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Let ϕ be the characteristic function of a probability law F that is analytic in DR = {z : |z| <
R}, 0 < R ≤ +∞, M(r, ϕ) = max {|ϕ(z)| : |z| = r < R} andWF (x) = 1−F (x)+F (−x), x ≥ 0.
A connection between the growth of M(r, ϕ) and the decrease it of WF (x) is investigated in
terms of estimates from below. For entire characteristic functions it is proved, for example, that
if lnxk ≥ λ ln( 1

xk
ln 1

WF (xk)
) for some increasing sequence (xk) such that xk+1 = O(xk), k →∞,

then ln lnM(r,ϕ)
r ≥ (1 + o(1))λ ln r as r → +∞.

М. И. Пароля, М. М. Шеремета. Оценки снизу характеристических функций вероят-
ностних законов // Мат. Студiї. – 2013. – Т.39, №1. – C.54–66.

Пусть ϕ — аналитическая в DR = {z : |z| < R}, 0 < R ≤ +∞, характеристическая
функция вероятностного закона F, M(r, ϕ) = max {|ϕ(z)| : |z| = r < R} и WF (x) = 1 −
−F (x) + F (−x), x ≥ 0. В терминах оценок снизу изучена связь между ростом M(r, ϕ) и
убываниемWF (x). Например, для целых характеристических функций доказано, что если
lnxk ≥ λ ln( 1

xk
ln 1

WF (xk)
) для некоторой возрастающей последовательности (xk) такой, что

xk+1 = O(xk), k →∞, то ln lnM(r,ϕ)
r ≥ (1 + o(1))λ ln r при r → +∞.

1. Introduction. A non-decreasing function F continuous on the left on (−∞,∞) is said
([1, p. 10]) to be a probability law, if lim

x→+∞
F (−x) = 0 and lim

x→+∞
F (x) = 1, and the function

ϕ(z) =
∫∞
−∞ e

izxdF (x) defined for real z is called ([1, p. 12]) a characteristic function of this
law. If ϕ has an analytic continuation on the disk DR = {z : |z| < R}, 0 < R ≤ +∞, then
we call ϕ an analytic in DR characteristic function of the law F . Further we always assume
that DR is the maximal disk of the analyticity of ϕ. It is known that ϕ is an analytic in DR

characteristic function of the probability law F if and only if for every r ∈ [0, R)

WF (x) =: 1− F (x) + F (−x) = O (e−rx) , x→ +∞.
Hence it follows that

lim
x→+∞

1

x
ln

1

WF (x)
= R.

If we put M(r, ϕ) = max {|ϕ(z)| : |z| = r} for r < R then WF (x)erx ≤ 2M(r, ϕ) for all x ≥ 0
and r ∈ [0, R). For R = +∞ this inequality is proved in [1, p.54] and for R < +∞ the
proof is analogous. Therefore, if we define (see also [2]) µ(r, ϕ) = sup {WF (x)erx : x ≥ 0}
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then µ(r, ϕ) ≤ 2M(r, ϕ). Thus, the estimates from below for lnM(r, ϕ) follow from such
estimates for lnµ(r, ϕ). For entire characteristic functions N. I. Jakovleva ([3]) proved that,
if lim
x→+∞

ln ln(1/WF (x))
lnx

= 1 + 1
λ
then lim

r→+∞

ln lnM(r,ϕ)
ln r

≥ 1 + λ. Hence it follows that if

lnx ≥ λ ln
(1

x
ln

1

WF (x)

)
, x ≥ x0, (1)

then
ln

lnM(r, ϕ)

r
≥ (1 + o(1))λ ln r, r → +∞. (2)

The question arises, whether asymptotical inequality (2) is valid if condition (1) holds
not necessarily for all x ≥ x0 but only for some increasing unbounded sequence (xk). In view
of the inequality lnM(r, ϕ) ≥ lnµ(r, ϕ)− ln 2, the following assertion gives a positive answer
to this question.

Proposition 1. If there exists an increasing to +∞ sequence (xk) such that lnxk ≥
λ ln

(
1
xk

ln 1
WF (xk)

)
for all k ≥ 1 and xk+1 = O (xk) as k →∞ then ln lnµ(r,ϕ)

r
≥ (1+o(1))λ ln r

as r → +∞.

We obtain Proposition 1 from main results proved below for characteristic functions that
are entire or analytic in the disk characteristic functions.

2. Auxiliary results. If ϕ is an entire characteristic function and ϕ 6≡ const then ([1, p. 45])
lim

r→+∞
r−1 lnM(r, ϕ) = σ ∈ (0,+∞]. If σ < +∞ then the estimate lnM(r, ϕ) from below is

trivial. It can be shown that σ < +∞ provided WF (x) = 0 for all x ≥ x0. Therefore we
assume in what follows that WF (x) 6= 0 for all x ≥ 0 and, thus, WF (x) ↘ 0 (x → +∞).

Then lnµ(r,ϕ)
r
→ +∞ as r → +∞.

In the case, when 0 < R < +∞, the function µ(r, ϕ) may be bounded and it is easy to
show that lnµ(r, ϕ) ↑ +∞ as r ↑ R if and only if

lim
x→+∞

WF (x)eRx = +∞. (3)

Further we assume that (3) holds and for the investigation of the growth of lnµ(r, ϕ)
we use the results from [4]. By Ω(0, R), 0 < R ≤ +∞, we denote the class of positive
unbounded functions Φ on [r0, R) for some r0 ∈ [0 , R) such that the derivative Φ′ is positively
continuously differentiable and increasing to +∞ on [r0, R). For Φ ∈ Ω(0, R) let Ψ(r) =

r − Φ(r)
Φ′(r)

be a function associated with Φ in the sense of Newton and φ be the inverse
function to Φ′. For the numbers Φ′(r0) < a < b < +∞ we put

G1(a, b,Φ) =
ab

b− a

∫ b

a

Φ(φ(t))

t2
dt, G2(a, b,Φ) = Φ

( 1

b− a

∫ b

a

φ(t)dt
)
.

Lemma 1. Let Φ ∈ Ω(0, R), 0 < R ≤ +∞, and ϕ be an analytic in DR characteristic
function of a probability law F satisfying condition (3) and

lnWF (xk) ≥ −xkΨ(φ(xk)) (4)

for some increasing to +∞ sequence (xk) of positive numbers. Then (∀r ∈ [φ(xk), φ(xk+1)])
and (∀k ≥ k0) the following estimates are valid

lnµ(r, ϕ) ≥ Φ(r)− (G2(xk, xk+1,Φ)−G1(xk, xk+1,Φ)) , (5)
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lnµ(r, ϕ) ≥ Φ(r)
G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
(6)

and

Φ−1(lnµ(r, ϕ)) ≥ r − (Φ−1(G2(xk, xk+1,Φ))− Φ−1(G1(xk, xk+1,Φ))), (7)

Φ−1(lnµ(r, ϕ)) ≥ r
Φ−1(G2(xk, xk+1,Φ))

Φ−1(G1(xk, xk+1,Φ))
, (8)

where Φ−1 is the inverse function to Φ.

Proof. Let P be an arbitrary function defined on (0,+∞) and different from +∞ (it can take
on the value −∞ but P 6≡ −∞ ) and let Q(r) = sup {P (x) + rx : x ≥ 0} , −∞ < r < R,
be the function conjugated to P in the sense of Young. By Ω(−∞, R), as in [4], we denote
the class of positive unbounded functions on (−∞, R) such that the derivative Φ′ is positive
continuously differentiable and increasing to +∞ on (−∞, R). The functions Ψ, φ and the
quantities G1(a, b,Φ), G2(a, b,Φ) we define as above. Then from Theorem 1 in [4] it follows
that if P (xk) ≥ −xkΨ(φ(xk)) for some increasing to +∞ sequence (xk) of positive numbers
then for all r ∈ [φ(xk), φ(xk+1)] and all k ≥ 1 the estimates (5)–(8) hold with Q(r) instead
of lnµ(r, ϕ). It is clear that the functions lnµ(r, ϕ) and lnWF (x) are conjugated in the sense
of Young, and in view of the definition of Ω(0, R) for each function Φ ∈ Ω(0, R) there exists
Φ1 ∈ Ω(−∞, R) such that Φ1(r) = Φ(r) for r ∈ [r0, R). Since Ψ1(r) = Ψ(r) for r ∈ [r0, R)
and φ1(r) = φ(r) for x ≥ x0 = x0(r0), Proposition 1 follows from the quoted result in [4].

We note in passing that ([4]) G1(a, b,Φ) < G2(a, b,Φ) and the following lemma is hold
([4]–[6]).

Lemma 2. For x > a let G∗(x) = G2(a, x,Φ) − G1(a, x,Φ), G∗∗(x) = G2(a,x,Φ)
G1(a,x,Φ)

and for
x ∈ [a, b) let G∗(x) = G2(x, b,Φ)−G1(x, b,Φ), G∗∗(x) = G2(x,b,Φ)

G1(x,b,Φ)
. Then the functions G∗ and

G∗∗ are increasing on (a,+∞) and the functions G∗ and G∗∗ are decreasing on (a, b).

3. Estimates from below of lnµ(r, ϕ) for the functions of finite order. We begin with
a theorem, which is a generalization of Proposition 1.

Theorem 1. Let ϕ be an entire characteristic function of a probability law F such that

lnWF (xk) ≥ −
ρ− 1

ρ

( 1

Tρ

) 1
ρ−1
x

ρ
ρ−1

k , ρ > 1, T > 0, (9)

for some increasing to +∞ sequence (xk) of positive numbers. Then

1) if xk+1 − xk ≤ h(xk) for k ≥ 1, where the function h is positive continuous and non-
decreasing on [0,+∞) and h(x) = o(x) as x→ +∞, then

lnµ(r, ϕ) ≥ Trρ − (1 + o(1))

8Tρ(ρ− 1)
r2−ρh2(Tρrρ−1), r → +∞; (10)

2) if xk+1 ≤ xkω(xk+1) for k ≥ 1, where the function ω is continuous and non-decreasing
on [0,+∞) and ω(x) > 1 for all x ≥ 0, then for all large enough r

lnµ(r, ϕ) ≥ Tρρrρ

(ρ− 1)ρ−1
f
(
ω(Tρrρ−1)

)
, f(ω) =

ω(ω − 1)ρ−1(ω
1
ρ−1 − 1)

(ω
ρ
ρ−1 − 1)ρ

.
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Proof. It is easy to check that for the function Φ(r) = Trρ with ρ > 1 the following equalities
are true φ(x) = ( x

ρT
)

1
ρ−1 , xΨ(φ(x)) = ρ−1

ρ
( 1
Tρ

)
1
ρ−1x

ρ
ρ−1 ,

G1(a, b,Φ) = (ρ− 1)
( 1

Tρρ

) 1
ρ−1 ab

b− a

(
b

1
ρ−1 − a

1
ρ−1

)
,

G2(a, b,Φ) = (ρ− 1)ρ
( 1

Tρρ2

) 1
ρ−1
(b ρ

ρ−1 − a
ρ
ρ−1

b− a

)ρ
.

Therefore,

G1(xk, xk + h(xk),Φ) = (ρ− 1)
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

(
1 +

h(xk)

xk

) xk
h(xk)

((
1 +

h(xk)

xk

) 1
ρ−1−1

)
=

= (ρ− 1)
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

(
1 +

h(xk)

xk

) xk
h(xk)

×

×
{ 1

ρ− 1

h(xk)

xk
+

2− ρ
2(ρ− 1)2

h2(xk)

x2
k

+
(2− ρ)(3− 2ρ)

6(ρ− 1)3

h3(xk)

x3
k

+O
(h4(xk)

x4
k

)}
=

=
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

(
1 +

h(xk)

xk

){
1 +

2− ρ
2(ρ− 1)

h(xk)

xk
+

(2− ρ)(3− 2ρ)

6(ρ− 1)2

h2(xk)

x2
k

+

+O
(h3(xk)

x3
k

)}
=
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

{
1 +

ρ

2(ρ− 1)

h(xk)

xk
+

ρ(2− ρ)

6(ρ− 1)2

h2(xk)

x2
k

+O
(h3(xk)

x3
k

)}
,

G2(xk, xk + h(xk),Φ) = (ρ− 1)ρ
( 1

Tρρ2

) 1
ρ−1
x

ρ2

ρ−1

k

1

h(xk)ρ

{(
1 +

h(xk)

xk

) ρ
ρ−1−1

}ρ
=

= (ρ− 1)ρ
( 1

Tρρ2

) 1
ρ−1 x

ρ2

ρ−1

k

h(xk)ρ

{ ρ

ρ− 1

h(xk)

xk
+

ρ

2(ρ− 1)2

h2(xk)

x2
k

+
ρ(2− ρ)

6(ρ− 1)2

h3(xk)

x3
k

+

+O
(h4(xk)

x4
k

)}ρ
=
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

{
1 +

1

2(ρ− 1)

h(xk)

xk
+

2− ρ
6(ρ− 1)2

h2(xk)

x2
k

+

+O
(h3(xk)

x3
k

)}ρ
=
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

{
1 +

ρ

2(ρ− 1)

h(xk)

xk
+

ρ(5− ρ)

24(ρ− 1)2

h2(xk)

x2
k

+O
(h3(xk)

x3
k

)}
,

as k →∞. Hence in view of the condition xk+1 − xk ≤ h(xk) by Lemma 2 we have

G2(xk, xk+1,Φ)−G1(xk, xk+1,Φ) ≤ G2(xk, xk + h(xk),Φ)−G1(xk, xk + h(xk),Φ) =

=
( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1

k

( ρ

8(ρ− 1)

h2(xk)

x2
k

+O
(h3(xk)

x3
k

))
=
ρ(1 + o(1))

8(ρ− 1)

( 1

Tρρ

) 1
ρ−1
x

ρ
ρ−1
−2

k h2(xk),

as k →∞, and since (9) implies (4) (see inequality (5))

lnµ(r, ϕ) ≥ Trρ − (1 + o(1))

8(ρ− 1)

( 1

Tρ

) 1
ρ−1
h2(xk)x

2−ρ
ρ−1

k , k →∞,

for all r ∈ [(xk/Tρ)
1
ρ−1 , (xk+1/Tρ)

1
ρ−1 ], k ≥ k0. For such r we have xk ≤ Tρrρ−1 ≤ xk+1 and

since the function h is non-decreasing and xk+1 = (1 + o(1))xk as k → ∞ then lnµ(r, ϕ) ≥

Trρ − ρ(1+o(1))
8(ρ−1)

(
1
Tρ

) 1
ρ−1

h2(Tρrρ−1)(Tρrρ−1)
2−ρ
ρ−1 as r → +∞, whence (10) follows. The first

part of Theorem 1 is proved.
For the proof of the second part we remark that

G1

( xk+1

ω(xk+1)
, xk+1,Φ

)
= (ρ− 1)

( 1

Tρρ

) 1
ρ−1 x

ρ
ρ−1

k+1

ω(xk+1)− 1

ω
1
ρ−1 (xk+1)− 1

ω
1
ρ−1 (xk+1)

,
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G2

( xk+1

ω(xk+1)
, xk+1,Φ

)
= (ρ− 1)ρ

( 1

Tρρ2

) 1
ρ−1 x

ρ
ρ−1

k+1

ω
ρ
ρ−1 (xk+1)

(ω 1
ρ−1 (xk+1)− 1

ω(xk+1)− 1

)ρ
,

that is, by Lemma 2 in view of the condition tk+1 ≤ tkω(tk+1) we have

G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
≥ G1(xk+1/ω(xk+1), xk+1,Φ)

G2(xk+1/ω(xk+1), xk+1,Φ)
=

ρρ

(ρ− 1)ρ−1
f(ω(tk+1)).

Therefore, by Lemma 1 lnµ(r, ϕ) ≥ Trρ ρρ

(ρ−1)ρ−1f(ω(xk+1)) for all r such as in the proof
of the first part. Since ω(xk+1) ≤ ω(Tρrρ−1) we need to prove that the function f(ω) is
decreasing on [1,+∞). It is easy to check that f(ω) = ξρ−1(ω) − ξρ(ω), where the function
ξ(ω) = ω−1

ω
ρ
ρ−1−1

decreases to 0 on (1,+∞) and ξ(ω) ↑ ρ−1
ρ

as ω ↓ 1, ρ−1
ρ
≥ ξ(ω) > 0 and

ξ′(ω) < 0 on [1,+∞). Hence it follows that f ′(ω) = ρξρ−2(ω)
(
ρ−1
ρ
− ξ(ω)

)
ξ′(ω) < 0, i. e. f

is a decreasing function. The second part of Theorem 1 is proved.

Now we prove Proposition 1. By its assumption, lnWF (x) ≤ −x
λ+1
λ

k . Let ρ > 1 be
an arbitrary number such that λ+1

λ
> ρ

ρ−1
. Then for every large enough k inequality (9) holds

with T = 1. Since xk+1 = O(xk) as k → ∞ we have xk+1 ≤ Kxk, that is, the assumptions
of Proposition 1 hold with ω(x) = K > 1, and by Theorem 1 lnµ(r, ϕ) ≥ Arρ for all large
enough r, where A is a positive constant, whence it follows that ln lnµ(r,ϕ)

r
≥ (ρ−1) ln r+lnA.

Letting here ρ to λ+1 we obtain the desired asymptotical inequality. Proposition 1 is proved.
From Theorem 1 the following proposition also follows.

Proposition 2. If there exists an increasing to +∞ sequence (xk) such that (9) holds and
xk+1/xk → 1 (k →∞) then lnM(r, ϕ) ≥ (1 + o(1))Trρ as r → +∞.

Indeed, since xk+1 ≤ ωxk for an arbitrary ω > 1 and all k ≥ k0(ω), by proposition 2) of
Theorem 1 we have lnµ(r, ϕ) ≥ Trρ ρρ

(ρ−1)ρ−1f(ω). Since lim
ω↓1

f(ω) = (ρ−1)ρ−1

ρρ
we obtain hence

the desired asymptotical inequality.
For analytic in DR function the following theorem is an analog of Theorem 1.

Theorem 2. Let ϕ be an analytic in DR, 0 < R < +∞, characteristic function of probability
law F such that

lnWF (xk) ≥ −Rxk +
ρ+ 1

ρ
(Tρ)

ρ
ρ+1x

ρ
ρ+1

k , ρ > 0, T > 0, (11)

for some increasing to +∞ sequence (xk) of positive numbers. Then

1) if (xk) satisfies the assumption of proposition 1) of Theorem 1 then

lnµ(r, ϕ) ≥ T

(R− r)ρ
− (1 + o(1))

8Tρ(ρ+ 1)
(R− r)ρ+2h2

( Tρ

(R− r)ρ+1

)
, r ↑ R; (12)

2) if (xk) satisfies the assumption of proposition 2) of Theorem 1, then

lnµ(r, ϕ) ≥ T (ρ+ 1)ρ+1

ρρ(R− r)ρ
f
(
ω
( Tρ

(R− r)ρ+1

))
, f(ω) =

(ω
1
ρ+1 − 1)(ω

ρ
ρ+1 − 1)ρ

ω
ρ
ρ+1 (ω − 1)ρ+1

. (13)
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Proof. It is easy to check that for the function Φ(r) = T (R− r)−ρ we have φ(x) =

= R−
(
Tρ
x

) 1
ρ+1
, xΨ(φ(x)) = Rx− ρ+1

ρ
(Tρ)

1
ρ+1x

ρ
ρ+1 , G1(a, b,Φ) = (ρ+1)

(
T
ρρ

) 1
ρ+1 ab

b−a(a−
1
ρ+1 −

b−
1
ρ+1 ) and G2(a, b,Φ) = (Tρρ)

1
ρ+1

(ρ+1)ρ

(
b−a

b
ρ
ρ+1−a

ρ
ρ+1

)ρ
. Therefore, as in the proof of Theorem 1, it

is possible to show that G1

(
tk, tk + h(tk),Φ

)
=
(
T
ρρ

) 1
ρ+1
x

ρ
ρ+1

k

{
1− ρ

2(ρ+1)
h(xk)
xk
− ρ(2+ρ)

6(ρ+1)2
h2(xk)

x2k
+

+O
(
h3(xk)

x3k

)}
, G2(tk, tk+h(tk),Φ) =

(
T

ρρ2

) 1
ρ+1
x

ρ
ρ+1

k

{
1− ρ

2(ρ+1)
h(xk)
xk
− ρ(5+ρ)

24(ρ+1)2
h2(xk)

x2k
+O
(
h3(xk)

x3k

)}
and, thus, G2(xk, xk + h(xk),Φ) − G1(xk, xk + h(xk),Φ) = 1+o(1)

8(ρ+1)
(Tρ)

1
ρ+1h2(xk)x

− ρ+2
ρ+1

k , as
k →∞, whence in view of the condition xk+1 ≤ xk + h(xk) and lemmas 1 and 2 we obtain

lnµ(r, ϕ) ≥ T

(R− r)ρ
− (Tρ)

1
ρ+1 (1 + o(1))

8(ρ+ 1)
h2(xk)x

− ρ+2
ρ+1

k , k →∞, (14)

for all r ∈ [R − (Tρ/xk)
1
ρ+1 , R − (Tρ/xk+1)

1
ρ+1 ] and all large enough k. For such r we have

xk ≤ Tρ
(R−r)ρ+1 ≤ xk+1 and since the function h is non-decreasing and xk+1 = (1 + o(1))xk as

k →∞ (14) implies (12). The first part of Theorem 2 is proved.
We prove the second part. Since

G1

( xk+1

ω(xk+1)
, xk+1,Φ

)
= (ρ+ 1)

( T
ρρ

) 1
ρ+1
x

ρ
ρ+1

k+1

ω
1
ρ+1 (xk+1)− 1

ω(xk+1)− 1
,

G2

( xk+1

ω(xk+1)
, xk+1,Φ

)
=

(Tρρ
2
)

1
ρ+1

(ρ+ 1)ρ
x

ρ
ρ+1

k+1

ω
ρ
ρ+1 (xk+1)(ω(xk+1)− 1)ρ

(ω
ρ
ρ+1 (xk+1)− 1)ρ

,

we have
G1(xk+1/ω(xk+1), xk+1,Φ)

G2(xk+1/ω(xk+1), xk+1,Φ)
=

(ρ+ 1)ρ+1

ρρ
f(ω(xk+1)),

and by Lemmas 1 and 2 lnµ(r, ϕ) ≥ T
(R−r)ρ

(ρ+1)ρ+1

ρρ
f(ω(xk+1)) for all r such as in Proposi-

tion 1) of this theorem. Since ω(xk+1) ≤ ω
(

Tρ
(R−r)ρ+1

)
we need to prove, as above, that the

function f is decreasing on [1,+∞). So, f(ω) = 1

ω
ρ
ρ+1

(
ω

ρ
ρ+1−1
ω−1

)ρ
ω

1
ρ+1−1
ω−1

and every factor is
a decreasing function.

From Theorem 2 the following two propositions follow.

Proposition 3. If a probability law F satisfies the condition

ln ln(WF (xk)e
Rxk) ≥ λ

λ+ 1
lnxk, λ > 0, (15)

for some increasing to +∞ sequence (xk) of positive numbers and xk+1 = O(xk), k → ∞,
then for its characteristic function ϕ we have the following asymptotic inequality

ln lnM(r, ϕ) ≥ (1 + o(1))λ ln
1

R− r
, r ↑ R. (16)

Indeed, (15) implies lnWF (xk) ≥ −Rxk + x
λ
λ+1

k ≥ −Rxk + ρ+1
ρ
ρ

1
ρ+1x

ρ
ρ+1

k for every ρ < λ

and all large enough k, that is, (11) holds and since xk+1 ≤ Kxk for all k by item 2) of
Theorem 2 we have lnµ(r, ϕ) ≥ A

(R−r)ρ , where A is a positive constant, whence ln lnµ(r, ϕ) ≥
ρ ln 1

R−r +O(1), r ↑ R. In view of the arbitrariness of ρ we obtain (16).
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Proposition 4. If for a probability law F condition (11) holds and xk+1 = (1 + o(1))xk as
k →∞ then lnM(r, ϕ) ≥ (1+o(1))T

(R−r)ρ as r ↑ R.

Proposition 4 easy follows from item 2) of Theorem 2, because lim
ω↓1

f(ω) = ρρ

(ρ+1)ρ+1 . We

remark that if in item 1) of Theorems 1–2 xk+1 − xk = h ≡ const and in item 2) of these
theorems xk+1/xk = ω ≡ const then we need not use Lemma 2, that is, we need not estimate
of G2 −G1 and G1/G2. Therefore, in view of the optimality of estimates (5) and (6), which
we used in the proof of theorems 1–2, in the cases where xk+1 − xk = h and xk+1/xk = ω
estimates (10), (12) and corresponding (1), (13) are unimprovable.

4. Generalized results. Since we not always can find G1 and G2 in an explicit way, the
following theorem is useful.

Theorem 3. Let 0 < R ≤ +∞, Φ ∈ Ω(0, R) be such that Φ(r)Φ′(r)−1−η non-increase on
[r0, R) for some r0 ∈ (0, R) and η ∈ [0,+∞), let ϕ be an analytic in DR characteristic
function of a probability law F , which satisfies condition (3) and let inequality (4) hold for
some increasing to +∞ sequence (xk) of positive numbers. Then

1) if xk+1 − xk ≤ h(xk), k ≥ 1, where a positive and continuous on (0,+∞) function h
is such that h(x) = o(x) as x → ∞, the function x + h(x) increases and the function
xηh(x) non-decreases on (0,+∞), then

lnµ(r, ϕ) ≥ Φ(r)− (1 + o(1))
1 + η

2

Φ(r)

Φ′(r)
h(Φ′(r)), r ↑ R; (17)

2) if xk+1 ≤ xkω(xk+1), k ≥ 1, where a continuous and non-decreasing on (0,+∞) func-
tion ω is such that ω(x) > 1 for x > 0, then

lnµ(r, ϕ) ≥ ωη(Φ′(r))− 1

ηωη(Φ′(r))(ω(Φ′(r))− 1)
Φ(r) (18)

for all r < R close enough to R.

Proof. At first we assume that η > 0 and prove item 1). From the non-increase of Φ(r)
Φ′(r)1+η

we have

G1(xk, xk + h(xk),Φ) =
xk(xk + h(xk))

h(xk)

∫ xk+h(xk)

xk

Φ(φ(x))

x1+η
xη−1dx ≥

≥ xk(xk + h(xk))

h(xk)

Φ(φ(xk + h(xk)))

(xk + h(xk))1+η

(xk + h(xk))
η − xηk)

η
=

=
Φ(φ(xk + h(xk)))

(xk + h(xk))η
x1+η
k

ηh(xk)

{(
1 +

h(xk)

xk

)η
−1
}

=

=
Φ(φ(xk + h(xk)))

(xk + h(xk))η
x1+η
k

ηh(xk)

{ηh(xk)

xk
+
η(η − 1)h2(xk)

2x2
k

+O
(h3(xk)

x3
k

)}
=

=
Φ(φ(xk + h(xk)))

(xk + h(xk))η
xηk

{
1 +

(η − 1)h(xk)

2xk
+O

(h2(xk)

x2
k

)}
, k →∞,

G2(xk, xk + h(xk),Φ) = Φ
( 1

h(xk)

∫ xk+h(xk)

xk

φ(t)dt
)
≤ Φ(φ(xk + h(xk))).
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Therefore,

G2(xk, xk + h(xk),Φ)−G1(xk, xk + h(xk),Φ) ≤

≤ Φ(φ(xk + h(xk)))
{

1−
( xk
xk + h(xk)

)η(
1 +

(η − 1)h(xk)

2xk
+O

(h2(xk)

x2
k

))}
=

= Φ(φ(xk + h(xk)))

{
1−

1 + (η−1)h(xk)
2xk

+O
(
h2(xk)

x2k

)
1 + η h(xk)

xk
+O

(
h2(xk)

x2k

) }
= Φ(φ(xk + h(xk)))×

×
{

1−
(

1 +
(η − 1)h(xk)

2xk
+O

(h2(xk)

x2
k

))(
1− ηh(xk)

xk
+O

(h2(xk)

x2
k

))}
=

= Φ(φ(xk + h(xk)))
{1 + η

2

h(xk)

xk
+O

(h2(xk)

x2
k

)}
=

=
Φ(φ(xk + h(xk)))

(xk + h(xk))1+η

1 + η

2
h(xk)x

η
k(1 + o(1)), k →∞.

Hence in view of the condition xk+1 ≤ xk + h(xk) using Lemma 2 (growth of G∗) and
inequality (5) we obtain

lnµ(r, ϕ) ≥ Φ(r)− Φ(φ(xk + h(xk)))

(xk + h(xk))1+η

1 + η

2
xηkh(xk)(1 + o(1)), k →∞, (19)

for all r ∈ [φ(xk), φ(xk+1)]. Since Φ(ϕ(t))t−η−1 non-increases, xηh(x) non-decreases and the
inequalities φ(xk) ≤ r ≤ φ(xk+1) imply the inequalities xk ≤ Φ′(r) ≤ xk+1, we obtain

lnµ(r, ϕ) ≥ Φ(r)− Φ(φ(xk))

x1+η
k

1 + η

2
xηkh(xk)(1 + o(1)) ≥

≥ Φ(r)− Φ(r)

Φ′(r)1+η

1 + η

2
Φ′(r)ηh(Φ′(r))(1 + o(1))

i.e., inequality (17) holds.
If η = 0 then by analogy we have

G1(xk, xk + h(xk),Φ) ≥ xk(xk + h(xk))

h(xk)

Φ(φ(xk + h(xk)))

xk + h(xk)
ln
(

1 +
h(xk)

xk

)
=

= Φ(φ(xk + h(xk)))
(

1− h(xk)

2xk
+O

(h2(xk)

x2
k

))
, k →∞,

G2(xk, xk + h(xk),Φ)−G1(xk, xk + h(xk),Φ) ≤ Φ(φ(xk + h(xk)))

xk + h(xk)

h(xk)

2
(1 + o(1)), k →∞,

whence we obtain (19) with η = 0. Hence, as above estimate (17) follows. The first part of
Theorem 3 is proved.

We prove second part. For η > 0 we have

G1

( xk+1

ω(xk+1)
, xk+1,Φ

)
=

xk+1

ω(xk+1)− 1

∫ xk+1

xk+1
ω(xk+1)

Φ(φ(x))

x1+η
xη−1dx ≥

≥ xk+1

ω(xk+1)− 1

Φ(φ(xk+1))

x1+η
k+1

1

η

(
xηk+1 −

xηk+1

ωη(xk+1)

)
=

Φ(φ(xk+1))

η(ω(xk+1)− 1)

(
1− 1

ωη(xk+1)

)
,

G2

( xk+1

ω(xk+1)
, xk+1,Φ

)
≤ Φ(φ(xk+1)).
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Therefore, in view of the condition xk+1 ≤ xkω(xk+1) using Lemma 2 and inequality (6) for
all r ∈ [φ(xk), φ(xk+1)] and all k ≥ k0 we have

lnµ(r, φ) ≥ Φ(r)
ωη(xk+1)− 1

ηωη(xk+1)(ω(xk+1)− 1)
≥ Φ(r)

ωη(Φ′(r))− 1

ηωη(Φ′(r))(ω(Φ′(r))− 1)
,

because the function f(x) = xη−1
xη(x−1)

decreases on [1,+∞) and xk+1 ≥ Φ′(r). The inequa-
lity (18) is proved.

If η = 0 then, by analogy, we have

G1

( xk+1

ω(xk+1)
, xk+1,Φ

)
≥ xk+1

ω(xk+1)− 1

Φ(φ(xk+1))

xk+1

lnω(xk+1) = Φ(φ(xk+1))
lnω(xk+1)

ω(xk+1)− 1

and in view of the estimates G2

(
xk+1

ω(xk+1)
, xk+1,Φ

)
≤ Φ(φ(xk+1)), as above, we obtain

lnµ(r, ϕ) ≥ Φ(r)
lnω(xk+1)

ω(xk+1)− 1
≥ Φ(r)

lnω(Φ′(r))

ω(Φ′(r))− 1
(20)

for all r < R close enough to R. Since ωη−1
ηωη(ω−1)

→ lnω
ω−1

as η → 0 estimate (20) coincides with
estimate (18) with η = 0.

The condition of the non-increase of Φ(r)(Φ′(r))−1−η can be removed if we use estimates
(7) and (8) from Lemma 1. We get the following theorem.

Theorem 4. Let Φ ∈ Ω(0, R), 0 < R ≤ +∞, and ϕ be an analytic characteristic function of
a probability law, which satisfies conditions (3) and (4) for some increasing to +∞ sequence
(xk) of positive numbers. Then

1) if φ(xk+1) − φ(xk) ≤ h(xk+1), where h is a positive continuous and non-increasing
function on (0,+∞) such that R > φ(x) − h(x) → R as x → +∞, then for all r < R
close enough to R

lnµ(r, ϕ) ≥ Φ(r − h(Φ′(r))); (21)

2) if φ(xk+1) ≤ φ(xk)ω(xk+1), where ω is a positive continuous and non-increasing function
on (0,+∞) such that R > φ(x)

ω(x)
→ R as x→ +∞, then for all r < R close enough to R

lnµ(r, ϕ) ≥ Φ
( r

ω(Φ′(r))

)
. (22)

Proof. Since the function Φ(φ(t)) increases we have

Φ−1(G1(xk, xk+1,Φ)) ≥ Φ−1
( xkxk+1

xk+1 − xk
Φ(φ(xk))

∫ xk+1

xk

dx

x2

)
= φ(xk),

Φ−1(G2(xk, xk+1,Φ)) =
1

xk+1 − xk

∫ xk+1

xk

φ(t)dt ≤ φ(xk+1).

Therefore, from (7) and (8) for all r ∈ [φ(xk), φ(xk+1)] we obtain respectively

Φ−1(lnµ(r, ϕ)) ≥ r − (φ(xk+1)− φ(xk)) ≥ r − h(xk+1) ≥ r − h(Φ′(r)),

Φ−1(lnµ(r, ϕ)) ≥ r
ϕ(xk)

ϕ(xk+1)
≥ r

ω(xk+1)
≥ r

ω(Φ′(r))
,

whence the inequalities (21) and (22) follows.
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5. Corollaries. Let L be a class of continuous increasing functions α such that α(x) ≥ 0
for x ≥ x0, α(x) = α(x0) for x ≤ x0 and on [x0,+∞) the function α increases to +∞. We
say that α ∈ L0 if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x→ +∞; further α ∈ Lsi
if α(cx) = (1 + o(1))α(x)) as x→ +∞ for any c ∈ (0,+∞). It is easy to see that Lsi ⊂ L0.

Corollary 1. Let either α ∈ Lsi and β ∈ L0 or α ∈ L0 and β ∈ Lsi and ϕ be an entire
characteristic function of a probability law F such that

β
( 1

xk
ln

1

WF (xk)

)
≤ α(xk) (23)

for some increasing to +∞ sequence (xk) of positive numbers, which satisfies the condition
β−1(cα(xk+1))/β−1(cα(xk))→ 1 as k →∞ for any c ∈ (1,+∞). Then

α
( lnµ(r, ϕ)

r

)
≥ (1 + o(1))β(r), r →∞. (24)

Proof. Let at first α ∈ Lsi, β ∈ L0 and ε ∈ (0, 1) be an arbitrary number. Since β ∈ L0,
we have ([7]) β( x

1−ε) ≤ (1 + δ1(ε))β(x), where δ1(ε) → 0 as ε → 0 and, thus, β−1(x) ≤
(1−ε)β−1((1+δ1(ε))x), and the condition α ∈ Lsi implies α(εx) = (1+o(1))α(x) as x→ +∞,
that is, for any δ2 > 0 and all large enough x the inequality α(εx) ≥ 1

1+δ2
α(x) is true.

Therefore, xβ−1(α(x)) ≤ x(1− ε)β−1((1 + δ1(ε))α(x)) ≤ (1− ε)β−1((1 + δ1(ε))(1 + δ2)α(εx))
for all large enough x. On the other hand∫ x

x0

β−1((1 + δ1(ε))(1 + δ2)α(t))dt ≥
∫ x

εx

β−1((1 + δ1(ε))(1 + δ2)α(t))dt ≥

≥ β−1((1 + δ1(ε))(1 + δ2)α(εx))(1− ε)x.

Hence it follows from (23) that

lnWF (xk) ≥ −xkβ−1(α(xk)) ≥ −(1− ε)β−1((1 + δ1(ε))(1 + δ2)α(εxk)) ≥

≥ −
∫ xk

x0

β−1((1 + δ1(ε))(1 + δ2)α(t))dt (25)

for each ε ∈ (0, 1), δ2 > 0 and all k ≥ k0 = k0(ε, δ2).

We put Φ(r) =
∫ r
r0
α−1
(β(t)

1+δ

)
dt, where 1+δ < (1+δ1(ε))(1+δ2). Then Φ′(r) = α−1

(
β(r)
1+δ

)
,

φ(x) = β−1((1 + δ)α(x)) and

xΨ(φ(x)) =

∫ x

x0

φ(t)dt+ const ≤
∫ x

x0

β−1((1 + δ)α(t))dt+ const ≤

≤
∫ x

x0

β−1((1 + δ1(ε))(1 + δ2)α(t))dt.

Therefore, inequality (25) implies (4) for all large enough k.
Further, since β−1((1+δ)α(xk+1))

β−1((1+δ)α(xk))
→ 1 (k → ∞), there exists a decreasing to 1 continuous

function ω such that φ(xk+1)

φ(xk)
≤ ω(xk+1) for all k. Therefore, by item 2) of Theorem 4 inequality

(22) is true, that is, in view of the condition β ∈ L0 we have

lnµ(r, ϕ) ≥ Φ
( r

ω(Φ(r))

)
= Φ((1 + o(1))r) =

∫ r(1+o(1))

r0

α−1
( β(x)

1 + δ

)
dx ≥

≥
∫ r

(1−ε)r
α−1
( β(x)

(1 + δ)2

)
dx ≥ α−1

(β((1− ε)r)
(1 + δ)2

)
εr
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for all large enough r. Since α ∈ Lsi, β ∈ L0 and the numbers ε, δ2 and δ are arbitrary, from
the latter inequality we easily obtain (24).

If α ∈ L0 and β ∈ Lsi then α((1 − ε)x) ≥ 1
1+δ1(ε)

α(x), where δ1(ε) → 0 as ε → 0 and
β(εx) ≥ 1

1+δ2
β(x) for all large enough x. Therefore, as above∫ x

x0

β−1((1 + δ1(ε))(1 + δ2)α(t))dt ≥ εxβ−1((1 + δ1(ε))(1 + δ2)α((1− ε)x)) ≥

≥ εxβ−1((1 + δ2)α(x)) ≥ xβ−1
( 1

1 + δ2

β(β−1((1 + δ2)α(x))
)

= xβ−1(α(x)).

Hence it follows from (23) that lnWF (xk) ≥ −
∫ xk
x0
β−1((1 + δ1(ε))(1 + δ2)α(t))dt for any

ε ∈ (0, 1), δ2 > 0 and all k ≥ k0 = k0(ε, δ2). Therefore, choosing Φ(r), as above, and
repeating the arguments, we again arrive at inequality (24).

For analytic functions in DR, 0 < R < +∞, the following corollary is an analog of
Corollary 1.

Corollary 2. Let α ∈ Lsi, β ∈ Lsi,
d lnβ−1(α(x))

d lnx
≤ q < 1 for all large enough x and

α
(

x
β−1(α(x))

)
= (1 + o(1))α(x) as x → +∞, and ϕ be an analytic in DR, 0 < R < +∞,

characteristic function of a probability law F , for which

β
( xk

ln(WF (xk)eRxk)

)
≤ α(xk) (26)

for some increasing to +∞ sequence (xk) of positive numbers such that β−1(α(xk+1)) =
O(β−1(α(xk))) as k →∞. Then

α(lnµ(r, ϕ)) ≥ (1 + o(1))β
( 1

R− r

)
, r ↑ R. (27)

Proof. From (26) it follows that lnWF (xk) ≥ −Rxk + xk
β−1(α(xk))

. Since d lnβ−1(α(x))
d lnx

≤ q < 1,

we have x
β−1(α(x))

↑ +∞ (r0 ≤ x→ +∞), and using L’Hospital’s rule it is easy to show that

x

β−1(α(x))
≥ (1 + o(1))(1− q)

∫ x

x0

dt

β−1(α(t))
, x→∞.

Therefore,

lnWF (xk) ≥ −Rxk + (1− q1)

∫ xk

x0

dt

β−1(α(t))
(28)

for any q1 ∈ (q, 1) and all large enough k. We put

Φ(r) =

∫ r

r0

α−1
(
β
(1− q2

R− x

))
dx, (29)

where q2 ∈ (q1, 1). Then Φ′(r) = α−1
(
β
(

1−q2
R−r

))
, φ(x) = R− 1−q2

β−1(α(x))
and

xΨ(φ(x)) = Rx− (1− q2)

∫ x

x0

dt

β−1(α(t))
+ const,
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that is, in view of (28) and q1 < q2 we obtain (4). Since β−1(α(xk+1)) ≤ Kβ−1(α(xk)), K > 1,
for all k ≥ 1, we have 1

β−1(α(xk))
− 1

β−1(α(xk+1))
≤ K−1

β−1(α(xk+1))
. Therefore, if we put h(x) =

(K−1)(1−q2)
β−1(α(x))

then φ(x) − h(x) = R − K(1−q2)
β−1(α(x))

→ R as x → +∞, h(Φ′(r)) = (K − 1)(R − r)
and φ(xk+1)− φ(xk) ≤ h(xk+1) for k ≥ 1.

Finally, for function (29) and r > max{r0, R/2} we have

Φ(r) ≥
∫ r

2r−R
α−1
(
β
(1− q2

R− x

))
dx ≥ (R− r)α−1

(
β
( 1− q2

2(R− r)

))
.

Therefore, by item 1) of Theorem 4

lnµ(r, ϕ) ≥ (R− r + h(Φ′(r)))α−1
(
β
( 1− q2

2(R− r + h(Φ′(r)))

))
=

= K(R− r)α−1
(
β
( 1− q2

2K(R− r)

))
for all r < R close enough to R. But from the condition α( x

β−1(α(x))
) = (1 + o(1))α(x) as

x → +∞ it follows that α(α
−1(β(t))

t
) = (1 + o(1))β(t) as t → ∞ and since α ∈ Lsi, β ∈ Lsi

the last inequality implies (27).

We remark that under the other conditions of Corollary 2 the condition β−1(α(xk+1)) =
= O(β−1 (α(xk))) as k →∞ holds provided xk+1 = O(xk) as k →∞.

The conditions on α and β in Corollary 2 assume that the function α increases slower
than the function β. In the case where α increases quicker than β, the following corollary is
true.

Corollary 3. Let α ∈ Lsi, β ∈ Lsi,
d lnα−1(β(x))

d lnx
≤ q < 1 for all large enough x, dα

−1(β(x))
dx

=
1

f(x)
↓ 0 and α−1(β(f(x))) = O(α−1(β(x))) as x → +∞, and ϕ be an analytic in DR,

0 < R < +∞, characteristic function of a probability law F , for which

α(ln(WF (xk)e
Rxk)) ≥ β(xk) (30)

for some increasing to +∞ sequence (xk) of positive numbers such that lim
k→∞

f(xk+1)

f(xk)
< 2.

Then asymptotical inequality (27) holds.

Proof. If we put xΨ(φ(x)) = Rx−α−1(β(x)) then (30) implies (4) and φ(x) = (xΨ(φ(x)))′ =

R− dα−1(β(x))
dx

= R− 1
f(x)

. Hence it follows that Φ′(r) = f−1( 1
R−r ),

Φ(r)− Φ(r0) =

∫ r

r0

f−1
( 1

R− x

)
dx =

∫ f−1( 1
R−r )

r1

td
(
− 1

f(t)

)
=

= −(R− r)f−1
( 1

R− r

)
+α−1

(
β
(
f−1
( 1

R− r

)))
≥ (1− q)α−1

(
β
(
f−1
( 1

R− r

)))
.

But from the condition α−1(β(f(x))) = O(α−1(β(x))) as x→ +∞ it follows that

α−1
(
β
( 1

R− r

))
≤ Kα−1

(
β
(
f−1
( 1

R− r

)))
,
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where K is a positive constant. Therefore, Φ(r) ≥ K1α
−1(β( 1

R−r )), where K1 is a positive
constant, for all r < R close enough to R, and if h(x) = a(R− φ(x)), 0 < a < 1, then

Φ(r − h(Φ′(r))) ≥ K1α
−1
(
β
( 1

(1 + a)(R− r)

))
. (31)

Under such a choice of the function h the condition φ(xk+1)− φ(xk) ≤ h(xk+1) is equivalent
to the condition f(xk+1) ≤ (1 + a)f(xk), and the latter condition follows from the condition
lim
k→∞

f(xk+1)

f(xk)
< 2. Therefore, by item 1) of Theorem 4 inequality (21) is true and in view of

(31) and the conditions α ∈ Lsi, β ∈ Lsi we obtain (27).

We remark that from Corollaries 1–3 one can obtain analogues of Propositions 1–4, but
we shall not discuss this here.
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