M. I. Parolya, M. M. Sheremeta

ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

M. I. Parolya, M. M. Sheremeta. Estimates from below for characteristic functions of probability laws, Mat. Stud. 39 (2013), 54-66.

Let φ be the characteristic function of a probability law F that is analytic in $\mathbb{D}_{R}=\{z:|z|<$ $R\}, 0<R \leq+\infty, M(r, \varphi)=\max \{|\varphi(z)|:|z|=r<R\}$ and $W_{F}(x)=1-F(x)+F(-x), x \geq 0$. A connection between the growth of $M(r, \varphi)$ and the decrease it of $W_{F}(x)$ is investigated in terms of estimates from below. For entire characteristic functions it is proved, for example, that if $\ln x_{k} \geq \lambda \ln \left(\frac{1}{x_{k}} \ln \frac{1}{W_{F}\left(x_{k}\right)}\right)$ for some increasing sequence $\left(x_{k}\right)$ such that $x_{k+1}=O\left(x_{k}\right), k \rightarrow \infty$, then $\ln \frac{\ln M(r, \varphi)}{r} \geq(1+o(1)) \lambda \ln r$ as $r \rightarrow+\infty$.
М. И. Пароля, М. М. Шеремета. Оценки снизу характеристических функиий вероятностних законов // Мат. Студії. - 2013. - Т.39, №1. - С.54-66.

Пусть φ - аналитическая в $\mathbb{D}_{R}=\{z:|z|<R\}, 0<R \leq+\infty$, характеристическая функция вероятностного закона $\mathrm{F}, M(r, \varphi)=\max \{|\varphi(z)|:|z|=r<R\}$ и $W_{F}(x)=1-$ $-F(x)+F(-x), x \geq 0$. В терминах оценок снизу изучена связь между ростом $M(r, \varphi)$ и убыванием $W_{F}(x)$. Например, для целых характеристических функций доказано, что если $\ln x_{k} \geq \lambda \ln \left(\frac{1}{x_{k}} \ln \frac{1}{W_{F}\left(x_{k}\right)}\right)$ для некоторой возрастающей последовательности $\left(x_{k}\right)$ такой, что $x_{k+1}=O\left(x_{k}\right), k \rightarrow \infty$, то $\ln \frac{\ln M(r, \varphi)}{r} \geq(1+o(1)) \lambda \ln r$ при $r \rightarrow+\infty$.

1. Introduction. A non-decreasing function F continuous on the left on $(-\infty, \infty)$ is said ([1, p. 10]) to be a probability law, if $\lim _{x \rightarrow+\infty} F(-x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$, and the function $\varphi(z)=\int_{-\infty}^{\infty} e^{i z x} d F(x)$ defined for real z is called ([1, p. 12]) a characteristic function of this law. If φ has an analytic continuation on the disk $\mathbb{D}_{R}=\{z:|z|<R\}, 0<R \leq+\infty$, then we call φ an analytic in \mathbb{D}_{R} characteristic function of the law F. Further we always assume that \mathbb{D}_{R} is the maximal disk of the analyticity of φ. It is known that φ is an analytic in \mathbb{D}_{R} characteristic function of the probability law F if and only if for every $r \in[0, R)$

$$
W_{F}(x)=: 1-F(x)+F(-x)=O\left(e^{-r x}\right), x \rightarrow+\infty .
$$

Hence it follows that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \ln \frac{1}{W_{F}(x)}=R
$$

If we put $M(r, \varphi)=\max \{|\varphi(z)|:|z|=r\}$ for $r<R$ then $W_{F}(x) e^{r x} \leq 2 M(r, \varphi)$ for all $x \geq 0$ and $r \in[0, R)$. For $R=+\infty$ this inequality is proved in [1, p.54] and for $R<+\infty$ the proof is analogous. Therefore, if we define (see also [2]) $\mu(r, \varphi)=\sup \left\{W_{F}(x) e^{r x}: x \geq 0\right\}$

2010 Mathematics Subject Classification: 30D99, 60E10.
Keywords: characteristic function, probability law, lower estimate.
then $\mu(r, \varphi) \leq 2 M(r, \varphi)$. Thus, the estimates from below for $\ln M(r, \varphi)$ follow from such estimates for $\ln \mu(r, \varphi)$. For entire characteristic functions N. I. Jakovleva ([3]) proved that, if $\varlimsup_{x \rightarrow+\infty} \frac{\ln \ln \left(1 / W_{F}(x)\right)}{\ln x}=1+\frac{1}{\lambda}$ then $\underset{r \rightarrow+\infty}{\lim } \frac{\ln \ln M(r, \varphi)}{\ln r} \geq 1+\lambda$. Hence it follows that if

$$
\begin{equation*}
\ln x \geq \lambda \ln \left(\frac{1}{x} \ln \frac{1}{W_{F}(x)}\right), x \geq x_{0} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\ln \frac{\ln M(r, \varphi)}{r} \geq(1+o(1)) \lambda \ln r, r \rightarrow+\infty \tag{2}
\end{equation*}
$$

The question arises, whether asymptotical inequality (2) is valid if condition (1) holds not necessarily for all $x \geq x_{0}$ but only for some increasing unbounded sequence $\left(x_{k}\right)$. In view of the inequality $\ln M(r, \varphi) \geq \ln \mu(r, \varphi)-\ln 2$, the following assertion gives a positive answer to this question.

Proposition 1. If there exists an increasing to $+\infty$ sequence $\left(x_{k}\right)$ such that $\ln x_{k} \geq$ $\lambda \ln \left(\frac{1}{x_{k}} \ln \frac{1}{W_{F}\left(x_{k}\right)}\right)$ for all $k \geq 1$ and $x_{k+1}=O\left(x_{k}\right)$ as $k \rightarrow \infty$ then $\ln \frac{\ln \mu(r, \varphi)}{r} \geq(1+o(1)) \lambda \ln r$ as $r \rightarrow+\infty$.

We obtain Proposition 1 from main results proved below for characteristic functions that are entire or analytic in the disk characteristic functions.
2. Auxiliary results. If φ is an entire characteristic function and $\varphi \not \equiv$ const then ([1, p. 45]) $\lim _{r \rightarrow+\infty} r^{-1} \ln M(r, \varphi)=\sigma \in(0,+\infty]$. If $\sigma<+\infty$ then the estimate $\ln M(r, \varphi)$ from below is trivial. It can be shown that $\sigma<+\infty$ provided $W_{F}(x)=0$ for all $x \geq x_{0}$. Therefore we assume in what follows that $W_{F}(x) \neq 0$ for all $x \geq 0$ and, thus, $W_{F}(x) \searrow 0 \quad(x \rightarrow+\infty)$. Then $\frac{\ln \mu(r, \varphi)}{r} \rightarrow+\infty$ as $r \rightarrow+\infty$.

In the case, when $0<R<+\infty$, the function $\mu(r, \varphi)$ may be bounded and it is easy to show that $\ln \mu(r, \varphi) \uparrow+\infty$ as $r \uparrow R$ if and only if

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty} W_{F}(x) e^{R x}=+\infty \tag{3}
\end{equation*}
$$

Further we assume that (3) holds and for the investigation of the growth of $\ln \mu(r, \varphi)$ we use the results from [4]. By $\Omega(0, R), 0<R \leq+\infty$, we denote the class of positive unbounded functions Φ on $\left[r_{0}, R\right)$ for some $r_{0} \in[0, R)$ such that the derivative Φ^{\prime} is positively continuously differentiable and increasing to $+\infty$ on $\left[r_{0}, R\right)$. For $\Phi \in \Omega(0, R)$ let $\Psi(r)=$ $r-\frac{\Phi(r)}{\Phi^{\prime}(r)}$ be a function associated with Φ in the sense of Newton and ϕ be the inverse function to Φ^{\prime}. For the numbers $\Phi^{\prime}\left(r_{0}\right)<a<b<+\infty$ we put

$$
G_{1}(a, b, \Phi)=\frac{a b}{b-a} \int_{a}^{b} \frac{\Phi(\phi(t))}{t^{2}} d t, \quad G_{2}(a, b, \Phi)=\Phi\left(\frac{1}{b-a} \int_{a}^{b} \phi(t) d t\right)
$$

Lemma 1. Let $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F satisfying condition (3) and

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-x_{k} \Psi\left(\phi\left(x_{k}\right)\right) \tag{4}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. Then $\left(\forall r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]\right)$ and ($\forall k \geq k_{0}$) the following estimates are valid

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi(r)-\left(G_{2}\left(x_{k}, x_{k+1}, \Phi\right)-G_{1}\left(x_{k}, x_{k+1}, \Phi\right)\right), \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi(r) \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
& \Phi^{-1}(\ln \mu(r, \varphi)) \geq r-\left(\Phi^{-1}\left(G_{2}\left(x_{k}, x_{k+1}, \Phi\right)\right)-\Phi^{-1}\left(G_{1}\left(x_{k}, x_{k+1}, \Phi\right)\right)\right), \tag{7}\\
& \Phi^{-1}(\ln \mu(r, \varphi)) \geq r \frac{\Phi^{-1}\left(G_{2}\left(x_{k}, x_{k+1}, \Phi\right)\right)}{\Phi^{-1}\left(G_{1}\left(x_{k}, x_{k+1}, \Phi\right)\right)} \tag{8}
\end{align*}
$$

where Φ^{-1} is the inverse function to Φ.
Proof. Let P be an arbitrary function defined on $(0,+\infty)$ and different from $+\infty$ (it can take on the value $-\infty$ but $P \not \equiv-\infty)$ and let $Q(r)=\sup \{P(x)+r x: x \geq 0\},-\infty<r<R$, be the function conjugated to P in the sense of Young. By $\Omega(-\infty, R)$, as in [4], we denote the class of positive unbounded functions on $(-\infty, R)$ such that the derivative Φ^{\prime} is positive continuously differentiable and increasing to $+\infty$ on $(-\infty, R)$. The functions Ψ, ϕ and the quantities $G_{1}(a, b, \Phi), G_{2}(a, b, \Phi)$ we define as above. Then from Theorem 1 in [4] it follows that if $P\left(x_{k}\right) \geq-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers then for all $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ and all $k \geq 1$ the estimates (5)-(8) hold with $Q(r)$ instead of $\ln \mu(r, \varphi)$. It is clear that the functions $\ln \mu(r, \varphi)$ and $\ln W_{F}(x)$ are conjugated in the sense of Young, and in view of the definition of $\Omega(0, R)$ for each function $\Phi \in \Omega(0, R)$ there exists $\Phi_{1} \in \Omega(-\infty, R)$ such that $\Phi_{1}(r)=\Phi(r)$ for $r \in\left[r_{0}, R\right)$. Since $\Psi_{1}(r)=\Psi(r)$ for $r \in\left[r_{0}, R\right)$ and $\phi_{1}(r)=\phi(r)$ for $x \geq x_{0}=x_{0}\left(r_{0}\right)$, Proposition 1 follows from the quoted result in [4].

We note in passing that $([4]) G_{1}(a, b, \Phi)<G_{2}(a, b, \Phi)$ and the following lemma is hold ([4]-[6]).

Lemma 2. For $x>a$ let $G_{*}(x)=G_{2}(a, x, \Phi)-G_{1}(a, x, \Phi), G_{* *}(x)=\frac{G_{2}(a, x, \Phi)}{G_{1}(a, x, \Phi)}$ and for $x \in[a, b)$ let $G^{*}(x)=G_{2}(x, b, \Phi)-G_{1}(x, b, \Phi), G^{* *}(x)=\frac{G_{2}(x, b, \Phi)}{G_{1}(x, b, \Phi)}$. Then the functions G_{*} and $G_{* *}$ are increasing on $(a,+\infty)$ and the functions G^{*} and $G^{* *}$ are decreasing on (a, b).
3. Estimates from below of $\ln \mu(r, \varphi)$ for the functions of finite order. We begin with a theorem, which is a generalization of Proposition 1.

Theorem 1. Let φ be an entire characteristic function of a probability law F such that

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-\frac{\rho-1}{\rho}\left(\frac{1}{T \rho}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}, \quad \rho>1, T>0 \tag{9}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. Then

1) if $x_{k+1}-x_{k} \leq h\left(x_{k}\right)$ for $k \geq 1$, where the function h is positive continuous and nondecreasing on $[0,+\infty)$ and $h(x)=o(x)$ as $x \rightarrow+\infty$, then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \operatorname{Tr}^{\rho}-\frac{(1+o(1))}{8 T \rho(\rho-1)} r^{2-\rho} h^{2}\left(T \rho r^{\rho-1}\right), r \rightarrow+\infty ; \tag{10}
\end{equation*}
$$

2) if $x_{k+1} \leq x_{k} \omega\left(x_{k+1}\right)$ for $k \geq 1$, where the function ω is continuous and non-decreasing on $[0,+\infty)$ and $\omega(x)>1$ for all $x \geq 0$, then for all large enough r

$$
\ln \mu(r, \varphi) \geq \frac{T \rho^{\rho} r^{\rho}}{(\rho-1)^{\rho-1}} f\left(\omega\left(T \rho r^{\rho-1}\right)\right), \quad f(\omega)=\frac{\omega(\omega-1)^{\rho-1}\left(\omega^{\frac{1}{\rho-1}}-1\right)}{\left(\omega^{\frac{\rho}{\rho-1}}-1\right)^{\rho}}
$$

Proof. It is easy to check that for the function $\Phi(r)=\operatorname{Tr}^{\rho}$ with $\rho>1$ the following equalities are true $\phi(x)=\left(\frac{x}{\rho T}\right)^{\frac{1}{\rho-1}}, x \Psi(\phi(x))=\frac{\rho-1}{\rho}\left(\frac{1}{T \rho}\right)^{\frac{1}{\rho-1}} x^{\frac{\rho}{\rho-1}}$,

$$
\begin{aligned}
G_{1}(a, b, \Phi) & =(\rho-1)\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} \frac{a b}{b-a}\left(b^{\frac{1}{\rho-1}}-a^{\frac{1}{\rho-1}}\right), \\
G_{2}(a, b, \Phi) & =(\rho-1)^{\rho}\left(\frac{1}{T \rho^{\rho^{2}}}\right)^{\frac{1}{\rho-1}}\left(\frac{b^{\frac{\rho}{\rho-1}}-a^{\frac{\rho}{\rho-1}}}{b-a}\right)^{\rho} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)=(\rho-1)\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right) \frac{x_{k}}{h\left(x_{k}\right)}\left(\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right)^{\frac{1}{\rho-1}}-1\right)= \\
=(\rho-1)\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right) \frac{x_{k}}{h\left(x_{k}\right)} \times \\
\times\left\{\frac{1}{\rho-1} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{2-\rho}{2(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+\frac{(2-\rho)(3-2 \rho)}{6(\rho-1)^{3}} \frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}+O\left(\frac{h^{4}\left(x_{k}\right)}{x_{k}^{4}}\right)\right\}= \\
=\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right)\left\{1+\frac{2-\rho}{2(\rho-1)} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{(2-\rho)(3-2 \rho)}{6(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+\right. \\
\left.+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}=\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left\{1+\frac{\rho}{2(\rho-1)} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{\rho(2-\rho)}{6(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}, \\
G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)=(\rho-1)^{\rho}\left(\frac{1}{T \rho^{\rho^{2}}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho^{2}}{\rho-1}} \frac{1}{h\left(x_{k}\right)^{\rho}}\left\{\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right)^{\frac{\rho}{\rho-1}}-1\right\}^{\rho}= \\
=(\rho-1)^{\rho}\left(\frac{1}{T \rho^{\rho^{2}}}\right)^{\frac{1}{\rho-1}} \frac{x_{k}^{\frac{\rho^{2}}{\rho-1}}}{h\left(x_{k}\right)^{\rho}}\left\{\frac{\rho}{\rho-1} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{\rho}{2(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+\frac{\rho(2-\rho)}{6(\rho-1)^{2}} \frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}+\right. \\
\left.+O\left(\frac{h^{4}\left(x_{k}\right)}{x_{k}^{4}}\right)\right\}^{\rho}=\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left\{1+\frac{1}{2(\rho-1)} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{2-\rho}{6(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+\right. \\
\left.+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}^{\rho}=\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left\{1+\frac{\rho}{2(\rho-1)} \frac{h\left(x_{k}\right)}{x_{k}}+\frac{\rho(5-\rho)}{24(\rho-1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\},
\end{gathered}
$$

as $k \rightarrow \infty$. Hence in view of the condition $x_{k+1}-x_{k} \leq h\left(x_{k}\right)$ by Lemma 2 we have

$$
\begin{aligned}
& G_{2}\left(x_{k}, x_{k+1}, \Phi\right)-G_{1}\left(x_{k}, x_{k+1}, \Phi\right) \leq G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)-G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)= \\
= & \left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}}\left(\frac{\rho}{8(\rho-1)} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right)=\frac{\rho(1+o(1))}{8(\rho-1)}\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} x_{k}^{\frac{\rho}{\rho-1}-2} h^{2}\left(x_{k}\right),
\end{aligned}
$$

as $k \rightarrow \infty$, and since (9) implies (4) (see inequality (5))

$$
\ln \mu(r, \varphi) \geq \operatorname{Tr}^{\rho}-\frac{(1+o(1))}{8(\rho-1)}\left(\frac{1}{T \rho}\right)^{\frac{1}{\rho-1}} h^{2}\left(x_{k}\right) x_{k}^{\frac{2-\rho}{\rho-1}}, k \rightarrow \infty,
$$

for all $r \in\left[\left(x_{k} / T \rho\right)^{\frac{1}{\rho-1}},\left(x_{k+1} / T \rho\right)^{\frac{1}{\rho-1}}\right], k \geq k_{0}$. For such r we have $x_{k} \leq T \rho r^{\rho-1} \leq x_{k+1}$ and since the function h is non-decreasing and $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ then $\ln \mu(r, \varphi) \geq$ $T r^{\rho}-\frac{\rho(1+o(1))}{8(\rho-1)}\left(\frac{1}{T \rho}\right)^{\frac{1}{\rho-1}} h^{2}\left(T \rho r^{\rho-1}\right)\left(T \rho r^{\rho-1}\right)^{\frac{2-\rho}{\rho-1}}$ as $r \rightarrow+\infty$, whence (10) follows. The first part of Theorem 1 is proved.

For the proof of the second part we remark that

$$
G_{1}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right)=(\rho-1)\left(\frac{1}{T \rho^{\rho}}\right)^{\frac{1}{\rho-1}} \frac{x_{k+1}^{\frac{\rho}{\rho-1}}}{\omega\left(x_{k+1}\right)-1} \frac{\omega^{\frac{1}{\rho-1}}\left(x_{k+1}\right)-1}{\omega^{\frac{1}{\rho-1}}\left(x_{k+1}\right)}
$$

$$
G_{2}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right)=(\rho-1)^{\rho}\left(\frac{1}{T \rho^{\rho^{2}}}\right)^{\frac{1}{\rho-1}} \frac{x_{k+1}^{\frac{\rho}{\rho-1}}}{\omega^{\frac{\rho}{\rho-1}}\left(x_{k+1}\right)}\left(\frac{\omega^{\frac{1}{\rho-1}}\left(x_{k+1}\right)-1}{\omega\left(x_{k+1}\right)-1}\right)^{\rho}
$$

that is, by Lemma 2 in view of the condition $t_{k+1} \leq t_{k} \omega\left(t_{k+1}\right)$ we have

$$
\frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \geq \frac{G_{1}\left(x_{k+1} / \omega\left(x_{k+1}\right), x_{k+1}, \Phi\right)}{G_{2}\left(x_{k+1} / \omega\left(x_{k+1}\right), x_{k+1}, \Phi\right)}=\frac{\rho^{\rho}}{(\rho-1)^{\rho-1}} f\left(\omega\left(t_{k+1}\right)\right)
$$

Therefore, by Lemma $1 \ln \mu(r, \varphi) \geq \operatorname{Tr}^{\rho} \frac{\rho^{\rho}}{(\rho-1)^{\rho-1}} f\left(\omega\left(x_{k+1}\right)\right)$ for all r such as in the proof of the first part. Since $\omega\left(x_{k+1}\right) \leq \omega\left(T \rho r^{\rho-1}\right)$ we need to prove that the function $f(\omega)$ is decreasing on $[1,+\infty)$. It is easy to check that $f(\omega)=\xi^{\rho-1}(\omega)-\xi^{\rho}(\omega)$, where the function $\xi(\omega)=\frac{\omega-1}{\omega^{\rho-1}-1}$ decreases to 0 on $(1,+\infty)$ and $\xi(\omega) \uparrow \frac{\rho-1}{\rho}$ as $\omega \downarrow 1, \frac{\rho-1}{\rho} \geq \xi(\omega)>0$ and $\xi^{\prime}(\omega)<0$ on $[1,+\infty)$. Hence it follows that $f^{\prime}(\omega)=\rho \xi^{\rho-2}(\omega)\left(\frac{\rho-1}{\rho}-\xi(\omega)\right) \xi^{\prime}(\omega)<0$, i. e. f is a decreasing function. The second part of Theorem 1 is proved.

Now we prove Proposition 1. By its assumption, $\ln W_{F}(x) \leq-x^{\frac{\lambda+1}{\lambda}}$. Let $\rho>1$ be an arbitrary number such that $\frac{\lambda+1}{\lambda}>\frac{\rho}{\rho-1}$. Then for every large enough k inequality (9) holds with $T=1$. Since $x_{k+1}=O\left(x_{k}\right)$ as $k \rightarrow \infty$ we have $x_{k+1} \leq K x_{k}$, that is, the assumptions of Proposition 1 hold with $\omega(x)=K>1$, and by Theorem $1 \ln \mu(r, \varphi) \geq A r^{\rho}$ for all large enough r, where A is a positive constant, whence it follows that $\ln \frac{\ln \mu(r, \varphi)}{r} \geq(\rho-1) \ln r+\ln A$. Letting here ρ to $\lambda+1$ we obtain the desired asymptotical inequality. Proposition 1 is proved.

From Theorem 1 the following proposition also follows.
Proposition 2. If there exists an increasing to $+\infty$ sequence (x_{k}) such that (9) holds and $x_{k+1} / x_{k} \rightarrow 1(k \rightarrow \infty)$ then $\ln M(r, \varphi) \geq(1+o(1)) T r^{\rho}$ as $r \rightarrow+\infty$.

Indeed, since $x_{k+1} \leq \omega x_{k}$ for an arbitrary $\omega>1$ and all $k \geq k_{0}(\omega)$, by proposition 2) of Theorem 1 we have $\ln \mu(r, \varphi) \geq \operatorname{Tr}^{\rho} \frac{\rho^{\rho}}{(\rho-1)^{\rho-1}} f(\omega)$. Since $\lim _{\omega \downarrow 1} f(\omega)=\frac{(\rho-1)^{\rho-1}}{\rho^{\rho}}$ we obtain hence the desired asymptotical inequality.

For analytic in \mathbb{D}_{R} function the following theorem is an analog of Theorem 1.
Theorem 2. Let φ be an analytic in $\mathbb{D}_{R}, 0<R<+\infty$, characteristic function of probability law F such that

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-R x_{k}+\frac{\rho+1}{\rho}(T \rho)^{\frac{\rho}{\rho+1}} x_{k}^{\frac{\rho}{\rho+1}}, \rho>0, T>0 \tag{11}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. Then

1) if $\left(x_{k}\right)$ satisfies the assumption of proposition 1) of Theorem 1 then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \frac{T}{(R-r)^{\rho}}-\frac{(1+o(1))}{8 T \rho(\rho+1)}(R-r)^{\rho+2} h^{2}\left(\frac{T \rho}{(R-r)^{\rho+1}}\right), r \uparrow R \tag{12}
\end{equation*}
$$

2) if $\left(x_{k}\right)$ satisfies the assumption of proposition 2) of Theorem 1, then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \frac{T(\rho+1)^{\rho+1}}{\rho^{\rho}(R-r)^{\rho}} f\left(\omega\left(\frac{T \rho}{(R-r)^{\rho+1}}\right)\right), \quad f(\omega)=\frac{\left(\omega^{\frac{1}{\rho+1}}-1\right)\left(\omega^{\frac{\rho}{\rho+1}}-1\right)^{\rho}}{\omega^{\frac{\rho}{\rho+1}}(\omega-1)^{\rho+1}} \tag{13}
\end{equation*}
$$

Proof. It is easy to check that for the function $\Phi(r)=T(R-r)^{-\rho}$ we have $\phi(x)=$ $=R-\left(\frac{T \rho}{x}\right)^{\frac{1}{\rho+1}}, x \Psi(\phi(x))=R x-\frac{\rho+1}{\rho}(T \rho)^{\frac{1}{\rho+1}} x^{\frac{\rho}{\rho+1}}, G_{1}(a, b, \Phi)=(\rho+1)\left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}} \frac{a b}{b-a}\left(a^{-\frac{1}{\rho+1}}-\right.$ $b^{-\frac{1}{\rho+1}}$) and $G_{2}(a, b, \Phi)=\frac{\left(T \rho^{\rho}\right)^{\frac{1}{\rho+1}}}{(\rho+1)^{\rho}}\left(\frac{b-a}{b^{\rho}{ }^{\rho+1}-a^{\rho}{ }^{\rho+1}}\right)^{\rho}$. Therefore, as in the proof of Theorem 1, it is possible to show that $G_{1}\left(t_{k}, t_{k}+h\left(t_{k}\right), \Phi\right)=\left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}} x_{k}^{\frac{\rho}{\rho+1}}\left\{1-\frac{\rho}{2(\rho+1)} \frac{h\left(x_{k}\right)}{x_{k}}-\frac{\rho(2+\rho)}{6(\rho+1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+\right.$ $\left.+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}, G_{2}\left(t_{k}, t_{k}+h\left(t_{k}\right), \Phi\right)=\left(\frac{T}{\rho^{2}}\right)^{\frac{1}{\rho+1}} x_{k}^{\frac{\rho}{\rho+1}}\left\{1-\frac{\rho}{2(\rho+1)} \frac{h\left(x_{k}\right)}{x_{k}}-\frac{\rho(5+\rho)}{24(\rho+1)^{2}} \frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}$ and, thus, $G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)-G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)=\frac{1+o(1)}{8(\rho+1)}(T \rho)^{\frac{1}{\rho+1}} h^{2}\left(x_{k}\right) x_{k}^{-\frac{\rho+2}{\rho+1}}$, as $k \rightarrow \infty$, whence in view of the condition $x_{k+1} \leq x_{k}+h\left(x_{k}\right)$ and lemmas 1 and 2 we obtain

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \frac{T}{(R-r)^{\rho}}-\frac{(T \rho)^{\frac{1}{\rho+1}}(1+o(1))}{8(\rho+1)} h^{2}\left(x_{k}\right) x_{k}^{-\frac{\rho+2}{\rho+1}}, \quad k \rightarrow \infty \tag{14}
\end{equation*}
$$

for all $r \in\left[R-\left(T \rho / x_{k}\right)^{\frac{1}{\rho+1}}, R-\left(T \rho / x_{k+1}\right)^{\frac{1}{\rho+1}}\right]$ and all large enough k. For such r we have $x_{k} \leq \frac{T \rho}{(R-r)^{\rho+1}} \leq x_{k+1}$ and since the function h is non-decreasing and $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ (14) implies (12). The first part of Theorem 2 is proved.

We prove the second part. Since

$$
\begin{gathered}
G_{1}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right)=(\rho+1)\left(\frac{T}{\rho^{\rho}}\right)^{\frac{1}{\rho+1}} x_{k+1}^{\frac{\rho}{\rho+1}} \frac{\omega^{\frac{1}{\rho+1}}\left(x_{k+1}\right)-1}{\omega\left(x_{k+1}\right)-1}, \\
G_{2}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right)=\frac{\left(T \rho^{\rho^{2}}\right)^{\frac{1}{\rho+1}}}{(\rho+1)^{\rho}} x_{k+1}^{\frac{\rho}{\rho+1}} \frac{\omega^{\frac{\rho}{\rho+1}}\left(x_{k+1}\right)\left(\omega\left(x_{k+1}\right)-1\right)^{\rho}}{\left(\omega^{\frac{\rho}{\rho+1}}\left(x_{k+1}\right)-1\right)^{\rho}},
\end{gathered}
$$

we have

$$
\frac{G_{1}\left(x_{k+1} / \omega\left(x_{k+1}\right), x_{k+1}, \Phi\right)}{G_{2}\left(x_{k+1} / \omega\left(x_{k+1}\right), x_{k+1}, \Phi\right)}=\frac{(\rho+1)^{\rho+1}}{\rho^{\rho}} f\left(\omega\left(x_{k+1}\right)\right)
$$

and by Lemmas 1 and $2 \ln \mu(r, \varphi) \geq \frac{T}{(R-r)^{\rho}} \frac{(\rho+1)^{\rho+1}}{\rho^{\rho}} f\left(\omega\left(x_{k+1}\right)\right)$ for all r such as in Proposition 1) of this theorem. Since $\omega\left(x_{k+1}\right) \leq \omega\left(\frac{T \rho}{(R-r)^{\rho+1}}\right)$ we need to prove, as above, that the function f is decreasing on $[1,+\infty)$. So, $f(\omega)=\frac{1}{\omega^{\frac{\rho}{\rho+1}}}\left(\frac{\omega^{\frac{\rho}{\rho+1}}-1}{\omega-1}\right)^{\rho} \frac{\omega^{\frac{1}{\rho+1}}-1}{\omega-1}$ and every factor is a decreasing function.

From Theorem 2 the following two propositions follow.
Proposition 3. If a probability law F satisfies the condition

$$
\begin{equation*}
\ln \ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq \frac{\lambda}{\lambda+1} \ln x_{k}, \quad \lambda>0 \tag{15}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers and $x_{k+1}=O\left(x_{k}\right), k \rightarrow \infty$, then for its characteristic function φ we have the following asymptotic inequality

$$
\begin{equation*}
\ln \ln M(r, \varphi) \geq(1+o(1)) \lambda \ln \frac{1}{R-r}, \quad r \uparrow R . \tag{16}
\end{equation*}
$$

Indeed, (15) implies $\ln W_{F}\left(x_{k}\right) \geq-R x_{k}+x_{k}^{\frac{\lambda}{\lambda+1}} \geq-R x_{k}+\frac{\rho+1}{\rho} \rho^{\frac{1}{\rho+1}} x_{k}^{\frac{\rho}{\rho+1}}$ for every $\rho<\lambda$ and all large enough k, that is, (11) holds and since $x_{k+1} \leq K x_{k}$ for all k by item 2) of Theorem 2 we have $\ln \mu(r, \varphi) \geq \frac{A}{(R-r)^{\rho}}$, where A is a positive constant, whence $\ln \ln \mu(r, \varphi) \geq$ $\rho \ln \frac{1}{R-r}+O(1), r \uparrow R$. In view of the arbitrariness of ρ we obtain (16).

Proposition 4. If for a probability law F condition (11) holds and $x_{k+1}=(1+o(1)) x_{k}$ as $k \rightarrow \infty$ then $\ln M(r, \varphi) \geq \frac{(1+o(1))^{\prime}}{(R-r)^{\rho}}$ as $r \uparrow R$.

Proposition 4 easy follows from item 2) of Theorem 2, because $\lim _{\omega \downarrow 1} f(\omega)=\frac{\rho^{\rho}}{(\rho+1)^{\rho+1}}$. We remark that if in item 1) of Theorems $1-2 x_{k+1}-x_{k}=h \equiv$ const and in item 2) of these theorems $x_{k+1} / x_{k}=\omega \equiv$ const then we need not use Lemma 2, that is, we need not estimate of $G_{2}-G_{1}$ and G_{1} / G_{2}. Therefore, in view of the optimality of estimates (5) and (6), which we used in the proof of theorems $1-2$, in the cases where $x_{k+1}-x_{k}=h$ and $x_{k+1} / x_{k}=\omega$ estimates (10), (12) and corresponding (1), (13) are unimprovable.
4. Generalized results. Since we not always can find G_{1} and G_{2} in an explicit way, the following theorem is useful.

Theorem 3. Let $0<R \leq+\infty, \Phi \in \Omega(0, R)$ be such that $\Phi(r) \Phi^{\prime}(r)^{-1-\eta}$ non-increase on $\left[r_{0}, R\right)$ for some $r_{0} \in(0, R)$ and $\eta \in[0,+\infty)$, let φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F, which satisfies condition (3) and let inequality (4) hold for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. Then

1) if $x_{k+1}-x_{k} \leq h\left(x_{k}\right), k \geq 1$, where a positive and continuous on $(0,+\infty)$ function h is such that $h(x)=o(x)$ as $x \rightarrow \infty$, the function $x+h(x)$ increases and the function $x^{\eta} h(x)$ non-decreases on $(0,+\infty)$, then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi(r)-(1+o(1)) \frac{1+\eta}{2} \frac{\Phi(r)}{\Phi^{\prime}(r)} h\left(\Phi^{\prime}(r)\right), \quad r \uparrow R ; \tag{17}
\end{equation*}
$$

2) if $x_{k+1} \leq x_{k} \omega\left(x_{k+1}\right), k \geq 1$, where a continuous and non-decreasing on $(0,+\infty)$ function ω is such that $\omega(x)>1$ for $x>0$, then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \frac{\omega^{\eta}\left(\Phi^{\prime}(r)\right)-1}{\eta \omega^{\eta}\left(\Phi^{\prime}(r)\right)\left(\omega\left(\Phi^{\prime}(r)\right)-1\right)} \Phi(r) \tag{18}
\end{equation*}
$$

for all $r<R$ close enough to R.
Proof. At first we assume that $\eta>0$ and prove item 1). From the non-increase of $\frac{\Phi(r)}{\Phi^{\prime}(r)^{1+\eta}}$ we have

$$
\begin{aligned}
& G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)=\frac{x_{k}\left(x_{k}+h\left(x_{k}\right)\right)}{h\left(x_{k}\right)} \int_{x_{k}}^{x_{k}+h\left(x_{k}\right)} \frac{\Phi(\phi(x))}{x^{1+\eta}} x^{\eta-1} d x \geq \\
& \geq \frac{x_{k}\left(x_{k}+h\left(x_{k}\right)\right)}{h\left(x_{k}\right)} \frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{1+\eta}} \frac{\left.\left(x_{k}+h\left(x_{k}\right)\right)^{\eta}-x_{k}^{\eta}\right)}{\eta}= \\
& =\frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{\eta}} \frac{x_{k}^{1+\eta}}{\eta h\left(x_{k}\right)}\left\{\left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right)^{\eta}-1\right\}= \\
& =\frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{\eta}} \frac{x_{k}^{1+\eta}}{\eta h\left(x_{k}\right)}\left\{\frac{\eta h\left(x_{k}\right)}{x_{k}}+\frac{\eta(\eta-1) h^{2}\left(x_{k}\right)}{2 x_{k}^{2}}+O\left(\frac{h^{3}\left(x_{k}\right)}{x_{k}^{3}}\right)\right\}= \\
& =\frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{\eta}} x_{k}^{\eta}\left\{1+\frac{(\eta-1) h\left(x_{k}\right)}{2 x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right\}, \quad k \rightarrow \infty, \\
& G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)=\Phi\left(\frac{1}{h\left(x_{k}\right)} \int_{x_{k}}^{x_{k}+h\left(x_{k}\right)} \phi(t) d t\right) \leq \Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)-G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right) \leq \\
\leq \Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)\left\{1-\left(\frac{x_{k}}{x_{k}+h\left(x_{k}\right)}\right)^{\eta}\left(1+\frac{(\eta-1) h\left(x_{k}\right)}{2 x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right)\right\}= \\
=\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)\left\{1-\frac{1+\frac{(\eta-1) h\left(x_{k}\right)}{2 x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)}{1+\eta \frac{h\left(x_{k}\right)}{x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)}\right\}=\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right) \times \\
\times\left\{1-\left(1+\frac{(\eta-1) h\left(x_{k}\right)}{2 x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right)\left(1-\frac{\eta h\left(x_{k}\right)}{x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right)\right\}= \\
=\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)\left\{\frac{1+\eta}{2} \frac{h\left(x_{k}\right)}{x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right\}= \\
=\frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{1+\eta}} \frac{1+\eta}{2} h\left(x_{k}\right) x_{k}^{\eta}(1+o(1)), \quad k \rightarrow \infty .
\end{gathered}
$$

Hence in view of the condition $x_{k+1} \leq x_{k}+h\left(x_{k}\right)$ using Lemma 2 (growth of G_{*}) and inequality (5) we obtain

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi(r)-\frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{\left(x_{k}+h\left(x_{k}\right)\right)^{1+\eta}} \frac{1+\eta}{2} x_{k}^{\eta} h\left(x_{k}\right)(1+o(1)), \quad k \rightarrow \infty, \tag{19}
\end{equation*}
$$

for all $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$. Since $\Phi(\varphi(t)) t^{-\eta-1}$ non-increases, $x^{\eta} h(x)$ non-decreases and the inequalities $\phi\left(x_{k}\right) \leq r \leq \phi\left(x_{k+1}\right)$ imply the inequalities $x_{k} \leq \Phi^{\prime}(r) \leq x_{k+1}$, we obtain

$$
\begin{gathered}
\ln \mu(r, \varphi) \geq \Phi(r)-\frac{\Phi\left(\phi\left(x_{k}\right)\right)}{x_{k}^{1+\eta}} \frac{1+\eta}{2} x_{k}^{\eta} h\left(x_{k}\right)(1+o(1)) \geq \\
\geq \Phi(r)-\frac{\Phi(r)}{\Phi^{\prime}(r)^{1+\eta}} \frac{1+\eta}{2} \Phi^{\prime}(r)^{\eta} h\left(\Phi^{\prime}(r)\right)(1+o(1))
\end{gathered}
$$

i.e., inequality (17) holds.

If $\eta=0$ then by analogy we have

$$
\begin{gathered}
G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right) \geq \frac{x_{k}\left(x_{k}+h\left(x_{k}\right)\right)}{h\left(x_{k}\right)} \frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{x_{k}+h\left(x_{k}\right)} \ln \left(1+\frac{h\left(x_{k}\right)}{x_{k}}\right)= \\
=\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)\left(1-\frac{h\left(x_{k}\right)}{2 x_{k}}+O\left(\frac{h^{2}\left(x_{k}\right)}{x_{k}^{2}}\right)\right), \quad k \rightarrow \infty, \\
G_{2}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right)-G_{1}\left(x_{k}, x_{k}+h\left(x_{k}\right), \Phi\right) \leq \frac{\Phi\left(\phi\left(x_{k}+h\left(x_{k}\right)\right)\right)}{x_{k}+h\left(x_{k}\right)} \frac{h\left(x_{k}\right)}{2}(1+o(1)), k \rightarrow \infty,
\end{gathered}
$$

whence we obtain (19) with $\eta=0$. Hence, as above estimate (17) follows. The first part of Theorem 3 is proved.

We prove second part. For $\eta>0$ we have

$$
\begin{gathered}
G_{1}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right)=\frac{x_{k+1}}{\omega\left(x_{k+1}\right)-1} \int_{\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}}^{x_{k+1}} \frac{\Phi(\phi(x))}{x^{1+\eta}} x^{\eta-1} d x \geq \\
\geq \frac{x_{k+1}}{\omega\left(x_{k+1}\right)-1} \frac{\Phi\left(\phi\left(x_{k+1}\right)\right)}{x_{k+1}^{1+\eta}} \frac{1}{\eta}\left(x_{k+1}^{\eta}-\frac{x_{k+1}^{\eta}}{\omega^{\eta}\left(x_{k+1}\right)}\right)=\frac{\Phi\left(\phi\left(x_{k+1}\right)\right)}{\eta\left(\omega\left(x_{k+1}\right)-1\right)}\left(1-\frac{1}{\omega^{\eta}\left(x_{k+1}\right)}\right), \\
G_{2}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right) \leq \Phi\left(\phi\left(x_{k+1}\right)\right) .
\end{gathered}
$$

Therefore, in view of the condition $x_{k+1} \leq x_{k} \omega\left(x_{k+1}\right)$ using Lemma 2 and inequality (6) for all $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ and all $k \geq k_{0}$ we have

$$
\ln \mu(r, \phi) \geq \Phi(r) \frac{\omega^{\eta}\left(x_{k+1}\right)-1}{\eta \omega^{\eta}\left(x_{k+1}\right)\left(\omega\left(x_{k+1}\right)-1\right)} \geq \Phi(r) \frac{\omega^{\eta}\left(\Phi^{\prime}(r)\right)-1}{\eta \omega^{\eta}\left(\Phi^{\prime}(r)\right)\left(\omega\left(\Phi^{\prime}(r)\right)-1\right)},
$$

because the function $f(x)=\frac{x^{\eta}-1}{x^{\eta}(x-1)}$ decreases on $[1,+\infty)$ and $x_{k+1} \geq \Phi^{\prime}(r)$. The inequality (18) is proved.

If $\eta=0$ then, by analogy, we have

$$
G_{1}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right) \geq \frac{x_{k+1}}{\omega\left(x_{k+1}\right)-1} \frac{\Phi\left(\phi\left(x_{k+1}\right)\right)}{x_{k+1}} \ln \omega\left(x_{k+1}\right)=\Phi\left(\phi\left(x_{k+1}\right)\right) \frac{\ln \omega\left(x_{k+1}\right)}{\omega\left(x_{k+1}\right)-1}
$$

and in view of the estimates $G_{2}\left(\frac{x_{k+1}}{\omega\left(x_{k+1}\right)}, x_{k+1}, \Phi\right) \leq \Phi\left(\phi\left(x_{k+1}\right)\right)$, as above, we obtain

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi(r) \frac{\ln \omega\left(x_{k+1}\right)}{\omega\left(x_{k+1}\right)-1} \geq \Phi(r) \frac{\ln \omega\left(\Phi^{\prime}(r)\right)}{\omega\left(\Phi^{\prime}(r)\right)-1} \tag{20}
\end{equation*}
$$

for all $r<R$ close enough to R. Since $\frac{\omega^{\eta}-1}{\eta \omega^{\eta}(\omega-1)} \rightarrow \frac{\ln \omega}{\omega-1}$ as $\eta \rightarrow 0$ estimate (20) coincides with estimate (18) with $\eta=0$.

The condition of the non-increase of $\Phi(r)\left(\Phi^{\prime}(r)\right)^{-1-\eta}$ can be removed if we use estimates (7) and (8) from Lemma 1. We get the following theorem.

Theorem 4. Let $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and φ be an analytic characteristic function of a probability law, which satisfies conditions (3) and (4) for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. Then

1) if $\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)$, where h is a positive continuous and non-increasing function on $(0,+\infty)$ such that $R>\phi(x)-h(x) \rightarrow R$ as $x \rightarrow+\infty$, then for all $r<R$ close enough to R

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi\left(r-h\left(\Phi^{\prime}(r)\right)\right) \tag{21}
\end{equation*}
$$

2) if $\phi\left(x_{k+1}\right) \leq \phi\left(x_{k}\right) \omega\left(x_{k+1}\right)$, where ω is a positive continuous and non-increasing function on $(0,+\infty)$ such that $R>\frac{\phi(x)}{\omega(x)} \rightarrow R$ as $x \rightarrow+\infty$, then for all $r<R$ close enough to R

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi\left(\frac{r}{\omega\left(\Phi^{\prime}(r)\right)}\right) \tag{22}
\end{equation*}
$$

Proof. Since the function $\Phi(\phi(t))$ increases we have

$$
\begin{gathered}
\Phi^{-1}\left(G_{1}\left(x_{k}, x_{k+1}, \Phi\right)\right) \geq \Phi^{-1}\left(\frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}} \Phi\left(\phi\left(x_{k}\right)\right) \int_{x_{k}}^{x_{k+1}} \frac{d x}{x^{2}}\right)=\phi\left(x_{k}\right), \\
\Phi^{-1}\left(G_{2}\left(x_{k}, x_{k+1}, \Phi\right)\right)=\frac{1}{x_{k+1}-x_{k}} \int_{x_{k}}^{x_{k+1}} \phi(t) d t \leq \phi\left(x_{k+1}\right)
\end{gathered}
$$

Therefore, from (7) and (8) for all $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ we obtain respectively

$$
\begin{gathered}
\Phi^{-1}(\ln \mu(r, \varphi)) \geq r-\left(\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right)\right) \geq r-h\left(x_{k+1}\right) \geq r-h\left(\Phi^{\prime}(r)\right), \\
\Phi^{-1}(\ln \mu(r, \varphi)) \geq r \frac{\varphi\left(x_{k}\right)}{\varphi\left(x_{k+1}\right)} \geq \frac{r}{\omega\left(x_{k+1}\right)} \geq \frac{r}{\omega\left(\Phi^{\prime}(r)\right)}
\end{gathered}
$$

whence the inequalities (21) and (22) follows.
5. Corollaries. Let L be a class of continuous increasing functions α such that $\alpha(x) \geq 0$ for $x \geq x_{0}, \alpha(x)=\alpha\left(x_{0}\right)$ for $x \leq x_{0}$ and on $\left[x_{0},+\infty\right)$ the function α increases to $+\infty$. We say that $\alpha \in L^{0}$ if $\alpha \in L$ and $\alpha((1+o(1)) x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$; further $\alpha \in L_{\text {Si }}$ if $\alpha(c x)=(1+o(1)) \alpha(x))$ as $x \rightarrow+\infty$ for any $c \in(0,+\infty)$. It is easy to see that $L_{\mathrm{si}} \subset L^{0}$. Corollary 1. Let either $\alpha \in L_{\mathrm{Si}}$ and $\beta \in L^{0}$ or $\alpha \in L^{0}$ and $\beta \in L_{\mathrm{Si}}$ and φ be an entire characteristic function of a probability law F such that

$$
\begin{equation*}
\beta\left(\frac{1}{x_{k}} \ln \frac{1}{W_{F}\left(x_{k}\right)}\right) \leq \alpha\left(x_{k}\right) \tag{23}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers, which satisfies the condition $\beta^{-1}\left(c \alpha\left(x_{k+1}\right)\right) / \beta^{-1}\left(c \alpha\left(x_{k}\right)\right) \rightarrow 1$ as $k \rightarrow \infty$ for any $c \in(1,+\infty)$. Then

$$
\begin{equation*}
\alpha\left(\frac{\ln \mu(r, \varphi)}{r}\right) \geq(1+o(1)) \beta(r), \quad r \rightarrow \infty \tag{24}
\end{equation*}
$$

Proof. Let at first $\alpha \in L_{\mathrm{si}}, \beta \in L^{0}$ and $\varepsilon \in(0,1)$ be an arbitrary number. Since $\beta \in L^{0}$, we have $([7]) \beta\left(\frac{x}{1-\varepsilon}\right) \leq\left(1+\delta_{1}(\varepsilon)\right) \beta(x)$, where $\delta_{1}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and, thus, $\beta^{-1}(x) \leq$ $(1-\varepsilon) \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right) x\right)$, and the condition $\alpha \in L_{\text {Si }}$ implies $\alpha(\varepsilon x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$, that is, for any $\delta_{2}>0$ and all large enough x the inequality $\alpha(\varepsilon x) \geq \frac{1}{1+\delta_{2}} \alpha(x)$ is true. Therefore, $x \beta^{-1}(\alpha(x)) \leq x(1-\varepsilon) \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right) \alpha(x)\right) \leq(1-\varepsilon) \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(\varepsilon x)\right)$ for all large enough x. On the other hand

$$
\begin{gathered}
\int_{x_{0}}^{x} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t \geq \int_{\varepsilon x}^{x} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t \geq \\
\geq \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(\varepsilon x)\right)(1-\varepsilon) x
\end{gathered}
$$

Hence it follows from (23) that

$$
\begin{gather*}
\ln W_{F}\left(x_{k}\right) \geq-x_{k} \beta^{-1}\left(\alpha\left(x_{k}\right)\right) \geq-(1-\varepsilon) \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha\left(\varepsilon x_{k}\right)\right) \geq \\
\geq-\int_{x_{0}}^{x_{k}} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t \tag{25}
\end{gather*}
$$

for each $\varepsilon \in(0,1), \delta_{2}>0$ and all $k \geq k_{0}=k_{0}\left(\varepsilon, \delta_{2}\right)$.
We put $\Phi(r)=\int_{r_{0}}^{r} \alpha^{-1}\left(\frac{\beta(t)}{1+\delta}\right) d t$, where $1+\delta<\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right)$. Then $\Phi^{\prime}(r)=\alpha^{-1}\left(\frac{\beta(r)}{1+\delta}\right)$, $\phi(x)=\beta^{-1}((1+\delta) \alpha(x))$ and

$$
\begin{gathered}
x \Psi(\phi(x))=\int_{x_{0}}^{x} \phi(t) d t+\text { const } \leq \int_{x_{0}}^{x} \beta^{-1}((1+\delta) \alpha(t)) d t+\text { const } \leq \\
\leq \int_{x_{0}}^{x} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t
\end{gathered}
$$

Therefore, inequality (25) implies (4) for all large enough k.
Further, since $\frac{\beta^{-1}\left((1+\delta) \alpha\left(x_{k+1}\right)\right)}{\beta^{-1}\left((1+\delta) \alpha\left(x_{k}\right)\right)} \rightarrow 1(k \rightarrow \infty)$, there exists a decreasing to 1 continuous function ω such that $\frac{\phi\left(x_{k+1}\right)}{\phi\left(x_{k}\right)} \leq \omega\left(x_{k+1}\right)$ for all k. Therefore, by item 2$)$ of Theorem 4 inequality (22) is true, that is, in view of the condition $\beta \in L^{0}$ we have

$$
\begin{aligned}
\ln \mu(r, \varphi) & \geq \Phi\left(\frac{r}{\omega(\Phi(r))}\right)=\Phi((1+o(1)) r)=\int_{r_{0}}^{r(1+o(1))} \alpha^{-1}\left(\frac{\beta(x)}{1+\delta}\right) d x \geq \\
& \geq \int_{(1-\varepsilon) r}^{r} \alpha^{-1}\left(\frac{\beta(x)}{(1+\delta)^{2}}\right) d x \geq \alpha^{-1}\left(\frac{\beta((1-\varepsilon) r)}{(1+\delta)^{2}}\right) \varepsilon r
\end{aligned}
$$

for all large enough r. Since $\alpha \in L_{\mathrm{si}}, \beta \in L^{0}$ and the numbers ε, δ_{2} and δ are arbitrary, from the latter inequality we easily obtain (24).

If $\alpha \in L^{0}$ and $\beta \in L_{\mathrm{Si}}$ then $\alpha((1-\varepsilon) x) \geq \frac{1}{1+\delta_{1}(\varepsilon)} \alpha(x)$, where $\delta_{1}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and $\beta(\varepsilon x) \geq \frac{1}{1+\delta_{2}} \beta(x)$ for all large enough x. Therefore, as above

$$
\begin{aligned}
& \int_{x_{0}}^{x} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t \geq \varepsilon x \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha((1-\varepsilon) x)\right) \geq \\
& \geq \varepsilon x \beta^{-1}\left(\left(1+\delta_{2}\right) \alpha(x)\right) \geq x \beta^{-1}\left(\frac{1}{1+\delta_{2}} \beta\left(\beta^{-1}\left(\left(1+\delta_{2}\right) \alpha(x)\right)\right)=x \beta^{-1}(\alpha(x))\right.
\end{aligned}
$$

Hence it follows from (23) that $\ln W_{F}\left(x_{k}\right) \geq-\int_{x_{0}}^{x_{k}} \beta^{-1}\left(\left(1+\delta_{1}(\varepsilon)\right)\left(1+\delta_{2}\right) \alpha(t)\right) d t$ for any $\varepsilon \in(0,1), \delta_{2}>0$ and all $k \geq k_{0}=k_{0}\left(\varepsilon, \delta_{2}\right)$. Therefore, choosing $\Phi(r)$, as above, and repeating the arguments, we again arrive at inequality (24).

For analytic functions in $\mathbb{D}_{R}, 0<R<+\infty$, the following corollary is an analog of Corollary 1.

Corollary 2. Let $\alpha \in L_{\mathrm{Si}}, \beta \in L_{\mathrm{Si}}, \frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leq q<1$ for all large enough x and $\alpha\left(\frac{x}{\beta^{-1}(\alpha(x))}\right)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$, and φ be an analytic in $\mathbb{D}_{R}, 0<R<+\infty$, characteristic function of a probability law F, for which

$$
\begin{equation*}
\beta\left(\frac{x_{k}}{\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right)}\right) \leq \alpha\left(x_{k}\right) \tag{26}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right)=$ $O\left(\beta^{-1}\left(\alpha\left(x_{k}\right)\right)\right)$ as $k \rightarrow \infty$. Then

$$
\begin{equation*}
\alpha(\ln \mu(r, \varphi)) \geq(1+o(1)) \beta\left(\frac{1}{R-r}\right), \quad r \uparrow R . \tag{27}
\end{equation*}
$$

Proof. From (26) it follows that $\ln W_{F}\left(x_{k}\right) \geq-R x_{k}+\frac{x_{k}}{\beta^{-1}\left(\alpha\left(x_{k}\right)\right)}$. Since $\frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leq q<1$, we have $\frac{x}{\beta^{-1}(\alpha(x))} \uparrow+\infty \quad\left(r_{0} \leq x \rightarrow+\infty\right)$, and using L'Hospital's rule it is easy to show that

$$
\frac{x}{\beta^{-1}(\alpha(x))} \geq(1+o(1))(1-q) \int_{x_{0}}^{x} \frac{d t}{\beta^{-1}(\alpha(t))}, \quad x \rightarrow \infty .
$$

Therefore,

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-R x_{k}+\left(1-q_{1}\right) \int_{x_{0}}^{x_{k}} \frac{d t}{\beta^{-1}(\alpha(t))} \tag{28}
\end{equation*}
$$

for any $q_{1} \in(q, 1)$ and all large enough k. We put

$$
\begin{equation*}
\Phi(r)=\int_{r_{0}}^{r} \alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{R-x}\right)\right) d x \tag{29}
\end{equation*}
$$

where $q_{2} \in\left(q_{1}, 1\right)$. Then $\Phi^{\prime}(r)=\alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{R-r}\right)\right), \phi(x)=R-\frac{1-q_{2}}{\beta^{-1}(\alpha(x))}$ and

$$
x \Psi(\phi(x))=R x-\left(1-q_{2}\right) \int_{x_{0}}^{x} \frac{d t}{\beta^{-1}(\alpha(t))}+\mathrm{const},
$$

that is, in view of (28) and $q_{1}<q_{2}$ we obtain (4). Since $\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right) \leq K \beta^{-1}\left(\alpha\left(x_{k}\right)\right), K>1$, for all $k \geq 1$, we have $\frac{1}{\beta^{-1}\left(\alpha\left(x_{k}\right)\right)}-\frac{1}{\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right)} \leq \frac{K-1}{\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right)}$. Therefore, if we put $h(x)=$ $\frac{(K-1)\left(1-q_{2}\right)}{\beta^{-1}(\alpha(x))}$ then $\phi(x)-h(x)=R-\frac{K\left(1-q_{2}\right)}{\beta^{-1}(\alpha(x))} \rightarrow R$ as $x \rightarrow+\infty, h\left(\Phi^{\prime}(r)\right)=(K-1)(R-r)$ and $\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)$ for $k \geq 1$.

Finally, for function (29) and $r>\max \left\{r_{0}, R / 2\right\}$ we have

$$
\Phi(r) \geq \int_{2 r-R}^{r} \alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{R-x}\right)\right) d x \geq(R-r) \alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{2(R-r)}\right)\right) .
$$

Therefore, by item 1) of Theorem 4

$$
\begin{aligned}
\ln \mu(r, \varphi) \geq(R & \left.-r+h\left(\Phi^{\prime}(r)\right)\right) \alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{2\left(R-r+h\left(\Phi^{\prime}(r)\right)\right)}\right)\right)= \\
& =K(R-r) \alpha^{-1}\left(\beta\left(\frac{1-q_{2}}{2 K(R-r)}\right)\right)
\end{aligned}
$$

for all $r<R$ close enough to R. But from the condition $\alpha\left(\frac{x}{\beta^{-1}(\alpha(x))}\right)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ it follows that $\alpha\left(\frac{\alpha^{-1}(\beta(t))}{t}\right)=(1+o(1)) \beta(t)$ as $t \rightarrow \infty$ and since $\alpha \in L_{\mathrm{Si}}, \beta \in L_{\mathrm{si}}$ the last inequality implies (27).

We remark that under the other conditions of Corollary 2 the condition $\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right)=$ $=O\left(\beta^{-1}\left(\alpha\left(x_{k}\right)\right)\right)$ as $k \rightarrow \infty$ holds provided $x_{k+1}=O\left(x_{k}\right)$ as $k \rightarrow \infty$.

The conditions on α and β in Corollary 2 assume that the function α increases slower than the function β. In the case where α increases quicker than β, the following corollary is true.

Corollary 3. Let $\alpha \in L_{\mathrm{Si}}, \beta \in L_{\mathrm{Si}}, \frac{d \ln \alpha^{-1}(\beta(x))}{d \ln x} \leq q<1$ for all large enough $x, \frac{d \alpha^{-1}(\beta(x))}{d x}=$ $\frac{1}{f(x)} \downarrow 0$ and $\alpha^{-1}(\beta(f(x)))=O\left(\alpha^{-1}(\beta(x))\right)$ as $x \rightarrow+\infty$, and φ be an analytic in \mathbb{D}_{R}, $0<R<+\infty$, characteristic function of a probability law F, for which

$$
\begin{equation*}
\alpha\left(\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right)\right) \geq \beta\left(x_{k}\right) \tag{30}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\varlimsup_{k \rightarrow \infty} \frac{f\left(x_{k+1}\right)}{f\left(x_{k}\right)}<2$. Then asymptotical inequality (27) holds.

Proof. If we put $x \Psi(\phi(x))=R x-\alpha^{-1}(\beta(x))$ then (30) implies (4) and $\phi(x)=(x \Psi(\phi(x)))^{\prime}=$ $R-\frac{d \alpha^{-1}(\beta(x))}{d x}=R-\frac{1}{f(x)}$. Hence it follows that $\Phi^{\prime}(r)=f^{-1}\left(\frac{1}{R-r}\right)$,

$$
\begin{gathered}
\Phi(r)-\Phi\left(r_{0}\right)=\int_{r_{0}}^{r} f^{-1}\left(\frac{1}{R-x}\right) d x=\int_{r_{1}}^{f^{-1}\left(\frac{1}{R-r}\right)} t d\left(-\frac{1}{f(t)}\right)= \\
=-(R-r) f^{-1}\left(\frac{1}{R-r}\right)+\alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right) \geq(1-q) \alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right) .
\end{gathered}
$$

But from the condition $\alpha^{-1}(\beta(f(x)))=O\left(\alpha^{-1}(\beta(x))\right)$ as $x \rightarrow+\infty$ it follows that

$$
\alpha^{-1}\left(\beta\left(\frac{1}{R-r}\right)\right) \leq K \alpha^{-1}\left(\beta\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right)
$$

where K is a positive constant. Therefore, $\Phi(r) \geq K_{1} \alpha^{-1}\left(\beta\left(\frac{1}{R-r}\right)\right)$, where K_{1} is a positive constant, for all $r<R$ close enough to R, and if $h(x)=a(R-\phi(x)), 0<a<1$, then

$$
\begin{equation*}
\Phi\left(r-h\left(\Phi^{\prime}(r)\right)\right) \geq K_{1} \alpha^{-1}\left(\beta\left(\frac{1}{(1+a)(R-r)}\right)\right) \tag{31}
\end{equation*}
$$

Under such a choice of the function h the condition $\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)$ is equivalent to the condition $f\left(x_{k+1}\right) \leq(1+a) f\left(x_{k}\right)$, and the latter condition follows from the condition $\varlimsup_{k \rightarrow \infty} \frac{f\left(x_{k+1}\right)}{f\left(x_{k}\right)}<2$. Therefore, by item 1) of Theorem 4 inequality (21) is true and in view of (31) and the conditions $\alpha \in L_{\mathrm{si}}, \beta \in L_{\mathrm{si}}$ we obtain (27).

We remark that from Corollaries 1-3 one can obtain analogues of Propositions 1-4, but we shall not discuss this here.

REFERENCES

1. Linnik Yu.V., Ostrovskii I.V. Decomposition of random variables and vectors. - Moscow: Nauka, 1972. 479 p. (in Russian)
2. Skaskiv O.B., Sorokivs'kyj V.M. On the maximum of module of characteristic functions of probabilistic law// Kraj. Zadachi Dyfer. Rivnyan'. - 2001. - V.7. - P. 286-289. (in Ukrainian)
3. Jakovleva N.I. On the growth of entire characteristic functions of probability laws// Problems of mathematical physics and funct. analysis. - K.: Naukova dumka, 1976. - P. 43-54. (in Russian)
4. Sheremeta M.M., Sumyk O.M. A connection between the growth of Young conjugated functons// Mat. Stud. - 1999. - V.11, №1. - P. 41-47. (in Ukrainian)
5. Sheremeta M.M., Sumyk O.M. Lower estimates for the maximal term of a Dirichlet series// Izv. Vyssh. Uchebn. Zaved., Mat. - 2001. - №4. - 53-57. (in Russian)
6. Sumyk O.M. Lower estimates for maximal term of Dirichlet series// Visn. L'viv. Univ., ser. mekh.-math. - 1999. - V.53. - P. 40-44. (in Ukrainian)
7. Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of entire functions// Mat. Stud. - 2003. - V.19, №11. - P. 74-82.

Ivan Franko Natonal University of L'viv
marta0691@rambler.ru
m_m_sheremeta@list.ru

