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We consider the question of precise conditions ensuring that a function having zero integrals
over all balls of fixed radius is equal to zero. We completely investigate the case where together
with zero integrals over congruent balls a function has zero first moments over these balls.

B. B. Bosrukos, Bur. B. Boukos. Momernmuvie yeaosus 0is GyHKUULT ¢ HYAEEbLMU UHMEZDPA-
AaMU N0 Korepyanmuoim wapam // Mar. Cryaii. — 2013. — T.39, Nel. — C.84-92.

PaccmaTpuBaeTcst BOIPOC 0 TOYHBIX YCJIOBUAX, U3 KOTOPBIX CJAEIYET, ITO (PYHKITUSI, UMEIO-
asi HyJieBble HHTErPaJibl 10 BCeM IapaM (DPUKCUPOBAHHOIO PaJinyca, siBjisieTcst HyJsieBoit. [loJ-
HOCTBIO UCCJIEOBAH CJIy4daii, KOrJa BMECTe C HyJIeBBIMU MHTEI'PAJIAMU 110 KOHIPYIHTHBIM ITapaM
GbyHKIMSA UMeeT paBHBbIE HYJIIO IePBble MOMEHTHI IO STUM IIapaM.

1. Introduction. Let R™ be a real Euclidean space of dimension n > 2 with Euclidean norm
| -], and let B, = {z € R": |z| < r}. Assume that f € L;,.(R"), let 7 be a fixed positive
number and let

; flz+u)du=0 (1)

for all x € R™. Does this imply that f = 07 The answer is in the negative (see, for instance,
[1, Part 2|); however, under some additional assumptions f is indeed zero function. One
such an assumption is a sufficiently rapid decrease of f at infinity. For instance, it is known
that if a function satisfying (1) belongs to the class LP(R") for some p € [1,2n/(n — 1)],
then f = 0, whereas for p > 2n/(n — 1) this does not hold any more (see [1], [2], where
significantly more general and precise results in this direction were obtained). Another type
of restrictions that ensure vanishing of f is related to an increase of the number of possible
values of 7 in condition (1). In particular, the property f = 0 is recovered by using two balls
of appropriately chosen radii (see [1-4] and the extensive bibliography therein).

In the present paper we consider condition (1) together with the vanishing first moments
of f over balls for the case where f is defined in a ball By of radius R > r. In general we
are asking about description and properties of the function space for f.

We present the precise statement of our main result in the following section. Its proof is
presented in Section 4, while in Section 3 we develop the necessary apparatus.

2. Statement of the central result. Let S"! be the unit sphere in R" with center at
the origin and assume that dw is the area element of S"~!. The polar coordinates of a point
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x € R"\{0} are denoted by (p, o) where p = |z| and 0 = (01,...,0,) = x/p € S~ L. Let Hy
denote the space of the spherical harmonics of degree k (see |5, Chapter 4]). Suppose that
ay is the dimension of Hy. It is known that ag = 1, a1 = n, and

n+k—1 n+k—3
— — >
a, ( I ) ( P ) for k > 2,

(see |5, Chapter 4]). Let {Yg(k)}, 1 <1 < ay, be an orthonormal basis in the space Hj, which
is regarded as a subspace of L*(S"!). To any function f € Lj.(Bg), there corresponds the
Fourier series

F@) ~ 33" @V P(0), p € (0.R), (2)
where

fp) = | (o), (o)dw(o).

Sn—1
If R > r > 0 then we denote by V,.(Bg) the set of all functions f € L;,.(Bg) satisfying (1)
for all x € Bp_,. Let M,(Bg) be the set of all functions f € V,.(Bg) such that =, f € V,(Bg)
forall j € {1,...,n}.
Next, for 0 < a < b we set B,y = {x € R": a < |z| < b}.
We now present the main result of this paper.

Theorem 1. Let R > r > 0 and assume that f € L;,.(Bg). Then the following assertions
hold.

(i) If R <2r then f € M,(Bg) if and only if

/ flz)dz = / f(x)xjdr =0 forall je{l,...,n}, (3)
Bo,_ g Bar—Rr
and
k—3
Fralla) = empalafm" (4)
m=0

for all non-negative integers k, 1 <1 < ay, and almost all x € By,_g g, where ¢, 1, € C
and the sum is set to be equal to zero for k € {0, 1,2}.

(ii) If R > 2r and f € M,(Bg) then f =0 in Bg.

We note that if R = 2r then the condition f € Lj.(Bg) enables one to simplify the
description of M,(Bg) in the first assertion of Theorem 1. In this case the constants ¢y, x
vanish for 0 < m < (k —1)/2 and (3) holds for each f € Lj..(Br).

3. Notation and auxiliary statements. As usual we denote by N, Z and C the sets of
positive integers, integers, and complex numbers, respectively.

For k € Z we consider the differential operator dj in the space C'(a,b), 0 < a < b, defined
as follows

(@ef)(t) = J'(6) — % 7(t), where f € C*(a,b).

For k € N, let Dy, = dydy1 ... dy and let Dy = dp. Next, let v € R', let m,,(v) = ;2o (v —24),
and assume that ¢ > 0. Using induction on k € {0, 1,...} it is easy to see that the functions
u,(t) =7 and v,(t) = t7Int satisfy the equalities

(Diy ) (1) = me(y)uy ()¢ (5)
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and

k
(D) (0) = 0,05+ (0T Y — )

For m € N, let wy,,(t) = vop—n(t) if n is even and 2m > n. Otherwise we set wy, ,(t) =
Uom-—n(t). A calculation shows that

A" (1w (|2])) =0, = € RM{0}, (")

where A is the Laplace operator in R".

Let G be the closure of the set G C R, f the Fourier transform of the function f € L(R"™),
and f % g the convolution of the functions f and g. We also write x, for the characteristic
function (indicator) of the ball B,.

We set $°(Br) = 9x(Br) N C*(Bg), where $;,(Bg) is the subspace of L?(Bgr) spanned
by the products of radial functions and spherical harmonics of degree k.

Also let

V.>2(Bgr) = V,(Br) NC*(Bg), M(Bg)= M,(Br)NC>(Bg).

Let T™(7), 7 € O(n), be a quasi-regular representation of the orthogonal group O(n)
in L?(S"!). Then T"(7) is a direct sum of pairwise non-equivalent irreducible unitary
representations 7% (7) acting in Hy, (see [6, Chapter 9]). We denote by {t! ()} the matrix
of T™*(7), that is,

Zt Y(k ), oeS" L

This relation yields

th(r) = /Sn—l Yj(k) (T_IO')}/i(k)(0'>dw(0'>, 7 € O(n),

whence tf’ ; is continuous on O(n).
Let dr be the Haar measure on O(n) normalized so that the measure of O(n) is 1. It is
known that for each f € Lj..(Bg),

fualoV{0) =a [ f(r ) (Fdr, x € B ®)

O(n)

where 1 < [,p < ay (see |2, formula (9.5)]). In what follows we assume that all functions
that are defined and continuous in a punctured neighbourhood of zero in R" and admit
a continuous extension to 0 are defined at 0 by continuity.
The proof of Theorem 1 requires some preparation. The following lemmas are needed.
Lemma 1. Let f € M(Bg). Then
(i) f(gz) € M>(Bg) for each g € O(n).
(i) All partjal derivatives of f are in the class M>(Bg).

(iii) fra(p )Y, ¥ (o) € M>(Bg) for the values of indices satisfying the inequalities k > 0 and
1<Il,p<a.
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Proof. To prove (i) and (ii) one only needs to use the definition of the class M°(Bg).
Assertion (iii) follows from (i) and relation (8). O
Lemma 2. Assume that f(p)Y (o) € M*(Bg) for some Y € Hy. Then

(i) (dnf) (p)Yl(kH)(a) € M>*(Bg) for all 1 <1 < agiq;

(i) (doynf)(p)Y,* V(o) € M>(Bg) for k> 1 and all [, 1 <1 < aj_,.
Proof. We have

9,
oz, (Y () = (dif)(p)orY (o) + p f(p)U,(0), (9)
where U,(0) = 8iml(p’“Y(a)). Notice that p'~*U,(0) € Hi—_1. Using now the formula
0;Y (o) = A(o) + B(o), where A € Hy_1,B € Hy1 (10)

(see |5, Chapter 6, Lemma 3.4]) we obtain (i) from Lemma 1.

Next, let K(o) = (07 + io9)*. If n > 2 then we also set K,,(0) = o,(01 + iog)F1,
3 <m < n. Since K, K,,, € Hy, by the hypothesis and Lemma 1 we obtain h, h,, € M>*(Bg),
where h(z) = f(p)K (o) and h,,(x) = f(p)K,,(0). We have

oh . 0Oh - %

S e
(d2—kz—nf) (p)(o1 +i03)"" = 0xy Zam i m=3 O

(if n = 2 then we set the last sum equal to zero). This relation and Lemma 1 imply asser-
tion (ii). O

Remark 1. Examining the above proofs we see that Lemmas 1 and 2 remain valid for the
class V>°(Bg).

Lemma 3. Let f € L(Bpg) and suppose that this function has the form f(x) = u(p)Y (o) for
some Y € Hy. Then there exists a function U on [0, R—r] such that (f*x,)(z) = U(p)Y (o).

Proof. We set f = 0 outside Bgr. Then m = ]/C\)/G It follows from the assumption of the
lemma that (see [5, Chapter 4, Theorem 3.10])

X (@) = W(p)Y (o)

for some function W on [0, +00). Hence (see |5, Chapter 4, Theorem 3.10]) we arrive at the
desired assertion. O

Lemma 4. Let 1 < R < 2, let f € L(Bg) and assume that f(z) = xjp™" in By_p g for
some j € {1,...,n}. Then f & Vi(Bg).

Proof. For x € R™"\{0} we set
Ln |zl if n =2;
Yu(z) = {277 ! _ _ .

where w,,_; is the surface area of S"!. Then one has

0Vn .
n— == By y 11
Wn—1 Dz, fin Ba_pr (11)
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and

8%
dxr = 0. 12
/Bz R 8:1:] ( )

The function -, is a fundamental solution for the operator A, that is, Av, = &y, where
do is the Dirac measure supported at the origin (see |7, Chapter 5.2|). Hence A(y, * x) =
A, * x = x. In addition, the convolution =, * y is a radial continuous function. This yields
(Y * X)(x) = ¢+ |2]*/(2n) in By for some ¢ € C, and

OVn A
(8% *X) (x) = > in B;. (13)

Next, for each unit ball B C By it follows that Bo_p C B and

/Bf(:v)d:v = /32R f($)d1‘—{—/B\B2R f(z)dz. (14)

However, equalities (11) and (12) imply that

J o
B\By_Rr 81']

This together with (14) and (13) shows that f & Vi(Bg), as contended. O

Lemma 5. Let Y € Hy, k > 2, and let 1 < R < 2. Suppose that a function f € L(Bg)
possesses the following properties:

(i) f(x) =wu(p)Y (o) for some function u: [0, R) — C;

(i) u(p) = p* "2 forpe (2— R, R).
Then x1f & Vi(Bg).
Proof. Let € € (0, R — 1). Consider a function ¢ € H3°(Bg) such that ¢ = 0 in By_pyc/o
and ¢ = 1 in By _pi.p. Assume that z1f € Vi(Bg) and define ¢y = fy. Then by the
definition of ¢ it follows that =1 f¢ € V*(Bg_.). Using now (10) and Remark 1 we see from
Lemma 1(iii) that pu(p)e(x)A(o) € V*°(Bg_.) for some A € Hy,_1. If k = 2 this contradicts

Lemma 4 (see Lemma 1(iii) and Remark 1). Suppose now that k£ > 3. Applying assertion (ii)
of Lemma 2 repeatedly for k£ — 1,...,2 we obtain a contradiction in the same way. O

Lemma 6. Let k,m € N, m < k, let Y € Hy,1, and assume that 1 < R < 2. Assume also
that a function f € Lj,.(Bpg) satisfies the following conditions:

(i) fB f(z)dx = 0;
(11) f( ) 2m n—k— IY( )fOI’l’ € BQ—R,R'
Then f c %(BR)

Proof. Let ¢ € H°(Bg) be a function such that ¢ = 0in By_p/; and ¢ =1 in By_p r, and
let ¥(z) = @(x)wmn(|z|). For © € Br_1 we set

() = ; Uz —y)dy. (15)
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Then ® € H5°(Bg-1). Since A™p = 0 in By_gr g (see (7)), we deduce from (15) that A"
is identically constant. Hence A™*!1® = 0 and ®(x) = Y7 c,lz[*?. Thus, the function

(0/ axl)m+1 ® is a polynomial of degree at most m — 1. On the other hand, using properties
of ¢ and arguments of the proof of Lemma 2(i) one can show that

(8_1'1> ¢ = Z hq7

where h, € ﬁgo(BR) and h, = 0 in By_g/. Moreover, h,,;1 can be represented in the
following form A, 1 (%) = (D) (p)Y (o), where p € 2 — R, R) and Y™ € H,, 4
(see (9)). By Lemma 3 the convolution h,, 1 * x; vanishes in Br_;. This means that for each
X € Hpyy the function h(x) = hyp(2) X (0) /Y™ (o) belongs to Vi(Bg) (see Lemma 1
and Remark 1). Bearing in mind that (Dpwmy)(p) = cp™ "', where ¢ € C\{0} (see (5)

and (6)), and
/ h(z)dx =0

(see [5, Chapter 4, Corollary 2.4|), we see that for each unit ball B C Bpg the integral of
the function p™"~1Y (o) over B\ By_g vanishes. This proves Lemma 6 for k = m. Applying
assertion (i) of Lemma 2 to h (see Remark 1) we obtain in a similar way the assertion of
Lemma 6 for all m < k. O

Corollary 1. Let kkm e Z,, k>3, m < k—3, let Y € H,, and assume that 1 < R < 2.
Suppose that a function f € L(Bg) satisfies (3) and f(x) = p*™ " *2Y (o) for x € By_g r.
Then f € M,(Bg).

The proof follows from Lemma 6 and equality (10).

We shall now study some properties of expansions in the Gegenbauer polynomials C’,?/ 2
(see [6, Chapter 9]). We shall use the well known result: the Fourier—Jacobi series of functions
in the class C*>°[—1, 1] are uniformly convergent on [—1, 1] (see, for instance, |8, Chapter 7|).

Lemma 7. Assume that n > 3,0 <e <1, let f(|z]) € C®(B1_.14.), and let
f(V1+ s+ 2st) Z C(n/z) (1) (16)
k=

for all t € [-1,1], s € [0,¢]. If fo(s) =0 on [0, ] then

sfe(s) = (n+2k —4) 7 (sfr_1(s) = (k = 1) frma(s)) —
—(n+2k) 7 (s fraa (5) + (0 + k= 1) frra(s))
for k > 1.
Proof. Since f € C*, series (16) is uniformly convergent in ¢ on [—1,1] for each s € [0, ¢].

Let u(s,t) = f(V1+ s® + 2st); then

fe(8) = crm / 1 u(s, YO 1) (1 — 7)) 2t (17)

1
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where
kl(n+k—2)I? (% —-1)2n*

ml(k+n—2)

(see |6, Chapter 9, § 3, i. 4]). By the definition of u we have s% =(s+ t)%. In view of the
equality

Ckn =

dc"P (v fdt = (n = 2)C13 (1)
(see |6, Chapter 9, § 3, i. 2]), it follows from the assumptions of the lemma and (17) that

(14520 = S0 = 2)(t + ) Al ) (18)

k=1

and .
sTL = S SO ), (19)

where series (18) and (19) are uniformly convergent in ¢ on [—1, 1] for each s € [0,¢]. Using
formulae

A
Cira(t) = m(qﬁ% (1) = Cr (1),
k+2 2N+ k
A _ A A

for A = (n/2) — 1 (see [6, Chapter 9, § 3, i. 2|) we can represent the difference between the

series in (18) and (19) as a Fourier-Jacobi series in the polynomials C’g/ ?. The coefficients of
this series vanish, which gives us the assertion of Lemma 7. O

The following result is an analogue of Lemma 7 for n = 2.

Lemma 8. Let n = 2, assume that 0 < ¢ < 1, let f(|z|) € C®(B;_.1.), and let

f(V1+2scosf + s%) = f:sz(s) cos kt/ (20)
k=0

for s € [0,¢] and 0 € [0, 7]. If fo(s) =0 on [0,¢] then

2ksfi(s) = sfi_1(s) = 8fip1(s) = (K — 1) fum1(s) — (k + 1) fira(s)
for k > 1.

Proof. We set v(s,0) = f(v1+ 2scosf + s?); then

ov 0
(s + Cos@)a—z + G_ZS sinf = 0.
Using (20) we can expand the function on the left hand side of this equality in a Fourier
series in the system {sinkf} on [0,7]. The coefficients of the series vanish, which proves
Lemma 8. [

4. Proof of the central result. We now proceed to the proof of the first assertion of
Theorem 1.
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Proof. Necessity. Assume that R < 2r and let f € M,(Bg). First, we prove (4). Without
loss of generality we can assume that r = 1, R < 2, and f € C*(Bg) (see |5, Chapter 1,
Theorem 1. 18]) Thus we have z;f € V;>(Bg) for each j € {1,...,n}. Hence 6)%j(xjf) €

Vi (Br) and -e (Bg). Therefore, for all y € Br_1 we obtain

| searnar= [ S ey [ ()i =o

By the Gauss divergence theorem this implies that
- flo+y)oidw(o) = 0.
Summation over the set of all j € {1,...,n} yields
- flo+y)dw(c) =0 forall ye& Br_q.

The same equality holds if f is replaced with fj1(|z|) because of Lemma 1. Consequently,

1
/ foa(WV1+s242st)(1— )"0t =0, 0<s<R-1. (21)
-1
Next, since %(fo,lﬂiﬁl)) € Vi(Bg), one has

/f01x/1+32+23)(1 =324t =0, 0<s<R-1. (22)

Taking (21), (22) and (17) into account we conclude from Lemmas 7 and 8 that fo;(|z|) =0
for all z € BQ_R’R.

Next, fl,l(p)Y;(l)(U) € M®(Bg) for all | € {1,...,a1} in view of Lemma 1. Use of
Lemma 2(ii) and the result for fy; which obtained above then leads to the conclusion that
di—nf11(p) = 0for p € (2— R, R). Together with Lemma 4 this shows that f;;(|z|) = 0 for all
x € By_ppr,l€{1,...,a1}. Similarly, fo,(|z|) =0forallz € By_gg,l € {1,...,as} because
of Lemmas 2(ii) and 5. Finally, in the case k > 3 equality (4) is obtained by induction on k
(see Lemmas 2(ii), 5, and Corollary 1).

We now prove (3). Using the fact that Hy, is orthogonal to Hy, for k; # ke we see from
equality (4) with & = 0 that

/B flz)de = ; Joa(lz])dz = ; flz)dz =

Similarly, it follows from (4) with k£ = 1 that

/ %dx—Z/ Fra(le) VP () de =

By R
Z fll )V, (0)a;da = : f(@)z;dx =0,

which proves (3).
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Sufficiency. Clearly, it suffices to consider the case where R < 2r. By hypothesis and
Corollary 1 we conclude that fk,l(p)n(k)(a) € M,(Bg) for all k € Z,, 1 € {1,... a4}
However, the series on the right-hand side of (2) converges to f in the space D'(Bg) of
distributions on By (see 9, § 1]). This ensures us that f € M, (Bg). The first assertion of
Theorem 1 is thereby established.

Finally, we note that the second assertion of Theorem 1 can easily be derived from its
first assertion and Lemma 1(iii) by means of the standard smoothing procedure (see [5,
Chapter 1, Theorem 1.18]). O
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