2}} + \frac{\rho(2 - \rho)}{6(\rho - 1)^{2}} \frac{h^{3}(x_{k})}{x_{k}^{3}} + \\ &+ O\left(\frac{h^{4}(x_{k})}{x_{k}^{4}}\right)\right)^{\rho} &= \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho^{-1}}{\rho - 1}} \left\{1 + \frac{1}{2(\rho - 1)} \frac{h(x_{k})}{x_{k}} + \frac{2 - \rho}{6(\rho - 1)^{2}} \frac{h^{3}(x_{k})}{x_{k}^{2}} + \\ &+ O\left(\frac{h^{3}(x_{k})}{x_{k}^{4}}\right)\right)^{\rho} &= \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho - 1}} x_{k}^{\frac{\rho^{-1}}{\rho - 1}} \left\{1 + \frac{1}{2(\rho - 1)} \frac{h(x_{k})}{x_{k}} + \frac{2 - \rho}{6(\rho - 1)^{2}} \frac{h^{2}(x_{k})}{x_{k}^{2}} + O\left(\frac{h^{3}(x_{k})}{x_{k}^{3}}\right)\right\}, \\ &\text{as } k \to \infty. \text{ Hence in view of the condition } x_{k+1} - x_{k} \leq h(x_{k}) \text{ by Lemma 2 we have} \end{split}$$

$$G_{2}(x_{k}, x_{k+1}, \Phi) - G_{1}(x_{k}, x_{k+1}, \Phi) \leq G_{2}(x_{k}, x_{k} + h(x_{k}), \Phi) - G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) = \\ = \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}} \left(\frac{\rho}{8(\rho-1)} \frac{h^{2}(x_{k})}{x_{k}^{2}} + O\left(\frac{h^{3}(x_{k})}{x_{k}^{3}}\right)\right) = \frac{\rho(1+o(1))}{8(\rho-1)} \left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}-2} h^{2}(x_{k}),$$

as $k \to \infty$, and since (9) implies (4) (see inequality (5))

$$\ln \mu(r,\varphi) \ge Tr^{\rho} - \frac{(1+o(1))}{8(\rho-1)} \left(\frac{1}{T\rho}\right)^{\frac{1}{\rho-1}} h^2(x_k) x_k^{\frac{2-\rho}{\rho-1}}, \ k \to \infty$$

for all $r \in [(x_k/T\rho)^{\frac{1}{\rho-1}}, (x_{k+1}/T\rho)^{\frac{1}{\rho-1}}], k \ge k_0$. For such r we have $x_k \le T\rho r^{\rho-1} \le x_{k+1}$ and since the function h is non-decreasing and $x_{k+1} = (1 + o(1))x_k$ as $k \to \infty$ then $\ln \mu(r, \varphi) \ge 1$ $Tr^{\rho} - \frac{\rho(1+o(1))}{8(\rho-1)} \left(\frac{1}{T\rho}\right)^{\frac{1}{\rho-1}} h^2 (T\rho r^{\rho-1}) (T\rho r^{\rho-1})^{\frac{2-\rho}{\rho-1}} \text{ as } r \to +\infty, \text{ whence (10) follows. The first}$ part of Theorem 1 is proved.

For the proof of the second part we remark that

$$G_1\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) = (\rho - 1)\left(\frac{1}{T\rho^{\rho}}\right)^{\frac{1}{\rho-1}} \frac{x_{k+1}^{\frac{\rho}{\rho-1}}}{\omega(x_{k+1}) - 1} \frac{\omega^{\frac{1}{\rho-1}}(x_{k+1}) - 1}{\omega^{\frac{1}{\rho-1}}(x_{k+1})},$$

$$G_2\Big(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\Big) = (\rho - 1)^{\rho} \Big(\frac{1}{T\rho^{\rho^2}}\Big)^{\frac{1}{\rho-1}} \frac{x_{k+1}^{\frac{1}{\rho-1}}}{\omega^{\frac{1}{\rho-1}}(x_{k+1})} \Big(\frac{\omega^{\frac{1}{\rho-1}}(x_{k+1}) - 1}{\omega(x_{k+1}) - 1}\Big)^{\rho},$$

by Lemma 2 in view of the condition $t = (t + \omega(t - 1))^{\frac{1}{\rho-1}} (t - 1)^{\frac{1}{\rho-1}} (t - 1$

that is, by Lemma 2 in view of the condition $t_{k+1} \leq t_k \omega(t_{k+1})$ we have

$$\frac{G_1(x_k, x_{k+1}, \Phi)}{G_2(x_k, x_{k+1}, \Phi)} \ge \frac{G_1(x_{k+1}/\omega(x_{k+1}), x_{k+1}, \Phi)}{G_2(x_{k+1}/\omega(x_{k+1}), x_{k+1}, \Phi)} = \frac{\rho^{\rho}}{(\rho - 1)^{\rho - 1}} f(\omega(t_{k+1})).$$

Therefore, by Lemma 1 $\ln \mu(r,\varphi) \geq Tr^{\rho} \frac{\rho^{\rho}}{(\rho-1)^{\rho-1}} f(\omega(x_{k+1}))$ for all r such as in the proof of the first part. Since $\omega(x_{k+1}) \leq \omega(T\rho r^{\rho-1})$ we need to prove that the function $f(\omega)$ is decreasing on $[1, +\infty)$. It is easy to check that $f(\omega) = \xi^{\rho-1}(\omega) - \xi^{\rho}(\omega)$, where the function $\xi(\omega) = \frac{\omega-1}{\omega^{\frac{\rho}{\rho-1}}-1}$ decreases to 0 on $(1, +\infty)$ and $\xi(\omega) \uparrow \frac{\rho-1}{\rho}$ as $\omega \downarrow 1$, $\frac{\rho-1}{\rho} \geq \xi(\omega) > 0$ and $\xi'(\omega) < 0$ on $[1, +\infty)$. Hence it follows that $f'(\omega) = \rho\xi^{\rho-2}(\omega) \left(\frac{\rho-1}{\rho} - \xi(\omega)\right)\xi'(\omega) < 0$, i. e. fis a decreasing function. The second part of Theorem 1 is proved. \Box

Now we prove Proposition 1. By its assumption, $\ln W_F(x) \leq -x_k^{\frac{\lambda+1}{\lambda}}$. Let $\rho > 1$ be an arbitrary number such that $\frac{\lambda+1}{\lambda} > \frac{\rho}{\rho-1}$. Then for every large enough k inequality (9) holds with T = 1. Since $x_{k+1} = O(x_k)$ as $k \to \infty$ we have $x_{k+1} \leq Kx_k$, that is, the assumptions of Proposition 1 hold with $\omega(x) = K > 1$, and by Theorem 1 $\ln \mu(r, \varphi) \geq Ar^{\rho}$ for all large enough r, where A is a positive constant, whence it follows that $\ln \frac{\ln \mu(r,\varphi)}{r} \geq (\rho-1) \ln r + \ln A$. Letting here ρ to $\lambda+1$ we obtain the desired asymptotical inequality. Proposition 1 is proved.

From Theorem 1 the following proposition also follows.

Proposition 2. If there exists an increasing to $+\infty$ sequence (x_k) such that (9) holds and $x_{k+1}/x_k \to 1 \ (k \to \infty)$ then $\ln M(r, \varphi) \ge (1 + o(1))Tr^{\rho}$ as $r \to +\infty$.

Indeed, since $x_{k+1} \leq \omega x_k$ for an arbitrary $\omega > 1$ and all $k \geq k_0(\omega)$, by proposition 2) of Theorem 1 we have $\ln \mu(r, \varphi) \geq Tr^{\rho} \frac{\rho^{\rho}}{(\rho-1)^{\rho-1}} f(\omega)$. Since $\lim_{\omega \downarrow 1} f(\omega) = \frac{(\rho-1)^{\rho-1}}{\rho^{\rho}}$ we obtain hence the desired asymptotical inequality.

For analytic in \mathbb{D}_R function the following theorem is an analog of Theorem 1.

Theorem 2. Let φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of probability law F such that

$$\ln W_F(x_k) \ge -Rx_k + \frac{\rho+1}{\rho} (T\rho)^{\frac{\rho}{\rho+1}} x_k^{\frac{\rho}{\rho+1}}, \ \rho > 0, \ T > 0,$$
(11)

for some increasing to $+\infty$ sequence (x_k) of positive numbers. Then

1) if (x_k) satisfies the assumption of proposition 1) of Theorem 1 then

$$\ln \mu(r,\varphi) \ge \frac{T}{(R-r)^{\rho}} - \frac{(1+o(1))}{8T\rho(\rho+1)}(R-r)^{\rho+2}h^2\Big(\frac{T\rho}{(R-r)^{\rho+1}}\Big), \ r\uparrow R;$$
(12)

2) if (x_k) satisfies the assumption of proposition 2) of Theorem 1, then

$$\ln \mu(r,\varphi) \ge \frac{T(\rho+1)^{\rho+1}}{\rho^{\rho}(R-r)^{\rho}} f\left(\omega\left(\frac{T\rho}{(R-r)^{\rho+1}}\right)\right), \quad f(\omega) = \frac{(\omega^{\frac{1}{\rho+1}}-1)(\omega^{\frac{\rho}{\rho+1}}-1)^{\rho}}{\omega^{\frac{\rho}{\rho+1}}(\omega-1)^{\rho+1}}.$$
 (13)

 $\begin{array}{l} Proof. \text{ It is easy to check that for the function } \Phi(r) &= T(R-r)^{-\rho} \text{ we have } \phi(x) = \\ &= R - \left(\frac{T\rho}{x}\right)^{\frac{1}{\rho+1}}, \ x\Psi(\phi(x)) = Rx - \frac{\rho+1}{\rho}(T\rho)^{\frac{1}{\rho+1}}x^{\frac{\rho}{\rho+1}}, \ G_1(a,b,\Phi) = (\rho+1)\left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}}\frac{ab}{b-a}\left(a^{-\frac{1}{\rho+1}} - b^{-\frac{1}{\rho+1}}\right) \\ &= b^{-\frac{1}{\rho+1}}\right) \text{ and } G_2(a,b,\Phi) = \frac{(T\rho^{\rho})^{\frac{1}{\rho+1}}}{(\rho+1)^{\rho}}\left(\frac{b-a}{b^{\frac{\rho}{\rho+1}} - a^{\frac{\rho}{\rho+1}}}\right)^{\rho}. \text{ Therefore, as in the proof of Theorem 1, it is possible to show that } G_1\left(t_k, t_k + h(t_k), \Phi\right) = \left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}}x_k^{\frac{\rho}{\rho+1}}\left\{1 - \frac{\rho}{2(\rho+1)}\frac{h(x_k)}{x_k} - \frac{\rho(2+\rho)}{6(\rho+1)^2}\frac{h^2(x_k)}{x_k^2} + O\left(\frac{h^3(x_k)}{x_k^3}\right)\right\}, G_2(t_k, t_k + h(t_k), \Phi) = \left(\frac{T}{\rho^{\rho^2}}\right)^{\frac{1}{\rho+1}}x_k^{\frac{\rho}{\rho+1}}\left\{1 - \frac{\rho}{2(\rho+1)}\frac{h(x_k)}{x_k} - \frac{\rho(5+\rho)}{24(\rho+1)^2}\frac{h^2(x_k)}{x_k^2} + O\left(\frac{h^3(x_k)}{x_k^3}\right)\right\} \\ \text{ and, thus, } G_2(x_k, x_k + h(x_k), \Phi) - G_1(x_k, x_k + h(x_k), \Phi) = \frac{1+o(1)}{8(\rho+1)}(T\rho)^{\frac{1}{\rho+1}}h^2(x_k)x_k^{-\frac{\rho+2}{\rho+1}}, \text{ as } k \to \infty, \text{ whence in view of the condition } x_{k+1} \leq x_k + h(x_k) \text{ and lemmas 1 and 2 we obtain } \end{array}$

$$\ln \mu(r,\varphi) \ge \frac{T}{(R-r)^{\rho}} - \frac{(T\rho)^{\frac{1}{\rho+1}}(1+o(1))}{8(\rho+1)}h^2(x_k)x_k^{-\frac{\rho+2}{\rho+1}}, \quad k \to \infty,$$
(14)

for all $r \in [R - (T\rho/x_k)^{\frac{1}{\rho+1}}, R - (T\rho/x_{k+1})^{\frac{1}{\rho+1}}]$ and all large enough k. For such r we have $x_k \leq \frac{T\rho}{(R-r)^{\rho+1}} \leq x_{k+1}$ and since the function h is non-decreasing and $x_{k+1} = (1 + o(1))x_k$ as $k \to \infty$ (14) implies (12). The first part of Theorem 2 is proved.

We prove the second part. Since

$$G_1\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) = (\rho+1)\left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}} x_{k+1}^{\frac{\rho}{\rho+1}} \frac{\omega^{\frac{1}{\rho+1}}(x_{k+1}) - 1}{\omega(x_{k+1}) - 1},$$

$$G_2\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) = \frac{(T\rho^{\rho^2})^{\frac{1}{\rho+1}}}{(\rho+1)^{\rho}} x_{k+1}^{\frac{\rho}{\rho+1}} \frac{\omega^{\frac{\rho}{\rho+1}}(x_{k+1})(\omega(x_{k+1}) - 1)^{\rho}}{(\omega^{\frac{\rho}{\rho+1}}(x_{k+1}) - 1)^{\rho}}$$

we have

$$\frac{G_1(x_{k+1}/\omega(x_{k+1}), x_{k+1}, \Phi)}{G_2(x_{k+1}/\omega(x_{k+1}), x_{k+1}, \Phi)} = \frac{(\rho+1)^{\rho+1}}{\rho^{\rho}} f(\omega(x_{k+1})),$$

and by Lemmas 1 and 2 $\ln \mu(r,\varphi) \geq \frac{T}{(R-r)^{\rho}} \frac{(\rho+1)^{\rho+1}}{\rho^{\rho}} f(\omega(x_{k+1}))$ for all r such as in Proposition 1) of this theorem. Since $\omega(x_{k+1}) \leq \omega(\frac{T\rho}{(R-r)^{\rho+1}})$ we need to prove, as above, that the function f is decreasing on $[1, +\infty)$. So, $f(\omega) = \frac{1}{\omega^{\frac{\rho}{\rho+1}}} \left(\frac{\omega^{\frac{\rho}{\rho+1}}-1}{\omega-1}\right)^{\rho} \frac{\omega^{\frac{1}{p+1}}-1}{\omega-1}$ and every factor is a decreasing function.

From Theorem 2 the following two propositions follow.

Proposition 3. If a probability law F satisfies the condition

$$\ln \ln(W_F(x_k)e^{Rx_k}) \ge \frac{\lambda}{\lambda+1}\ln x_k, \ \lambda > 0,$$
(15)

for some increasing to $+\infty$ sequence (x_k) of positive numbers and $x_{k+1} = O(x_k), k \to \infty$, then for its characteristic function φ we have the following asymptotic inequality

$$\ln \ln M(r,\varphi) \ge (1+o(1))\lambda \ln \frac{1}{R-r}, \ r \uparrow R.$$
(16)

Indeed, (15) implies $\ln W_F(x_k) \geq -Rx_k + x_k^{\frac{\lambda}{\lambda+1}} \geq -Rx_k + \frac{\rho+1}{\rho}\rho^{\frac{1}{\rho+1}}x_k^{\frac{\rho}{\rho+1}}$ for every $\rho < \lambda$ and all large enough k, that is, (11) holds and since $x_{k+1} \leq Kx_k$ for all k by item 2) of Theorem 2 we have $\ln \mu(r,\varphi) \geq \frac{A}{(R-r)^{\rho}}$, where A is a positive constant, whence $\ln \ln \mu(r,\varphi) \geq \rho \ln \frac{1}{R-r} + O(1), \ r \uparrow R$. In view of the arbitrariness of ρ we obtain (16). **Proposition 4.** If for a probability law F condition (11) holds and $x_{k+1} = (1 + o(1))x_k$ as $k \to \infty$ then $\ln M(r, \varphi) \geq \frac{(1+o(1))T}{(R-r)^{\rho}}$ as $r \uparrow R$.

Proposition 4 easy follows from item 2) of Theorem 2, because $\lim_{\omega \downarrow 1} f(\omega) = \frac{\rho^{\rho}}{(\rho+1)^{\rho+1}}$. We remark that if in item 1) of Theorems $1-2 x_{k+1} - x_k = h \equiv \text{const}$ and in item 2) of these theorems $x_{k+1}/x_k = \omega \equiv \text{const}$ then we need not use Lemma 2, that is, we need not estimate of $G_2 - G_1$ and G_1/G_2 . Therefore, in view of the optimality of estimates (5) and (6), which we used in the proof of theorems 1–2, in the cases where $x_{k+1} - x_k = h$ and $x_{k+1}/x_k = \omega$ estimates (10), (12) and corresponding (1), (13) are unimprovable.

4. Generalized results. Since we not always can find G_1 and G_2 in an explicit way, the following theorem is useful.

Theorem 3. Let $0 < R \leq +\infty$, $\Phi \in \Omega(0, R)$ be such that $\Phi(r)\Phi'(r)^{-1-\eta}$ non-increase on $[r_0, R)$ for some $r_0 \in (0, R)$ and $\eta \in [0, +\infty)$, let φ be an analytic in \mathbb{D}_R characteristic function of a probability law F, which satisfies condition (3) and let inequality (4) hold for some increasing to $+\infty$ sequence (x_k) of positive numbers. Then

1) if $x_{k+1} - x_k \leq h(x_k)$, $k \geq 1$, where a positive and continuous on $(0, +\infty)$ function h is such that h(x) = o(x) as $x \to \infty$, the function x + h(x) increases and the function $x^{\eta}h(x)$ non-decreases on $(0, +\infty)$, then

$$\ln \mu(r,\varphi) \ge \Phi(r) - (1+o(1))\frac{1+\eta}{2}\frac{\Phi(r)}{\Phi'(r)}h(\Phi'(r)), \ r \uparrow R;$$
(17)

2) if $x_{k+1} \leq x_k \omega(x_{k+1})$, $k \geq 1$, where a continuous and non-decreasing on $(0, +\infty)$ function ω is such that $\omega(x) > 1$ for x > 0, then

$$\ln \mu(r,\varphi) \ge \frac{\omega^{\eta}(\Phi'(r)) - 1}{\eta \omega^{\eta}(\Phi'(r))(\omega(\Phi'(r)) - 1)} \Phi(r)$$
(18)

for all r < R close enough to R.

Proof. At first we assume that $\eta > 0$ and prove item 1). From the non-increase of $\frac{\Phi(r)}{\Phi'(r)^{1+\eta}}$ we have

$$\begin{aligned} G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) &= \frac{x_{k}(x_{k} + h(x_{k}))}{h(x_{k})} \int_{x_{k}}^{x_{k} + h(x_{k})} \frac{\Phi(\phi(x))}{x^{1+\eta}} x^{\eta-1} dx \geq \\ &\geq \frac{x_{k}(x_{k} + h(x_{k}))}{h(x_{k})} \frac{\Phi(\phi(x_{k} + h(x_{k})))}{(x_{k} + h(x_{k}))^{1+\eta}} \frac{(x_{k} + h(x_{k}))^{\eta} - x_{k}^{\eta})}{\eta} = \\ &= \frac{\Phi(\phi(x_{k} + h(x_{k})))}{(x_{k} + h(x_{k}))^{\eta}} \frac{x_{k}^{1+\eta}}{\eta h(x_{k})} \Big\{ \Big(1 + \frac{h(x_{k})}{x_{k}} \Big)^{\eta} - 1 \Big\} = \\ &= \frac{\Phi(\phi(x_{k} + h(x_{k})))}{(x_{k} + h(x_{k}))^{\eta}} \frac{x_{k}^{1+\eta}}{\eta h(x_{k})} \Big\{ \frac{\eta h(x_{k})}{x_{k}} + \frac{\eta(\eta - 1)h^{2}(x_{k})}{2x_{k}^{2}} + O\Big(\frac{h^{3}(x_{k})}{x_{k}^{3}}\Big) \Big\} = \\ &= \frac{\Phi(\phi(x_{k} + h(x_{k})))}{(x_{k} + h(x_{k}))^{\eta}} x_{k}^{\eta} \Big\{ 1 + \frac{(\eta - 1)h(x_{k})}{2x_{k}} + O\Big(\frac{h^{2}(x_{k})}{x_{k}^{2}}\Big) \Big\}, \quad k \to \infty, \\ G_{2}(x_{k}, x_{k} + h(x_{k}), \Phi) &= \Phi\Big(\frac{1}{h(x_{k})} \int_{x_{k}}^{x_{k} + h(x_{k})} \phi(t) dt\Big) \leq \Phi(\phi(x_{k} + h(x_{k}))). \end{aligned}$$

Therefore,

$$G_{2}(x_{k}, x_{k} + h(x_{k}), \Phi) - G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) \leq \\ \leq \Phi(\phi(x_{k} + h(x_{k}))) \left\{ 1 - \left(\frac{x_{k}}{x_{k} + h(x_{k})}\right)^{\eta} \left(1 + \frac{(\eta - 1)h(x_{k})}{2x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)\right) \right\} = \\ = \Phi(\phi(x_{k} + h(x_{k}))) \left\{ 1 - \frac{1 + \frac{(\eta - 1)h(x_{k})}{2x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)}{1 + \eta \frac{h(x_{k})}{x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)} \right\} = \Phi(\phi(x_{k} + h(x_{k}))) \times \\ \times \left\{ 1 - \left(1 + \frac{(\eta - 1)h(x_{k})}{2x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)\right) \left(1 - \frac{\eta h(x_{k})}{x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)\right) \right\} = \\ = \Phi(\phi(x_{k} + h(x_{k}))) \left\{ \frac{1 + \eta}{2} \frac{h(x_{k})}{x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right) \right\} = \\ = \frac{\Phi(\phi(x_{k} + h(x_{k})))}{(x_{k} + h(x_{k}))^{1+\eta}} \frac{1 + \eta}{2} h(x_{k}) x_{k}^{\eta} (1 + o(1)), \quad k \to \infty.$$

Hence in view of the condition $x_{k+1} \leq x_k + h(x_k)$ using Lemma 2 (growth of G_*) and inequality (5) we obtain

$$\ln \mu(r,\varphi) \ge \Phi(r) - \frac{\Phi(\phi(x_k + h(x_k)))}{(x_k + h(x_k))^{1+\eta}} \frac{1+\eta}{2} x_k^{\eta} h(x_k) (1+o(1)), \quad k \to \infty,$$
(19)

for all $r \in [\phi(x_k), \phi(x_{k+1})]$. Since $\Phi(\varphi(t))t^{-\eta-1}$ non-increases, $x^{\eta}h(x)$ non-decreases and the inequalities $\phi(x_k) \leq r \leq \phi(x_{k+1})$ imply the inequalities $x_k \leq \Phi'(r) \leq x_{k+1}$, we obtain

$$\ln \mu(r,\varphi) \ge \Phi(r) - \frac{\Phi(\phi(x_k))}{x_k^{1+\eta}} \frac{1+\eta}{2} x_k^{\eta} h(x_k) (1+o(1)) \ge$$
$$\ge \Phi(r) - \frac{\Phi(r)}{\Phi'(r)^{1+\eta}} \frac{1+\eta}{2} \Phi'(r)^{\eta} h(\Phi'(r)) (1+o(1))$$

i.e., inequality (17) holds.

If $\eta = 0$ then by analogy we have

$$G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) \geq \frac{x_{k}(x_{k} + h(x_{k}))}{h(x_{k})} \frac{\Phi(\phi(x_{k} + h(x_{k})))}{x_{k} + h(x_{k})} \ln\left(1 + \frac{h(x_{k})}{x_{k}}\right) = \\ = \Phi(\phi(x_{k} + h(x_{k})))\left(1 - \frac{h(x_{k})}{2x_{k}} + O\left(\frac{h^{2}(x_{k})}{x_{k}^{2}}\right)\right), \quad k \to \infty, \\ G_{2}(x_{k}, x_{k} + h(x_{k}), \Phi) - G_{1}(x_{k}, x_{k} + h(x_{k}), \Phi) \leq \frac{\Phi(\phi(x_{k} + h(x_{k})))}{x_{k} + h(x_{k})} \frac{h(x_{k})}{2}(1 + o(1)), \quad k \to \infty, \end{cases}$$

whence we obtain (19) with $\eta = 0$. Hence, as above estimate (17) follows. The first part of Theorem 3 is proved.

We prove second part. For $\eta > 0$ we have

$$G_{1}\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) = \frac{x_{k+1}}{\omega(x_{k+1}) - 1} \int_{\frac{x_{k+1}}{\omega(x_{k+1})}}^{x_{k+1}} \frac{\Phi(\phi(x))}{x^{1+\eta}} x^{\eta-1} dx \ge \\ \ge \frac{x_{k+1}}{\omega(x_{k+1}) - 1} \frac{\Phi(\phi(x_{k+1}))}{x^{1+\eta}_{k+1}} \frac{1}{\eta} \left(x_{k+1}^{\eta} - \frac{x_{k+1}^{\eta}}{\omega^{\eta}(x_{k+1})}\right) = \frac{\Phi(\phi(x_{k+1}))}{\eta(\omega(x_{k+1}) - 1)} \left(1 - \frac{1}{\omega^{\eta}(x_{k+1})}\right), \\ G_{2}\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) \le \Phi(\phi(x_{k+1})).$$

Therefore, in view of the condition $x_{k+1} \leq x_k \omega(x_{k+1})$ using Lemma 2 and inequality (6) for all $r \in [\phi(x_k), \phi(x_{k+1})]$ and all $k \geq k_0$ we have

$$\ln \mu(r,\phi) \ge \Phi(r) \frac{\omega^{\eta}(x_{k+1}) - 1}{\eta \omega^{\eta}(x_{k+1})(\omega(x_{k+1}) - 1)} \ge \Phi(r) \frac{\omega^{\eta}(\Phi'(r)) - 1}{\eta \omega^{\eta}(\Phi'(r))(\omega(\Phi'(r)) - 1)},$$

because the function $f(x) = \frac{x^{\eta}-1}{x^{\eta}(x-1)}$ decreases on $[1, +\infty)$ and $x_{k+1} \ge \Phi'(r)$. The inequality (18) is proved.

If $\eta = 0$ then, by analogy, we have

$$G_1\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) \ge \frac{x_{k+1}}{\omega(x_{k+1}) - 1} \frac{\Phi(\phi(x_{k+1}))}{x_{k+1}} \ln \omega(x_{k+1}) = \Phi(\phi(x_{k+1})) \frac{\ln \omega(x_{k+1})}{\omega(x_{k+1}) - 1}$$

and in view of the estimates $G_2\left(\frac{x_{k+1}}{\omega(x_{k+1})}, x_{k+1}, \Phi\right) \leq \Phi(\phi(x_{k+1}))$, as above, we obtain

$$\ln \mu(r,\varphi) \ge \Phi(r) \frac{\ln \omega(x_{k+1})}{\omega(x_{k+1}) - 1} \ge \Phi(r) \frac{\ln \omega(\Phi'(r))}{\omega(\Phi'(r)) - 1}$$
(20)

for all r < R close enough to R. Since $\frac{\omega^{\eta}-1}{\eta\omega^{\eta}(\omega-1)} \to \frac{\ln \omega}{\omega-1}$ as $\eta \to 0$ estimate (20) coincides with estimate (18) with $\eta = 0$.

The condition of the non-increase of $\Phi(r)(\Phi'(r))^{-1-\eta}$ can be removed if we use estimates (7) and (8) from Lemma 1. We get the following theorem.

Theorem 4. Let $\Phi \in \Omega(0, R), 0 < R \leq +\infty$, and φ be an analytic characteristic function of a probability law, which satisfies conditions (3) and (4) for some increasing to $+\infty$ sequence (x_k) of positive numbers. Then

1) if $\phi(x_{k+1}) - \phi(x_k) \leq h(x_{k+1})$, where h is a positive continuous and non-increasing function on $(0, +\infty)$ such that $R > \phi(x) - h(x) \to R$ as $x \to +\infty$, then for all r < R close enough to R

$$\ln \mu(r,\varphi) \ge \Phi(r - h(\Phi'(r))); \tag{21}$$

2) if $\phi(x_{k+1}) \leq \phi(x_k)\omega(x_{k+1})$, where ω is a positive continuous and non-increasing function on $(0, +\infty)$ such that $R > \frac{\phi(x)}{\omega(x)} \to R$ as $x \to +\infty$, then for all r < R close enough to R

$$\ln \mu(r,\varphi) \ge \Phi\left(\frac{r}{\omega(\Phi'(r))}\right).$$
(22)

Proof. Since the function $\Phi(\phi(t))$ increases we have

$$\Phi^{-1}(G_1(x_k, x_{k+1}, \Phi)) \ge \Phi^{-1}\left(\frac{x_k x_{k+1}}{x_{k+1} - x_k} \Phi(\phi(x_k)) \int_{x_k}^{x_{k+1}} \frac{dx}{x^2}\right) = \phi(x_k)$$

$$\Phi^{-1}(G_2(x_k, x_{k+1}, \Phi)) = \frac{1}{x_{k+1} - x_k} \int_{x_k}^{x_{k+1}} \phi(t) dt \le \phi(x_{k+1}).$$

Therefore, from (7) and (8) for all $r \in [\phi(x_k), \phi(x_{k+1})]$ we obtain respectively

$$\Phi^{-1}(\ln \mu(r,\varphi)) \ge r - (\phi(x_{k+1}) - \phi(x_k)) \ge r - h(x_{k+1}) \ge r - h(\Phi'(r)),$$

$$\Phi^{-1}(\ln \mu(r,\varphi)) \ge r \frac{\varphi(x_k)}{\varphi(x_{k+1})} \ge \frac{r}{\omega(x_{k+1})} \ge \frac{r}{\omega(\Phi'(r))},$$

whence the inequalities (21) and (22) follows.

5. Corollaries. Let L be a class of continuous increasing functions α such that $\alpha(x) \geq 0$ for $x \geq x_0$, $\alpha(x) = \alpha(x_0)$ for $x \leq x_0$ and on $[x_0, +\infty)$ the function α increases to $+\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$; further $\alpha \in L_{si}$ if $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for any $c \in (0, +\infty)$. It is easy to see that $L_{si} \subset L^0$. Corollary 1. Let either $\alpha \in L_{si}$ and $\beta \in L^0$ or $\alpha \in L^0$ and $\beta \in L_{si}$ and φ be an entire characteristic function of a probability law F such that

$$\beta\left(\frac{1}{x_k}\ln\frac{1}{W_F(x_k)}\right) \le \alpha(x_k) \tag{23}$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers, which satisfies the condition $\beta^{-1}(c\alpha(x_{k+1}))/\beta^{-1}(c\alpha(x_k)) \to 1$ as $k \to \infty$ for any $c \in (1, +\infty)$. Then

$$\alpha\left(\frac{\ln\mu(r,\varphi)}{r}\right) \ge (1+o(1))\beta(r), \ r \to \infty.$$
(24)

Proof. Let at first $\alpha \in L_{\mathrm{Si}}$, $\beta \in L^0$ and $\varepsilon \in (0,1)$ be an arbitrary number. Since $\beta \in L^0$, we have ([7]) $\beta(\frac{x}{1-\varepsilon}) \leq (1+\delta_1(\varepsilon))\beta(x)$, where $\delta_1(\varepsilon) \to 0$ as $\varepsilon \to 0$ and, thus, $\beta^{-1}(x) \leq (1-\varepsilon)\beta^{-1}((1+\delta_1(\varepsilon))x)$, and the condition $\alpha \in L_{\mathrm{Si}}$ implies $\alpha(\varepsilon x) = (1+o(1))\alpha(x)$ as $x \to +\infty$, that is, for any $\delta_2 > 0$ and all large enough x the inequality $\alpha(\varepsilon x) \geq \frac{1}{1+\delta_2}\alpha(x)$ is true. Therefore, $x\beta^{-1}(\alpha(x)) \leq x(1-\varepsilon)\beta^{-1}((1+\delta_1(\varepsilon))\alpha(x)) \leq (1-\varepsilon)\beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(\varepsilon x))$ for all large enough x. On the other hand

$$\int_{x_0}^x \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt \ge \int_{\varepsilon x}^x \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt \ge \\ \ge \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(\varepsilon x))(1-\varepsilon)x.$$

Hence it follows from (23) that

$$\ln W_F(x_k) \ge -x_k \beta^{-1}(\alpha(x_k)) \ge -(1-\varepsilon)\beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(\varepsilon x_k)) \ge \\ \ge -\int_{x_0}^{x_k} \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt$$
(25)

for each $\varepsilon \in (0,1)$, $\delta_2 > 0$ and all $k \ge k_0 = k_0(\varepsilon, \delta_2)$.

We put $\Phi(r) = \int_{r_0}^r \alpha^{-1} \left(\frac{\beta(t)}{1+\delta}\right) dt$, where $1+\delta < (1+\delta_1(\varepsilon))(1+\delta_2)$. Then $\Phi'(r) = \alpha^{-1} \left(\frac{\beta(r)}{1+\delta}\right)$, $\phi(x) = \beta^{-1}((1+\delta)\alpha(x))$ and

$$\begin{aligned} x\Psi(\phi(x)) &= \int_{x_0}^x \phi(t)dt + \text{const} \leq \int_{x_0}^x \beta^{-1}((1+\delta)\alpha(t))dt + \text{const} \leq \\ &\leq \int_{x_0}^x \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt. \end{aligned}$$

Therefore, inequality (25) implies (4) for all large enough k.

Further, since $\frac{\beta^{-1}((1+\delta)\alpha(x_{k+1}))}{\beta^{-1}((1+\delta)\alpha(x_k))} \to 1 \ (k \to \infty)$, there exists a decreasing to 1 continuous function ω such that $\frac{\phi(x_{k+1})}{\phi(x_k)} \leq \omega(x_{k+1})$ for all k. Therefore, by item 2) of Theorem 4 inequality (22) is true, that is, in view of the condition $\beta \in L^0$ we have

$$\ln \mu(r,\varphi) \ge \Phi\left(\frac{r}{\omega(\Phi(r))}\right) = \Phi((1+o(1))r) = \int_{r_0}^{r(1+o(1))} \alpha^{-1}\left(\frac{\beta(x)}{1+\delta}\right) dx \ge \int_{(1-\varepsilon)r}^r \alpha^{-1}\left(\frac{\beta(x)}{(1+\delta)^2}\right) dx \ge \alpha^{-1}\left(\frac{\beta((1-\varepsilon)r)}{(1+\delta)^2}\right) \varepsilon r$$

for all large enough r. Since $\alpha \in L_{si}$, $\beta \in L^0$ and the numbers ε, δ_2 and δ are arbitrary, from the latter inequality we easily obtain (24).

If $\alpha \in L^0$ and $\beta \in L_{\text{si}}$ then $\alpha((1-\varepsilon)x) \geq \frac{1}{1+\delta_1(\varepsilon)}\alpha(x)$, where $\delta_1(\varepsilon) \to 0$ as $\varepsilon \to 0$ and $\beta(\varepsilon x) \geq \frac{1}{1+\delta_2}\beta(x)$ for all large enough x. Therefore, as above

$$\int_{x_0}^x \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt \ge \varepsilon x\beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha((1-\varepsilon)x)) \ge \\ \ge \varepsilon x\beta^{-1}((1+\delta_2)\alpha(x)) \ge x\beta^{-1}\left(\frac{1}{1+\delta_2}\beta(\beta^{-1}((1+\delta_2)\alpha(x))\right) = x\beta^{-1}(\alpha(x)).$$

Hence it follows from (23) that $\ln W_F(x_k) \geq -\int_{x_0}^{x_k} \beta^{-1}((1+\delta_1(\varepsilon))(1+\delta_2)\alpha(t))dt$ for any $\varepsilon \in (0,1), \ \delta_2 > 0$ and all $k \geq k_0 = k_0(\varepsilon, \delta_2)$. Therefore, choosing $\Phi(r)$, as above, and repeating the arguments, we again arrive at inequality (24).

For analytic functions in \mathbb{D}_R , $0 < R < +\infty$, the following corollary is an analog of Corollary 1.

Corollary 2. Let $\alpha \in L_{\text{Si}}$, $\beta \in L_{\text{Si}}$, $\frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leq q < 1$ for all large enough x and $\alpha\left(\frac{x}{\beta^{-1}(\alpha(x))}\right) = (1 + o(1))\alpha(x)$ as $x \to +\infty$, and φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of a probability law F, for which

$$\beta\left(\frac{x_k}{\ln(W_F(x_k)e^{Rx_k})}\right) \le \alpha(x_k) \tag{26}$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\beta^{-1}(\alpha(x_{k+1})) = O(\beta^{-1}(\alpha(x_k)))$ as $k \to \infty$. Then

$$\alpha(\ln \mu(r,\varphi)) \ge (1+o(1))\beta\left(\frac{1}{R-r}\right), \ r \uparrow R.$$
(27)

Proof. From (26) it follows that $\ln W_F(x_k) \ge -Rx_k + \frac{x_k}{\beta^{-1}(\alpha(x_k))}$. Since $\frac{d\ln\beta^{-1}(\alpha(x))}{d\ln x} \le q < 1$, we have $\frac{x}{\beta^{-1}(\alpha(x))} \uparrow +\infty$ $(r_0 \le x \to +\infty)$, and using L'Hospital's rule it is easy to show that

$$\frac{x}{\beta^{-1}(\alpha(x))} \ge (1+o(1))(1-q) \int_{x_0}^x \frac{dt}{\beta^{-1}(\alpha(t))}, \ x \to \infty.$$

Therefore,

$$\ln W_F(x_k) \ge -Rx_k + (1 - q_1) \int_{x_0}^{x_k} \frac{dt}{\beta^{-1}(\alpha(t))}$$
(28)

for any $q_1 \in (q, 1)$ and all large enough k. We put

$$\Phi(r) = \int_{r_0}^r \alpha^{-1} \left(\beta \left(\frac{1 - q_2}{R - x} \right) \right) dx, \tag{29}$$

where $q_2 \in (q_1, 1)$. Then $\Phi'(r) = \alpha^{-1} \left(\beta \left(\frac{1-q_2}{R-r} \right) \right)$, $\phi(x) = R - \frac{1-q_2}{\beta^{-1}(\alpha(x))}$ and

$$x\Psi(\phi(x)) = Rx - (1 - q_2) \int_{x_0}^x \frac{dt}{\beta^{-1}(\alpha(t))} + \text{const},$$

that is, in view of (28) and $q_1 < q_2$ we obtain (4). Since $\beta^{-1}(\alpha(x_{k+1})) \leq K\beta^{-1}(\alpha(x_k)), K > 1$, for all $k \geq 1$, we have $\frac{1}{\beta^{-1}(\alpha(x_k))} - \frac{1}{\beta^{-1}(\alpha(x_{k+1}))} \leq \frac{K-1}{\beta^{-1}(\alpha(x_{k+1}))}$. Therefore, if we put $h(x) = \frac{(K-1)(1-q_2)}{\beta^{-1}(\alpha(x))}$ then $\phi(x) - h(x) = R - \frac{K(1-q_2)}{\beta^{-1}(\alpha(x))} \to R$ as $x \to +\infty$, $h(\Phi'(r)) = (K-1)(R-r)$ and $\phi(x_{k+1}) - \phi(x_k) \leq h(x_{k+1})$ for $k \geq 1$.

Finally, for function (29) and $r > \max\{r_0, R/2\}$ we have

$$\Phi(r) \ge \int_{2r-R}^{r} \alpha^{-1} \left(\beta \left(\frac{1-q_2}{R-x} \right) \right) dx \ge (R-r) \alpha^{-1} \left(\beta \left(\frac{1-q_2}{2(R-r)} \right) \right).$$

Therefore, by item 1) of Theorem 4

$$\ln \mu(r,\varphi) \ge (R - r + h(\Phi'(r)))\alpha^{-1} \Big(\beta \Big(\frac{1 - q_2}{2(R - r + h(\Phi'(r)))}\Big)\Big) = K(R - r)\alpha^{-1} \Big(\beta \Big(\frac{1 - q_2}{2K(R - r)}\Big)\Big)$$

for all r < R close enough to R. But from the condition $\alpha(\frac{x}{\beta^{-1}(\alpha(x))}) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ it follows that $\alpha(\frac{\alpha^{-1}(\beta(t))}{t}) = (1 + o(1))\beta(t)$ as $t \to \infty$ and since $\alpha \in L_{si}, \beta \in L_{si}$ the last inequality implies (27).

We remark that under the other conditions of Corollary 2 the condition $\beta^{-1}(\alpha(x_{k+1})) = O(\beta^{-1}(\alpha(x_k)))$ as $k \to \infty$ holds provided $x_{k+1} = O(x_k)$ as $k \to \infty$.

The conditions on α and β in Corollary 2 assume that the function α increases slower than the function β . In the case where α increases quicker than β , the following corollary is true.

Corollary 3. Let $\alpha \in L_{\text{si}}$, $\beta \in L_{\text{si}}$, $\frac{d \ln \alpha^{-1}(\beta(x))}{d \ln x} \leq q < 1$ for all large enough x, $\frac{d \alpha^{-1}(\beta(x))}{d x} = \frac{1}{f(x)} \downarrow 0$ and $\alpha^{-1}(\beta(f(x))) = O(\alpha^{-1}(\beta(x)))$ as $x \to +\infty$, and φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of a probability law F, for which

$$\alpha(\ln(W_F(x_k)e^{Rx_k})) \ge \beta(x_k) \tag{30}$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\lim_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)} < 2$. Then asymptotical inequality (27) holds.

Proof. If we put $x\Psi(\phi(x)) = Rx - \alpha^{-1}(\beta(x))$ then (30) implies (4) and $\phi(x) = (x\Psi(\phi(x)))' = R - \frac{d\alpha^{-1}(\beta(x))}{dx} = R - \frac{1}{f(x)}$. Hence it follows that $\Phi'(r) = f^{-1}(\frac{1}{R-r})$,

$$\Phi(r) - \Phi(r_0) = \int_{r_0}^r f^{-1} \left(\frac{1}{R-x}\right) dx = \int_{r_1}^{f^{-1}\left(\frac{1}{R-r}\right)} td\left(-\frac{1}{f(t)}\right) = \\ = -(R-r)f^{-1}\left(\frac{1}{R-r}\right) + \alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right) \ge (1-q)\alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right).$$

But from the condition $\alpha^{-1}(\beta(f(x))) = O(\alpha^{-1}(\beta(x)))$ as $x \to +\infty$ it follows that

$$\alpha^{-1}\left(\beta\left(\frac{1}{R-r}\right)\right) \leq K\alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right),$$

where K is a positive constant. Therefore, $\Phi(r) \ge K_1 \alpha^{-1}(\beta(\frac{1}{R-r}))$, where K_1 is a positive constant, for all r < R close enough to R, and if $h(x) = a(R - \phi(x)), 0 < a < 1$, then

$$\Phi(r - h(\Phi'(r))) \ge K_1 \alpha^{-1} \left(\beta \left(\frac{1}{(1+a)(R-r)} \right) \right).$$
(31)

Under such a choice of the function h the condition $\phi(x_{k+1}) - \phi(x_k) \leq h(x_{k+1})$ is equivalent to the condition $f(x_{k+1}) \leq (1+a)f(x_k)$, and the latter condition follows from the condition $\overline{\lim_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)}} < 2$. Therefore, by item 1) of Theorem 4 inequality (21) is true and in view of (31) and the conditions $\alpha \in L_{si}, \beta \in L_{si}$ we obtain (27).

We remark that from Corollaries 1–3 one can obtain analogues of Propositions 1–4, but we shall not discuss this here.

REFERENCES

- Linnik Yu.V., Ostrovskii I.V. Decomposition of random variables and vectors. Moscow: Nauka, 1972. 479 p. (in Russian)
- Skaskiv O.B., Sorokivs'kyj V.M. On the maximum of module of characteristic functions of probabilistic law// Kraj. Zadachi Dyfer. Rivnyan'. – 2001. – V.7. – P. 286–289. (in Ukrainian)
- Jakovleva N.I. On the growth of entire characteristic functions of probability laws// Problems of mathematical physics and funct. analysis. – K.: Naukova dumka, 1976. – P. 43–54. (in Russian)
- Sheremeta M.M., Sumyk O.M. A connection between the growth of Young conjugated functons// Mat. Stud. – 1999. – V.11, №1. – P. 41–47. (in Ukrainian)
- Sheremeta M.M., Sumyk O.M. Lower estimates for the maximal term of a Dirichlet series// Izv. Vyssh. Uchebn. Zaved., Mat. - 2001. - №4. - 53-57. (in Russian)
- Sumyk O.M. Lower estimates for maximal term of Dirichlet series// Visn. L'viv. Univ., ser. mekh.-math. - 1999. - V.53. - P. 40-44. (in Ukrainian)
- Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of entire functions// Mat. Stud. – 2003. – V.19, №11. – P. 74–82.

Ivan Franko Natonal University of L'viv marta0691@rambler.ru m_m_sheremeta@list.ru

Received 10.05.2012