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We consider the question of precise conditions ensuring that a function having zero integrals
over all balls of fixed radius is equal to zero. We completely investigate the case where together
with zero integrals over congruent balls a function has zero first moments over these balls.

В. В. Волчков, Вит. В. Волчков. Моментные условия для функций с нулевыми интегра-
лами по конгруэнтным шарам // Мат. Студiї. – 2013. – Т.39, №1. – C.84–92.

Рассматривается вопрос о точных условиях, из которых следует, что функция, имею-
щая нулевые интегралы по всем шарам фиксированного радиуса, является нулевой. Пол-
ностью исследован случай, когда вместе с нулевыми интегралами по конгруэнтным шарам
функция имеет равные нулю первые моменты по этим шарам.

1. Introduction. Let Rn be a real Euclidean space of dimension n ≥ 2 with Euclidean norm
| · |, and let Br = {x ∈ Rn : |x| < r}. Assume that f ∈ Lloc(Rn), let r be a fixed positive
number and let ∫

Br

f(x+ u)du = 0 (1)

for all x ∈ Rn. Does this imply that f = 0? The answer is in the negative (see, for instance,
[1, Part 2]); however, under some additional assumptions f is indeed zero function. One
such an assumption is a sufficiently rapid decrease of f at infinity. For instance, it is known
that if a function satisfying (1) belongs to the class Lp(Rn) for some p ∈ [1, 2n/(n − 1)],
then f = 0, whereas for p > 2n/(n − 1) this does not hold any more (see [1], [2], where
significantly more general and precise results in this direction were obtained). Another type
of restrictions that ensure vanishing of f is related to an increase of the number of possible
values of r in condition (1). In particular, the property f = 0 is recovered by using two balls
of appropriately chosen radii (see [1–4] and the extensive bibliography therein).

In the present paper we consider condition (1) together with the vanishing first moments
of f over balls for the case where f is defined in a ball BR of radius R > r. In general we
are asking about description and properties of the function space for f .

We present the precise statement of our main result in the following section. Its proof is
presented in Section 4, while in Section 3 we develop the necessary apparatus.

2. Statement of the central result. Let Sn−1 be the unit sphere in Rn with center at
the origin and assume that dω is the area element of Sn−1. The polar coordinates of a point
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x ∈ Rn\{0} are denoted by (ρ, σ) where ρ = |x| and σ = (σ1, . . . , σn) = x/ρ ∈ Sn−1. Let Hk

denote the space of the spherical harmonics of degree k (see [5, Chapter 4]). Suppose that
ak is the dimension of Hk. It is known that a0 = 1, a1 = n, and

ak =

(
n+ k − 1

k

)
−
(
n+ k − 3

k − 2

)
for k ≥ 2,

(see [5, Chapter 4]). Let {Y (k)
l }, 1 ≤ l ≤ ak, be an orthonormal basis in the space Hk, which

is regarded as a subspace of L2(Sn−1). To any function f ∈ Lloc(BR), there corresponds the
Fourier series

f(x) ∼
∞∑
k=0

ak∑
l=1

fk,l(ρ)Y
(k)
l (σ), ρ ∈ (0, R), (2)

where
fk,l(ρ) =

∫
Sn−1

f(ρσ)Y
(k)
l (σ)dω(σ).

If R > r > 0 then we denote by Vr(BR) the set of all functions f ∈ Lloc(BR) satisfying (1)
for all x ∈ BR−r. Let Mr(BR) be the set of all functions f ∈ Vr(BR) such that xjf ∈ Vr(BR)
for all j ∈ {1, . . . , n}.

Next, for 0 ≤ a < b we set Ba,b = {x ∈ Rn : a < |x| < b}.
We now present the main result of this paper.

Theorem 1. Let R > r > 0 and assume that f ∈ Lloc(BR). Then the following assertions
hold.
(i) If R ≤ 2r then f ∈Mr(BR) if and only if∫

B2r−R

f(x)dx =

∫
B2r−R

f(x)xjdx = 0 for all j ∈ {1, . . . , n}, (3)

and

fk,l(|x|) =
k−3∑
m=0

cm,k,l|x|2m−n−k+2 (4)

for all non-negative integers k, 1 ≤ l ≤ ak, and almost all x ∈ B2r−R,R, where cm,k,l ∈ C
and the sum is set to be equal to zero for k ∈ {0, 1, 2}.

(ii) If R > 2r and f ∈Mr(BR) then f = 0 in BR.

We note that if R = 2r then the condition f ∈ Lloc(BR) enables one to simplify the
description of Mr(BR) in the first assertion of Theorem 1. In this case the constants cm,k,l
vanish for 0 ≤ m < (k − 1)/2 and (3) holds for each f ∈ Lloc(BR).

3. Notation and auxiliary statements. As usual we denote by N, Z and C the sets of
positive integers, integers, and complex numbers, respectively.

For k ∈ Z we consider the differential operator dk in the space C1(a, b), 0 < a < b, defined
as follows

(dkf)(t) = f ′(t)− k

t
f(t), where f ∈ C1(a, b).

For k ∈ N, letDk = dkdk−1 . . . d0 and letD0 = d0. Next, let γ ∈ R1, let πm(γ) =
∏m

q=0(γ−2q),
and assume that t > 0. Using induction on k ∈ {0, 1, . . . } it is easy to see that the functions
uγ(t) = tγ and vγ(t) = tγ ln t satisfy the equalities

(Dkuγ)(t) = πk(γ)uγ(t)t
−k−1 (5)
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and

(Dkvγ)(t) = vγ(t)
πk(γ)

tk+1
+ uγ(t)

πk(γ)

tk+1

k∑
m=0

1

γ − 2m
. (6)

For m ∈ N, let wm,n(t) = v2m−n(t) if n is even and 2m ≥ n. Otherwise we set wm,n(t) =
u2m−n(t). A calculation shows that

∆m
(
wm,n(|x|)

)
= 0, x ∈ Rn\{0}, (7)

where ∆ is the Laplace operator in Rn.
LetG be the closure of the setG ⊂ Rn, f̂ the Fourier transform of the function f ∈ L(Rn),

and f ∗ g the convolution of the functions f and g. We also write χr for the characteristic
function (indicator) of the ball Br.

We set H∞k (BR) = Hk(BR)∩C∞(BR), where Hk(BR) is the subspace of L2(BR) spanned
by the products of radial functions and spherical harmonics of degree k.

Also let

V ∞r (BR) = Vr(BR) ∩ C∞(BR), M∞
r (BR) = Mr(BR) ∩ C∞(BR).

Let T n(τ), τ ∈ O(n), be a quasi-regular representation of the orthogonal group O(n)
in L2(Sn−1). Then T n(τ) is a direct sum of pairwise non-equivalent irreducible unitary
representations T n,k(τ) acting in Hk (see [6, Chapter 9]). We denote by

{
tki,j(τ)

}
the matrix

of T n,k(τ), that is,

Y
(k)
j

(
τ−1σ

)
=

ak∑
i=1

tki,j(τ)Y
(k)
i (σ), σ ∈ Sn−1.

This relation yields

tki,j(τ) =

∫
Sn−1

Y
(k)
j

(
τ−1σ

)
Y

(k)
i (σ)dω(σ), τ ∈ O(n),

whence tki,j is continuous on O(n).
Let dτ be the Haar measure on O(n) normalized so that the measure of O(n) is 1. It is

known that for each f ∈ Lloc(BR),

fk,l(ρ)Y (k)
p (σ) = ak

∫
O(n)

f
(
τ−1x

)
tkp,l(τ)dτ, x ∈ BR, (8)

where 1 ≤ l, p ≤ ak (see [2, formula (9.5)]). In what follows we assume that all functions
that are defined and continuous in a punctured neighbourhood of zero in Rn and admit
a continuous extension to 0 are defined at 0 by continuity.

The proof of Theorem 1 requires some preparation. The following lemmas are needed.

Lemma 1. Let f ∈M∞
r (BR). Then

(i) f(gx) ∈M∞
r (BR) for each g ∈ O(n).

(ii) All partial derivatives of f are in the class M∞
r (BR).

(iii) fk,l(ρ)Y
(k)
p (σ) ∈M∞

r (BR) for the values of indices satisfying the inequalities k ≥ 0 and
1 ≤ l, p ≤ ak.
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Proof. To prove (i) and (ii) one only needs to use the definition of the class M∞
r (BR).

Assertion (iii) follows from (i) and relation (8).

Lemma 2. Assume that f(ρ)Y (σ) ∈M∞
r (BR) for some Y ∈ Hk. Then

(i)
(
dkf
)
(ρ)Y

(k+1)
l (σ) ∈M∞

r (BR) for all 1 ≤ l ≤ ak+1;

(ii)
(
d2−k−nf

)
(ρ)Y

(k−1)
l (σ) ∈M∞

r (BR) for k ≥ 1 and all l, 1 ≤ l ≤ ak−1.

Proof. We have
∂

∂x1
(f(ρ)Y (σ)) =

(
dkf
)
(ρ)σ1Y (σ) + ρ−kf(ρ)Uρ(σ), (9)

where Uρ(σ) = ∂
∂x1

(ρkY (σ)). Notice that ρ1−kUρ(σ) ∈ Hk−1. Using now the formula

σjY (σ) = A(σ) +B(σ), where A ∈ Hk−1, B ∈ Hk+1 (10)

(see [5, Chapter 6, Lemma 3.4]) we obtain (i) from Lemma 1.
Next, let K(σ) = (σ1 + iσ2)

k. If n > 2 then we also set Km(σ) = σm(σ1 + iσ2)
k−1,

3 ≤ m ≤ n. Since K,Km ∈ Hk, by the hypothesis and Lemma 1 we obtain h, hm ∈M∞
r (BR),

where h(x) = f(ρ)K(σ) and hm(x) = f(ρ)Km(σ). We have

(
d2−k−nf

)
(ρ)(σ1 + iσ2)

k−1 =
∂h

∂x1
− i ∂h

∂x2
+

n∑
m=3

∂hm
∂xm

(if n = 2 then we set the last sum equal to zero). This relation and Lemma 1 imply asser-
tion (ii).

Remark 1. Examining the above proofs we see that Lemmas 1 and 2 remain valid for the
class V ∞r (BR).

Lemma 3. Let f ∈ L(BR) and suppose that this function has the form f(x) = u(ρ)Y (σ) for
some Y ∈ Hk. Then there exists a function U on [0, R−r] such that (f ∗χr)(x) = U(ρ)Y (σ).

Proof. We set f = 0 outside BR. Then f̂ ∗ χr = f̂ χ̂r. It follows from the assumption of the
lemma that (see [5, Chapter 4, Theorem 3.10])

f̂ ∗ χr(x) = W (ρ)Y (σ)

for some function W on [0,+∞). Hence (see [5, Chapter 4, Theorem 3.10]) we arrive at the
desired assertion.

Lemma 4. Let 1 < R < 2, let f ∈ L(BR) and assume that f(x) = xjρ
−n in B2−R,R for

some j ∈ {1, . . . , n}. Then f 6∈ V1(BR).

Proof. For x ∈ Rn\{0} we set

γn(x) =

{
1
2π

ln |x|, if n = 2;
((2− n)ωn−1)

−1|x|2−n, if n ≥ 3,

where ωn−1 is the surface area of Sn−1. Then one has

ωn−1
∂γn
∂xj

= f in B2−R,R, (11)
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and ∫
B2−R

∂γn
∂xj

dx = 0. (12)

The function γn is a fundamental solution for the operator ∆, that is, ∆γn = δ0, where
δ0 is the Dirac measure supported at the origin (see [7, Chapter 5.2]). Hence ∆(γn ∗ χ) =
∆γn ∗ χ = χ. In addition, the convolution γn ∗ χ is a radial continuous function. This yields
(γn ∗ χ)(x) = c+ |x|2/(2n) in B1 for some c ∈ C, and(

∂γn
∂xj
∗ χ
)

(x) =
xj
n

in B1. (13)

Next, for each unit ball B ⊂ BR it follows that B2−R ⊂ B and∫
B

f(x)dx =

∫
B2−R

f(x)dx+

∫
B\B2−R

f(x)dx. (14)

However, equalities (11) and (12) imply that∫
B\B2−R

f(x)dx = ωn−1

∫
B

∂γn
∂xj

dx.

This together with (14) and (13) shows that f 6∈ V1(BR), as contended.

Lemma 5. Let Y ∈ Hk, k ≥ 2, and let 1 < R < 2. Suppose that a function f ∈ L(BR)
possesses the following properties:

(i) f(x) = u(ρ)Y (σ) for some function u : [0, R)→ C;
(ii) u(ρ) = ρk−n−2 for ρ ∈ (2−R,R).

Then x1f 6∈ V1(BR).

Proof. Let ε ∈ (0, R − 1). Consider a function ϕ ∈ H∞0 (BR) such that ϕ = 0 in B2−R+ε/2

and ϕ = 1 in B2−R+ε,R. Assume that x1f ∈ V1(BR) and define ψ = fϕ. Then by the
definition of ϕ it follows that x1fϕ ∈ V ∞1 (BR−ε). Using now (10) and Remark 1 we see from
Lemma 1(iii) that ρu(ρ)ϕ(x)A(σ) ∈ V ∞1 (BR−ε) for some A ∈ Hk−1. If k = 2 this contradicts
Lemma 4 (see Lemma 1(iii) and Remark 1). Suppose now that k ≥ 3. Applying assertion (ii)
of Lemma 2 repeatedly for k − 1, . . . , 2 we obtain a contradiction in the same way.

Lemma 6. Let k,m ∈ N, m ≤ k, let Y ∈ Hk+1, and assume that 1 < R < 2. Assume also
that a function f ∈ Lloc(BR) satisfies the following conditions:

(i)
∫
B2−r

f(x)dx = 0;

(ii) f(x) = ρ2m−n−k−1Y (σ) for x ∈ B2−R,R.

Then f ∈ V1(BR).

Proof. Let ϕ ∈ H∞0 (BR) be a function such that ϕ = 0 in B1−R/2 and ϕ = 1 in B2−R,R, and
let ψ(x) = ϕ(x)wm,n(|x|). For x ∈ BR−1 we set

Φ(x) =

∫
B1

ψ(x− y)dy. (15)
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Then Φ ∈ H∞0 (BR−1). Since ∆mψ = 0 in B2−R,R (see (7)), we deduce from (15) that ∆mΦ
is identically constant. Hence ∆m+1Φ = 0 and Φ(x) =

∑m
q=0 cq|x|2q. Thus, the function

(∂/∂x1)
m+1 Φ is a polynomial of degree at most m− 1. On the other hand, using properties

of ϕ and arguments of the proof of Lemma 2(i) one can show that(
∂

∂x1

)m+1

ψ =
m+1∑
q=0

hq,

where hq ∈ H∞q (BR) and hq = 0 in B1−R/2. Moreover, hm+1 can be represented in the
following form hm+1(x) = (Dmwm,n)(ρ)Y (m+1)(σ), where ρ ∈ [2−R,R) and Y (m+1) ∈ Hm+1

(see (9)). By Lemma 3 the convolution hm+1 ∗χ1 vanishes in BR−1. This means that for each
X ∈ Hm+1 the function h(x) = hm+1(x)X(σ)/Y m+1(σ) belongs to V1(BR) (see Lemma 1
and Remark 1). Bearing in mind that

(
Dmwm,n

)
(ρ) = cρm−n−1, where c ∈ C\{0} (see (5)

and (6)), and ∫
B2−R

h(x)dx = 0

(see [5, Chapter 4, Corollary 2.4]), we see that for each unit ball B ⊂ BR the integral of
the function ρm−n−1Y (σ) over B\B2−R vanishes. This proves Lemma 6 for k = m. Applying
assertion (i) of Lemma 2 to h (see Remark 1) we obtain in a similar way the assertion of
Lemma 6 for all m ≤ k.

Corollary 1. Let k,m ∈ Z+, k ≥ 3, m ≤ k − 3, let Y ∈ Hk, and assume that 1 < R < 2.
Suppose that a function f ∈ L(BR) satisfies (3) and f(x) = ρ2m−n−k+2Y (σ) for x ∈ B2−R,R.
Then f ∈Mr(BR).

The proof follows from Lemma 6 and equality (10).
We shall now study some properties of expansions in the Gegenbauer polynomials Cn/2

k

(see [6, Chapter 9]). We shall use the well known result: the Fourier–Jacobi series of functions
in the class C∞[−1, 1] are uniformly convergent on [−1, 1] (see, for instance, [8, Chapter 7]).

Lemma 7. Assume that n ≥ 3, 0 < ε < 1, let f(|x|) ∈ C∞(B1−ε,1+ε), and let

f(
√

1 + s2 + 2st) =
∞∑
k=0

fk(s)C
(n/2)−1
k (t) (16)

for all t ∈ [−1, 1], s ∈ [0, ε]. If f0(s) = 0 on [0, ε] then

sfk(s) = (n+ 2k − 4)−1
(
sf ′k−1(s)− (k − 1)fk−1(s)

)
−

−(n+ 2k)−1
(
sf ′k+1(s) + (n+ k − 1)fk+1(s)

)
for k ≥ 1.

Proof. Since f ∈ C∞, series (16) is uniformly convergent in t on [−1, 1] for each s ∈ [0, ε].
Let u(s, t) = f

(√
1 + s2 + 2st

)
; then

fk(s) = ck,n

∫ 1

−1
u(s, t)C

(n/2)−1
k (t)(1− t2)(n−3)/2dt, (17)
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where

ck,n =
k!(n+ k − 2)Γ2

(
n
2
− 1
)

2n−4

πΓ(k + n− 2)

(see [6, Chapter 9, § 3, i. 4]). By the definition of u we have s∂u
∂s

= (s+ t)∂u
∂t
. In view of the

equality
dC

(n/2)−1
k (t)/dt = (n− 2)C

n/2
k−1(t)

(see [6, Chapter 9, § 3, i. 2]), it follows from the assumptions of the lemma and (17) that

(t+ s)
∂u

∂t
=
∞∑
k=1

(n− 2)(t+ s)fk(s)C
n/2
k−1(t) (18)

and

s
∂u

∂s
=
∞∑
k=1

sf ′k(s)C
(n/2)−1
k (t), (19)

where series (18) and (19) are uniformly convergent in t on [−1, 1] for each s ∈ [0, ε]. Using
formulae

Cλ
k+2(t) =

λ

λ+ k + 2

(
Cλ+1
k+2 (t)− Cλ+1

k (t)
)
,

tCλ
k+1(t) =

k + 2

2(λ+ k + 1)
Cλ
k+2(t) +

2λ+ k

2(λ+ k + 1)
Cλ
k (t)

for λ = (n/2)− 1 (see [6, Chapter 9, § 3, i. 2]) we can represent the difference between the
series in (18) and (19) as a Fourier-Jacobi series in the polynomials Cn/2

k . The coefficients of
this series vanish, which gives us the assertion of Lemma 7.

The following result is an analogue of Lemma 7 for n = 2.

Lemma 8. Let n = 2, assume that 0 < ε < 1, let f(|x|) ∈ C∞(B1−ε,1+ε), and let

f
(√

1 + 2s cos θ + s2
)

=
∞∑
k=0

fk(s) cos kθ (20)

for s ∈ [0, ε] and θ ∈ [0, π]. If f0(s) = 0 on [0, ε] then

2ksfk(s) = sf ′k−1(s)− sf ′k+1(s)− (k − 1)fk−1(s)− (k + 1)fk+1(s)

for k ≥ 1.

Proof. We set v(s, θ) = f
(√

1 + 2s cos θ + s2
)
; then

(s+ cos θ)
∂v

∂θ
+
∂v

∂s
s sin θ = 0.

Using (20) we can expand the function on the left hand side of this equality in a Fourier
series in the system {sin kθ} on [0, π]. The coefficients of the series vanish, which proves
Lemma 8.

4. Proof of the central result. We now proceed to the proof of the first assertion of
Theorem 1.
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Proof. Necessity. Assume that R ≤ 2r and let f ∈ Mr(BR). First, we prove (4). Without
loss of generality we can assume that r = 1, R < 2, and f ∈ C∞(BR) (see [5, Chapter 1,
Theorem 1.18]). Thus we have xjf ∈ V ∞1 (BR) for each j ∈ {1, . . . , n}. Hence ∂

∂xj
(xjf) ∈

V ∞1 (BR) and ∂f
∂xj
∈ V ∞1 (BR). Therefore, for all y ∈ BR−1 we obtain∫

B1

∂

∂xj

(
xjf(x+ y)

)
dx =

∫
B1

∂

∂xj

(
(xj + yj)f(x+ y)

)
dx− yj

∫
B1

∂

∂xj

(
f(x+ y)

)
dx = 0.

By the Gauss divergence theorem this implies that∫
Sn−1

f(σ + y)σ2
jdω(σ) = 0.

Summation over the set of all j ∈ {1, . . . , n} yields∫
Sn−1

f(σ + y)dω(σ) = 0 for all y ∈ BR−1.

The same equality holds if f is replaced with f0,1(|x|) because of Lemma 1. Consequently,∫ 1

−1
f0,1
(√

1 + s2 + 2st
)
(1− t2)(n−3)/2dt = 0, 0 < s < R− 1. (21)

Next, since ∂
∂x1

(f0,1(|x|)) ∈ V1(BR), one has∫ 1

−1
f0,1
(√

1 + s2 + 2st
)
t(1− t2)(n−3)/2dt = 0, 0 < s < R− 1. (22)

Taking (21), (22) and (17) into account we conclude from Lemmas 7 and 8 that f0,1(|x|) = 0
for all x ∈ B2−R,R.

Next, f1,l(ρ)Y
(1)
l (σ) ∈ M∞

1 (BR) for all l ∈ {1, . . . , a1} in view of Lemma 1. Use of
Lemma 2(ii) and the result for f0,1 which obtained above then leads to the conclusion that
d1−nf1,l(ρ) = 0 for ρ ∈ (2−R,R). Together with Lemma 4 this shows that f1,l(|x|) = 0 for all
x ∈ B2−R,R, l ∈ {1, . . . , a1}. Similarly, f2,l(|x|) = 0 for all x ∈ B2−R,R, l ∈ {1, . . . , a2} because
of Lemmas 2(ii) and 5. Finally, in the case k ≥ 3 equality (4) is obtained by induction on k
(see Lemmas 2(ii), 5, and Corollary 1).

We now prove (3). Using the fact that Hk1 is orthogonal to Hk2 for k1 6= k2 we see from
equality (4) with k = 0 that∫

B2−R

f(x)dx =

∫
B2−R

f0,1(|x|)dx =

∫
B1

f(x)dx = 0.

Similarly, it follows from (4) with k = 1 that∫
B2−R

f(x)xjdx =
n∑
l=1

∫
B2−R

f1,l(|x|)Y (1)
l (σ)xjdx =

=
n∑
l=1

∫
B1

f1,l(|x|)Y (1)
l (σ)xjdx =

∫
B1

f(x)xjdx = 0,

which proves (3).
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Sufficiency. Clearly, it suffices to consider the case where R < 2r. By hypothesis and
Corollary 1 we conclude that fk,l(ρ)Y

(k)
l (σ) ∈ Mr(BR) for all k ∈ Z+, l ∈ {1, . . . , ak}.

However, the series on the right-hand side of (2) converges to f in the space D′(BR) of
distributions on BR (see [9, § 1]). This ensures us that f ∈ Mr(BR). The first assertion of
Theorem 1 is thereby established.

Finally, we note that the second assertion of Theorem 1 can easily be derived from its
first assertion and Lemma 1(iii) by means of the standard smoothing procedure (see [5,
Chapter 1, Theorem 1.18]).
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