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Various theorems on the convergence of general spatial homeomorphisms are proved and,
on this basis, convergence theorems for classes of the so-called ring Q-homeomorphisms are
obtained. These results will have wide applications to Sobolev’s mappings.

В. И. Рязанов, Е. А. Севостьянов. О сходимости пространственных гомеоморфизмов //
Мат. Студiї. – 2013. – Т.39, №1. – C.34–44.

Доказаны различные теоремы о сходимости общих пространственных гомеоморфизмов
и, на этой основе, получены теоремы о сходимости для так называемых кольцевыхQ–гоме-
оморфизмов. Эти результаты будут иметь широкие приложения к отображениям классов
Соболева.

1. Introduction. We give here foundations of the convergence theory for general homeo-
morphisms in the space and then develop the convergence theory for the so-called Q-homeo-
morphisms. The ring Q-homeomorphisms have been introduced first in a plane in connection
with the study of the degenerate Beltrami equations, see e.g. the papers [22]–[26] and the
monographs [8] and [16]. The theory of ring Q–homeomorphisms is applicable to various
classes of mappings with finite distortion intensively investigated in many recent works, see
e.g. [13] and [16] and further references therein. The present paper is a natural continuation
of our previous works [20] and [21].

Given a family Γ of paths γ in Rn, n ≥ 2, a Borel function ρ : Rn → [0,∞] is called
admissible for Γ, abbr. ρ ∈ amd Γ, if

∫
γ
ρ(x)|dx| ≥ 1 for each γ ∈ Γ. The modulus of Γ is

the quantity

M(Γ) = inf
{∫

Rn

ρn(x)dm(x) : ρ ∈ amd Γ
}
.

Given a domain D and two subsets E and F of Rn
, n ≥ 2, Γ(E,F,D) denotes the family

of all paths γ : [a, b] → Rn which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D
for a < t < b. We set Γ(E,F ) = Γ(E,F,Rn

) if D = Rn
. A ring domain, or shortly a ring

in Rn
, is a domain R in Rn whose complement has two connected components. Let R be

a ring in Rn
. If C1 and C2 are the connected components of Rn \R, we write R = R(C1, C2).

The capacity of R can be defined by the equality capR(C1, C2) = M(Γ(C1, C2, R)), see e.g.

2010 Mathematics Subject Classification: 30C62, 30C65.
Keywords:mappings with finite and bounded distortion, moduli of curves, homeomorphisms, convergence,
space mappings.

c©V. I. Ryazanov, E. A. Sevost’yanov, 2013



ON THE CONVERGENCE OF SPATIAL HOMEOMORPHISMS 35

5.49 in [30]. Note also that M(Γ(C1, C2, R)) = M(Γ(C1, C2)), see e.g. Theorem 11.3 in [29].
A conformal modulus of a ring R(C1, C2) is defined by

modR(C1, C2) =

(
ωn−1

M(Γ(C1, C2))

)1/(n−1)

,

where ωn−1 denotes the area of the unit sphere in Rn, see e.g. (5.50) in [30].

The following notion was motivated by the ring definition of quasiconformality in [7]. Let
D be a domain in Rn, Q : D → (0,∞) be a (Lebesgue) measurable function. Set

A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2}, S(x0, ri) = {x ∈ Rn : |x− x0| = ri} (i ∈ {1, 2}).

We say (see [20]) for the spatial case, that a homeomorphism f of D into Rn is a ring
Q–homeomorphism at a point x0 ∈ D if

M (Γ (f(S1), f(S2))) ≤
∫
A

Q(x) · ηn(|x− x0|)dm(x) (1)

for every ring A = A(x0, r1, r2), 0 < r1 < r2 < r0 = dist(x0, ∂D), Si = S(x0, ri), i ∈ {1, 2},
and for every Lebesgue measurable function η : (r1, r2)→ [0,∞] such that

∫ r2
r1
η(r)dr ≥ 1.

If condition (1) holds at every point x0 ∈ D, then we also say that f is a ring Q–homeo-
morphism in the domain D.

2. On BMO and FMO functions. Recall that a real valued function ϕ ∈ L1
loc(D), given

in a domain D ⊂ Rn, is said to be of bounded mean oscillation by John and Nierenberg,
abbr. ϕ ∈ BMO(D) or simply ϕ ∈ BMO, see [10], if

‖ϕ‖∗ = sup
B⊂D

1

|B|

∫
B

|ϕ(x)− ϕB|dm(x) <∞,

where the supremum is taken over all balls B in D and

ϕB =
1

|B|

∫
B

ϕ(x)dm(x)

is the average of the function ϕ over B. For connections of BMO functions with quasicon-
formal and quasiregular mappings, see e.g. [1], [2], [11], [17] and [19].

Following [9], we say that a function ϕ : D → R has finite mean oscillation at a point
x0 ∈ D if

lim
ε→0

1

|B(x0, ε)|

∫
B(x0,ε)

|ϕ(x)− ϕ̃ε|dm(x) <∞, (2)

where ϕ̃ε = 1
|B(x0,ε)|

∫
B(x0,ε)

ϕ(x)dm(x) is the average of the function ϕ(x) over the ball
B(x0, ε) = {x ∈ Rn : |x−x0| < ε}. Note that under (2) it is possible that ϕ̃ε →∞ as ε→ 0.

We also say that a function ϕ : D → R is of finite mean oscillation in the domain D, abbr.
ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ has finite mean oscillation at every point x ∈ D.
Note that FMO is not BMOloc, see examples in [16], p. 211. It is well–known that L∞(D) ⊂
BMO(D) ⊂ Lploc(D) for all 1 ≤ p < ∞, see e.g. [10] and [19], but FMO(D) 6⊆ Lploc(D) for
any p > 1.

Recall some facts on finite mean oscillation from [9], see also 6.2 in [16].
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Proposition 1. If, for some numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

1

|B(x0, ε)|

∫
B(x0,ε)

|ϕ(x)− ϕε|dm(x) <∞,

then ϕ has finite mean oscillation at x0.

Corollary 1. If, for a point x0 ∈ D,

lim
ε→0

1

|B(x0, ε)|

∫
B(x0,ε)

|ϕ(x)|dm(x) <∞,

then ϕ has finite mean oscillation at x0.

Lemma 1. Let ϕ : D → R, n ≥ 2, be a nonnegative function with a finite mean oscillation
at 0 ∈ D. Then ∫

ε<|x|<ε0

ϕ(x)dm(x)

(|x| log 1
|x|)

n
= O

(
log log

1

ε

)
as ε→ 0 for a positive ε0 ≤ dist(0, ∂D).

This lemma takes an important part in many applications to the mapping theory as well
as to the theory of the Beltrami equations, see e.g. the monographs [8] and [16].

3. Convergence of general homeomorphisms. In what follows, we use in Rn
=

Rn∪{∞} the spherical (chordal) metric h(x, y) = |π(x)−π(y)| where π is the stereographic
projection of Rn onto the sphere Sn(1

2
en+1,

1
2
) in Rn+1, i.e.

h(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
, x 6=∞, y 6=∞, h(x,∞) =

1√
1 + |x|2

.

It is clear that Rn is homeomorphic to the unit sphere Sn in Rn+1.
The spherical (chordal) diameter of a set E ⊂ Rn is h(E) = sup{h(x, y) : x, y ∈ E}. We

also define h(z, E) for z ∈ Rn and E ⊆ Rn as a infimum of h(z, y) over all y ∈ E and h(F,E)
for F ⊆ Rn and E ⊆ Rn as the infimum of h(z, y) over all z ∈ F and y ∈ E. Later on, we
also use the notation B∗(x0, ρ), x0 ∈ Rn

, ρ ∈ (0, 1), for the balls {x ∈ Rn
: h(x, x0) < ρ}

with respect to the spherical metric.

Let us start with a simple consequence of the well–known Brouwer theorem on invariance
of domains.

Corollary 2. Let U be an open set in Rn and let f : U → Rn be continuous and injective.
Then f is a homeomorphism of U onto V = f(U).

Proof. Let y0 ∈ f(D) and x0:=f−1(y0). Set B = B∗(x0, ε0) where 0 < ε0 < h(x0, ∂D).
Then B ⊂ D. Note that the mapping f0:=f |B is injective and continuous and maps the
compactum B into the Hausdorff topological space Rn. Consequently, f0 is a homeomorphism
of B onto the topological space f0(B) with the topology induced by that of Rn (see Theorem
41.III.3 in [15]). By the Brouwer theorem on invariance domains (see e.g. Theorem 4.7.16
in [28]), f maps the ball B onto a domain in Rn as a homeomorphism. Hence the mapping
f−1(y) is continuous at the point y0. Thus, f : D → Rn is a homeomorphism.
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The kernel of a sequence of open sets Ωl ⊂ Rn, l = 1, 2, . . . is the open set

Ω0 = Kern Ωl:=
∞⋃
m=1

Int

(
∞⋂
l=m

Ωl

)
,

where IntA denotes the set consisting of all inner points of A; in other words, IntA is the
union of all open balls in A with respect to the spherical distance.

The following statement for the plane case can be found in [3], see also Proposition 2.7
in [8].

Proposition 2. Let gl : D → D′l, D
′
l:=gl(D), be a sequence of homeomorphisms defined on

a domain D ⊂ Rn
. Suppose that gl converges as l→∞ locally uniformly with respect to the

spherical (chordal) metric to a mapping g : D → D′:=g(D) ⊂ Rn which is injective. Then g
is a homeomorphism and D′ ⊂ KernD′l.

Proof. First of all, the mapping g is continuous as a locally uniform limit of continuous
mappings, see e.g. Theorem 13.VI.3 in [14]. Thus, by Corollary 2 g is a homeomorphism.

Now, let y0 be a point in D′. Consider the spherical ball B∗(z0, ρ) where z0:=g−1(y0) ∈ D
and ρ < h(z0, ∂D). Then r0:= minz∈∂B∗(z0,ρ) h(y0, g(z)) > 0. There is an integer N large
enough such that gl(z0) ∈ B∗(y0, r0/2) for all l ≥ N and simultaneously

B∗(y0, r0/2) ∩ gl(∂B∗(z0, ρ)) = B∗(y0, r0/2) ∩ ∂gl(B∗(z0, ρ)) = ∅

because gl → g (l → +∞) uniformly on the compact set ∂B∗(z0, ρ). Hence by the connec-
tedness of balls

B∗(y0, r0/2) ⊂ gl(B
∗(z0, ρ)) ∀l ≥ N,

see e.g. Theorem 46.I.1 in [15]. Consequently, y0 ∈ KernD′l, i.e.D′ ⊂ KernD′l by arbitrariness
of y0.

Remark 1. In particular, Proposition 2 implies that D′:=g(D) ⊂ Rn if D′l:=gl(D) ⊂ Rn for
all l = 1, 2, . . . .

The following statement for the plane case can be found in the paper [12], see also
Lemma 2.16 in the monograph [8].

Lemma 2. Let D be a domain in Rn
, l ∈ {1, 2, . . .}, and let fl be a sequence of homeomor-

phisms from D into Rn such that fl converges as l → ∞ locally uniformly with respect to
the spherical metric to a homeomorphism f of D into Rn

. Then f−1
l → f−1 locally uniformly

in f(D), too.

Proof. Given a compactum C ⊂ f(D), we have by Proposition 2 that C ⊂ fl(D) for all
l ≥ l0 = l0(C). Set gl = f−1

l and g = f−1. The locally uniform convergence gl → g is
equivalent to the so-called continuous convergence, meaning that gl(ul) → g(u0) for every
convergent sequence ul → u0 in f(D); see e.g. [5], p. 268 or Theorems 20.VIII.2 and 21.X.4
in [14]. So, let ul ∈ f(D), l ∈ {0, 1, 2, . . . } and ul → u0 as l → ∞. Let us show that
zl:=g(ul)→ z0:=g(u0) as l→∞.

It is known that every metric space is an L∗-space, i.e. a space with a convergence (see,
e.g., Theorem 21.II.1 in [14]), and the Urysohn axiom for compact spaces says that zl → z0 as
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l→∞ if and only if, for every convergent subsequence zlk → z∗, the equality z∗ = z0 holds;
see e.g. the definition 20.I.3 in [14]. Hence it suffices to prove that the equality z∗ = z0 holds
for every convergent subsequence zlk → z∗ as k → ∞. Let D0 be a subdomain of D such
that z0 ∈ D0 and D0 is a compact subset of D. Then by Proposition 2, f(D0) ⊂ Kernfl(D0)
and hence u0 together with its neighborhood belongs to flk(D0) for all k ≥ K. Thus, with
no loss of generality we may assume that ulk ∈ flk(D0), i.e. zlk ∈ D0 for all k ∈ {1, 2, . . . },
and, consequently, z∗ ∈ D. Then, by the continuous convergence fl → f , we have that
flk(zlk)→ f(z∗), i.e. flk(glk(ulk)) = ulk → f(z∗). The latter condition implies that u0 = f(z∗),
i.e. f(z0) = f(z∗) and hence z∗ = z0.

The following statement for the plane case can be found in the paper [26], see also
Proposition 2.6 in the monograph [8].

Theorem 1. Let D be a domain in Rn
, n ≥ 2, and let fm, m ∈ {1, 2, . . .}, be a sequence

of homeomorphisms of D into Rn converging locally uniformly to a discrete mapping f :
D → Rn with respect to the spherical metric. Then f is a homeomorphism of D into Rn

.

Proof. First of all, let us show by contradiction that f is injective. Indeed, let us assume that
there exist x1, x2 ∈ D, x1 6= x2, with f(x1) = f(x2) and that x1 6= ∞. Set Bt = B(x1, t).
Let t0 be such that Bt ⊂ D and x2 6∈ Bt for every t ∈ (0, t0]. By the Jordan–Brower
theorem, see e.g. Theorem 4.8.15 in [28], fm(∂Bt) = ∂fm(Bt) splits Rn into two components
Cm:=fm(Bt), C

∗
m = Rn \ Cm.

By construction ym:=fm(x1) ∈ Cm and zm:=fm(x2) ∈ C∗m. Remark that the ball
B∗(ym, h(ym, ∂Cm)) is contained inside of Cm and, consequently, its closure is inside of Cm.
Hence

h(ym, ∂Cm) < h(ym, zm), m ∈ {1, 2, . . . }. (3)

By compactness of ∂Cm = fm(∂Bt), there is xm,t ∈ ∂Bt such that

h(ym, ∂Cm) = h(ym, fm(xm,t)), m ∈ {1, 2, . . . }. (4)

By compactness of ∂Bt, for every t ∈ (0, t0], there is xt ∈ ∂Bt such that h(xmk,t, xt)→ 0
as k → ∞ for some subsequence mk. Since the locally uniform convergence of continuous
functions in a metric space implies the continuous convergence (see [5], p. 268 or Theorem
21.X.3 in [14]), we have that h(fmk

(xmk,t), f(xt)) → 0 as k → ∞. Consequently, from (3)
and (4) we obtain that h(f(x1), f(xt)) ≤ h(f(x1), f(x2)) ∀t ∈ (0, t0]. However, by the above
assumption f(x1) = f(x2) and we have f(xt) = f(x1) for every t ∈ (0, t0]. The latter
condition contradicts the discreteness of f. Thus, f is injective.

It remains to show that f and f−1 are continuous. The mapping f is continuous as
a locally uniform limit of continuous mappings, see e.g. Theorem 13.VI.3 in [14]. Finally, f−1

is continuous by Corollary 2.

4. Convergence of homeomorphisms and moduli. Later on, the following lemma plays
a very important role. Its plane analog can be found in the paper [4], see also supplement
A1 in the monograph [8].

Lemma 3. Let fm, m ∈ {1, 2, . . . }, be a sequence of homeomorphisms of a domain D ⊆ Rn

into Rn, n ≥ 2, converging to a mapping f uniformly on every compact set in D with respect
to the spherical metric in Rn

. Suppose that for every x0 ∈ D there exist sequences Rk > 0 and
rk ∈ (0, Rk), k ∈ {1, 2, . . . }, such that Rk → 0 as k → ∞ and mod fm (A (x0, rk, Rk)) → ∞
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as k →∞ uniformly with respect to m ∈ {1, 2, . . . }. Then the mapping f is either a constant
in Rn or a homeomorphism of D into Rn.

Proof. Assume that f is not constant. Let us consider the open set V consisting of all points
in D which have neighborhoods where f is a constant and show that f(x) 6= f(x0) for every
x0 ∈ D \ V and x 6= x0. Without loss of generality, we may assume that f(x0) 6= ∞. Now,
let us fix a point x∗ 6= x0 in D \ V and choose k ∈ {1, 2, . . . } such that R:=Rk < |x∗ − x0|
and

mod fm (A(x0, r, R)) > (ωn−1/τn(1))1/(n−1) , ∀m ∈ {1, 2, . . . } (5)

for r = rk where τn(s) denotes the capacity of the Teichmüller ring RT,n(s):=
[Rn \ {te1 : t ≥ s}, [−e1, 0]] , s ∈ (0,∞).

Let cm ∈ fm(S(x0, R)) and bm ∈ fm(S(x0, r)) be such that

min
w∈fm(S(x0,R))

|w − fm(x0)| = |cm − fm(x0)|, max
w∈fm(S(x0,r))

|w − fm(x0)| = |bm − fm(x0)|.

Since fm is a homeomorphism, the set fm(A(x0, r, R)) is a ring domain Rm = (C1
m, C

2
m),

where am:=fm(x0) and bm ∈ C1
m, cm and ∞ ∈ C2

m. Applying Lemma 7.34 in [30] with
a = am, b = bm and c = cm, we obtain that

capRm = M(Γ(C1
m, C

2
m)) ≥ τn

(
|am − cm|
|am − bm|

)
. (6)

Note that the function τn(s) is strictly decreasing (see Lemma 7.20 in [30]). Thus, it
follows from (5) and (6) that

|am − cm|
|am − bm|

≥ τ−1
n (capRm) > τ−1

n (τn(1)) = 1.

Hence there is a spherical ring Am = {y ∈ Rn : ρm < |y − fm(x0)| < ρ∗m} in the ring domain
Rm for every m ∈ {1, 2, . . .}. Since f is not locally constant at x0, we can find a point
x′ in the ball |x − x0| < r with f(x0) 6= f(x′). The ring Am separates fm(x0) and fm(x′)
from fm(x∗) and, thus, |fm(x′) − fm(x0)| ≤ ρm and |fm(x∗) − fm(x0)| ≥ ρ∗m. Consequently,
|fm(x′) − fm(x0)| ≤ |fm(x∗) − fm(x0)| for all m ∈ {1, 2, . . .}. Under m → ∞ we have then
0 < |f(x′)− f(x0)| ≤ |f(x∗)− f(x0)| and hence f(x∗) 6= f(x0).

It remains to show that the set V is empty. Let us assume that V has a nonempty
component V0. Then f(x) ≡ z for every x ∈ V0 and some z ∈ Rn

. Note that ∂V0 ∩D 6= ∅ by
connectedness of D, because f 6≡ const in D and the set D \V0 is also open. If x0 ∈ ∂V0∩D,
then by continuity, f(x0) = z contradicting the assertion established in the first part of the
proof because x0 ∈ D \ V.

Thus, we have proved that the mapping f is injective if f is not constant. But f is
continuous as a locally uniform limit of continuous mappings fm, see Theorem 13.VI.3 in
[14], and then by Corollary 2 f is a homeomorphism. Finally, by Remark 1 f(D) ⊂ Rn and
the proof is complete.

Lemma 4. Let D be a domain in Rn, n ≥ 2, Qm : D → (0,∞) be measurable functions, fm,
m ∈ {1, 2, . . .}, be a sequence of ring Qm-homeomorphisms of D into Rn converging locally
uniformly to a mapping f. Suppose∫

ε<|x−x0|<ε0
Qm(x) · ψn(|x− x0|)dm(x) = o(In(ε, ε0)) ∀x0 ∈ D, (7)
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where o(In(ε, ε0))/In(ε, ε0)→ 0 as ε→ 0 uniformly with respect to m for ε0 < dist(x0, ∂D)
and a measurable function ψ(t) : (0, ε0)→ [0,∞] such that

0 < I(ε, ε0):=

∫ ε0

ε

ψ(t)dt <∞ ∀ε ∈ (0, ε0). (8)

Then the mapping f is either a constant in Rn or a homeomorphism into Rn.

Remark 2. In particular, the conclusion of Lemma 4 holds for Q-homeomorphisms fm with
a measurable function Q : D → (0,∞) such that∫

ε<|x−x0|<ε0
Q(x) · ψn(|x− x0|)dm(x) = o(In(ε, ε0)) ∀x0 ∈ D. (9)

Proof. By Luzin’s theorem, there exists a Borel function ψ∗(t) such that ψ(t) = ψ∗(t) for
a.e. t ∈ (0, ε0), see e.g. 2.3.6 in [6]. Since Qm(x) > 0 for all x ∈ D we have from (7) that
I(ε, a)→∞ for every fixed a ∈ (0, ε0) and, in particular, I(ε, a) > 0 for every ε ∈ (0, b) and
some b = b(a) ∈ (0, a). Given x0 ∈ D and a sequence of such numbers b = εk → 0 as k →∞,
k ∈ {1, 2, . . .}, consider the sequence of the Borel measurable functions ρε,k defined by

ρε,k(x) =

{
ψ∗(|x− x0|)/I(ε, εk), ε < |x− x0| < εk,

0, otherwise.

Note that the function ρε,k(x) is admissible for Γε,k:=Γ(S(x0, ε), S(x0, εk), A(x0, ε, εk))
because ∫

γ

ρε,k(x)|dx| ≥ 1

I(ε, εk)

∫ εk

ε

ψ(t)dt = 1

for all (locally rectifiable) curves γ ∈ Γε,k (see Theorem 5.7 in [29]). Then by the definition
of ring Q–homeomorphisms

M(fm(Γε,k)) ≤
1

In(ε, εk)

∫
ε<|x−x0|<ε0

Q(x) · ψn(|x− x0|)dm(x) (10)

for all m ∈ N. Note that 1
In(ε,εk)

= αε,k · 1
In(ε,ε0)

, where αε,k:=
(

1 + I(εk,ε0)
I(ε,εk)

)n
is independent

on m and bounded as ε→ 0. Then it follows from (7) and (10) that there exists ε∗k ∈ (0, εk)
such that for all M(fm(Γε∗k,k)) ≤ 2−k ∀m ∈ N. Applying Lemma 3 we obtain the desired
conclusion.

The next important statements follows from Lemma 4.

Theorem 2. Let D be a domain in Rn, n ≥ 2, Q : D → (0,∞) a Lebesgue measurable
function and let fm, m ∈ {1, 2, . . .}, be a sequence of ring Q-homeomorphisms of D into Rn

converging locally uniformly to a mapping f. Suppose that Q ∈ FMO. Then the mapping f
is either a constant in Rn or a homeomorphism into Rn.

Proof. Let x0 ∈ D. We may consider further that x0 = 0 ∈ D. Choosing a positive ε0 <
min {dist (0, ∂D) , e−1} , we obtain by Lemma 1 for the function ψ(t) = 1

t log 1
t

that∫
ε<|x|<ε0

Q(x) · ψn(|x|)dm(x) = O
(

log log
1

ε

)
.

Note that I(ε, ε0):=
∫ ε0
ε
ψ(t)dt = log

log 1
ε

log 1
ε0

. Now the desired conclusion follows from

Lemma 4.
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The following conclusions can be obtained on the basis of Theorem 2, Proposition 1 and
Corollary 1.

Corollary 3. In particular, the limit mapping f is either a constant in Rn or a homeomor-
phism of D into Rn whenever

lim
ε→0

1

|B(x0, ε)|

∫
B(x0,ε)

Q(x)dm(x) <∞ ∀x0 ∈ D

or whenever every x0 ∈ D is a Lebesgue point of Q.

Theorem 3. Let D be a domain in Rn, n ≥ 2, and let Q : D → (0,∞) be a measurable
function such that ∫ ε(x0)

0

dr

rq
1

n−1
x0 (r)

=∞ ∀x0 ∈ D (11)

for a positive ε(x0) < dist(x0, ∂D) where qx0(r) denotes the average of Q(x) over the sphere
|x − x0| = r. Suppose that fm, m ∈ {1, 2, . . .}, is a sequence of ring Q-homeomorphisms
from D into Rn converging locally uniformly to a mapping f. Then the mapping f is either
a constant in Rn or a homeomorphism into Rn.

Proof. Fix x0 ∈ D and set I = I(ε, ε0) =
∫ ε0
ε
ψ(t)dt, ε ∈ (0, ε0), where

ψ(t) =

{
1/[tq

1
n−1
x0 (t)], t ∈ (ε, ε0),

0 , t /∈ (ε, ε0).

Note that I(ε, ε0) <∞ for every ε ∈ (0, ε0). Indeed, by Theorem 3.15 in [20] on the criterion
of ring Q−homeomorphisms, we have that

M
(
f
(

Γ(S(x0, ε), S(x0, ε0), A(x0, ε, ε0))
))
≤ ωn−1

In−1
. (12)

On the other hand, by Lemma 1.15 in [18], we see that

M
(

Γ(f(S(x0, ε)), f(S(x0, ε0)), f(A(x0, ε, ε0)))
)
> 0.

Then it follows from (12) that I < ∞ for every ε ∈ (0, ε0). In view of (11), we obtain
that I(ε, ε∗) > 0 for all ε ∈ (0, ε∗) with some ε∗ ∈ (0, ε0). Finally, simple calculations show
that (9) holds, in fact,∫

ε<|x−x0|<ε∗
Q(x) · ψn(|x− x0|)dm(x) = ωn−1 · I(ε, ε∗)

and I(ε, ε∗) = o (In(ε, ε∗)) by (11). The rest follows by Lemma 4.

Corollary 4. In particular, the conclusion of Theorem 3 holds if qx0(r) = O
(
logn−1 1

r

)
for

all x0 ∈ D.

Corollary 5. Under assumptions of Theorem 3, the mapping f is either a constant in Rn

or a homeomorphism into Rn provided Q(x) has singularities only of the logarithmic type of
the order which is not more than n− 1 at every point x0 ∈ D.
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Theorem 4. Let D be a domain in Rn, n ≥ 2, and Q : D → (0,∞) be a measurable function
such that ∫

ε<|x−x0|<ε0

Q(x)

|x− x0|n
dm(x) = o

(
logn

1

ε

)
∀x0 ∈ D (13)

as ε → 0 for some positive number ε0 = ε(x0) < dist(x0, ∂D). Suppose that fm, m ∈
{1, 2, . . .}, is a sequence of ring Q-homeomorphisms from D into Rn converging locally
uniformly to a mapping f. Then the limit mapping f is either a constant in Rn or a
homeomorphism into Rn.

Proof. The conclusion follows from Lemma 4 by the choice ψ(t) = 1
t
.

For every nondecreasing function Φ: [0,∞]→ [0,∞], the inverse function Φ−1 : [0,∞]→
[0,∞] can be well defined by setting Φ−1(τ) = infΦ(t)≥τ t. As usual, here inf is equal to
∞ if the set of all t ∈ [0,∞] such that Φ(t) ≥ τ is empty. Note that the function Φ−1 is
nondecreasing, too. Note also that if h : [0,∞] → [0,∞] is a sense–preserving homeomorp-
hism and ϕ : [0,∞]→ [0,∞] is a nondecreasing function, then

(ϕ ◦ h)−1 = h−1 ◦ ϕ−1. (14)

Theorem 5. Let D be a domain in Rn, n ≥ 2, let Q : D → (0,∞) be a measurable function
and Φ: [0,∞]→ [0,∞] be a nondecreasing convex function. Suppose that∫

D

Φ (Q(x))
dm(x)

(1 + |x|2)n
≤M <∞ (15)

and ∫ ∞
δ

dτ

τ [Φ−1(τ)]
1

n−1

=∞ (16)

for some δ > Φ(0). Suppose that fm, m ∈ {1, 2, . . .}, is a sequence of ring Q-homeomor-
phisms of D into Rn converging locally uniformly to a mapping f. Then the mapping f is
either a constant in Rn or a homeomorphism into Rn.

Proof. It follows from (15)–(16) and Theorem 3.1 in [21] that the integral in (11) is divergent
for some positive ε(x0) < dist(x0, ∂D). The rest follows by Theorem 3.

Remark 3. We may assume in Theorem 5 that the function Φ(t) is convex not on the
whole segment [0,∞] but only on the segment [t∗,∞] where t∗ = Φ−1(δ). Indeed, every
non-decreasing function Φ: [0,∞] → [0,∞] which is convex on the segment [t∗,∞] can be
replaced with a non-decreasing convex function Φ∗ : [0,∞] → [0,∞] in the following way.
Set Φ∗(t) ≡ 0 for t ∈ [0, t∗], Φ(t) = ϕ(t) for t ∈ [t∗, T∗] and Φ∗ ≡ Φ(t) for t ∈ [T∗,∞], where
τ = ϕ(t) is the line passing through the point (0, t∗) and touching the graph of the function
τ = Φ(t) at a point (T∗,Φ(T∗)), T∗ ∈ (t∗,∞). By the construction, we have that Φ∗(t) ≤ Φ(t)
for all t ∈ [0,∞] and Φ∗(t) = Φ(t) for all t ≥ T∗ and, consequently, conditions (15) and (16)
hold for Φ∗ under the same M and every δ > 0.

Furthermore, by the same reasons it is sufficient to assume that the function Φ is only
minorized by a nondecreasing convex function Ψ on a segment [T,∞] such that∫ ∞

δ

dτ

τ [Ψ−1(τ)]
1

n−1

=∞ (17)
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for some T ∈ [0,∞) and δ > Ψ(T ). Note that condition (17) can be written in terms of the
function ψ(t) = log Ψ(t) ∫ ∞

∆

ψ(t)
dt

tn′
=∞ (18)

for some ∆ > t0 ∈ [T,∞], where t0:= supψ(t)=−∞ t, t0 = T if ψ(T ) > −∞, and where
1
n′

+ 1
n

= 1, i.e., n′ = 2 for n = 2, n′ is decreasing in n and n′ = n/(n−1)→ 1 as n→∞, see
Proposition 2.3 in [21]. It is clear that if the function ψ is nondecreasing and convex, then
the function Φ = eψ is so but the inverse conclusion generally speaking is not true. However,
the conclusion of Theorem 5 is valid if ψm(t), t ∈ [T,∞], is convex and (18) holds for ψm
under some m ∈ N because eτ ≥ τm/m! for all m ∈ N.

Corollary 6. In particular, the conclusion of Theorem 5 is valid if, for some α > 0,∫
D

eαQ
1

n−1 (x) dm(x)

(1 + |x|2)n
≤M <∞.

The same is true for any function Φ = eψ, where ψ(t) is a finite product of the function αtβ,
α > 0, β ≥ 1/(n − 1), and some of the functions [log(A1 + t)]α1 , [log log(A2 + t)]α2 , . . .,
αm ≥ −1, Am ∈ R, m ∈ N, t ∈ [T,∞], ψ(t) ≡ ψ(T ), t ∈ [0, T ].

Remark 4. For further applications, integral conditions (15) and (16) for Q and Φ can
be written in other forms that are more convenient for some cases. Namely, by (14) with
h(t) = t

1
n−1 and ϕ(t) = Φ(tn−1), Φ = ϕ◦h, the couple of conditions (15) and (16) is equivalent

to the following couple ∫
D

ϕ
(
Q

1
n−1 (x)

) dm(x)

(1 + |x|2)n
≤M <∞ (19)

and ∫ ∞
δ

dτ

τϕ−1(τ)
=∞ (20)

for some δ > ϕ(0). Moreover, by Theorem 2.1 in [27] the couple of the conditions (19) and
(20) is in turn equivalent to the next couple∫

D

e
ψ

(
Q

1
n−1 (x)

)
dm(x)

(1 + |x|2)n
≤M <∞ and

∫ ∞
∆

ψ(t)
dt

t2
=∞

for some ∆ > t0, where t0:= supψ(t)=−∞ t, t0 = 0 if ψ(0) > −∞.
Finally, as it follows from Lemma 4 all the results of this section are valid if fm are

Qm-homeomorphisms and the above conditions on Q hold for Qm uniformly with respect to
the parameter m ∈ {1, 2, . . .}.

REFERENCES

1. K. Astala, A remark on quasiconformal mappings and BMO–functions, Michigan Math. J., 30 (1983),
209–212.



44 V. I. RYAZANOV, E. A. SEVOST’YANOV

2. K. Astala, F.W. Gehring, Injectivity, the BMO norm and the universal Teichmuller space, J. Anal.
Math., 46 (1986), 16–57.

3. B. Bojarski, V. Gutlyanskii, V. Ryazanov, On Beltrami equations with two characteristics, Complex
Variables and Elliptic Equations, 54 (2009), №10, 933–950.

4. M. Brakalova, J. Jenkins, On solutions of the Beltrami equation. II., Publ. Inst. Math. (Beograd) (N.S.),
75 (2004), №89, 3–8.

5. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
6. H. Federer, Geometric Measure Theory, Springer: Berlin etc., 1969.
7. F.W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103 (1962),

353–393.
8. V.Ya. Gutlyanskii, V.I. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation: a geometric approach,

Developments in Mathematics, V.26, Springer, New York etc., 2012.
9. A. Ignat’ev, V. Ryazanov, Finite mean oscillation in the mapping theory, Ukrainian Math. Bull., 2

(2005), №3, 395–417.
10. F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961),

415–426.
11. P.M. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41–66.
12. Yu. Kolomoitsev, V. Ryazanov, Uniqueness of approximate solutions of the Beltrami equations, Proc.

Inst. Appl. Math. & Mech. NASU, 19 (2009), 116–124.
13. D. Kovtonyuk, V. Ryazanov, R. Salimov, E. Sevost’yanov, On mappings in the Orlicz-Sobolev classes,

arXiv:1012.5010v4 [math.CV].
14. K. Kuratowski, Topology, V.1, Academic Press, New York and London, 1966.
15. K. Kuratowski, Topology, V.2, Academic Press, New York and London, 1968.
16. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer

Monographs in Mathematics, Springer, New York etc., 2009.
17. O. Martio, V. Ryazanov, M. Vuorinen, BMO and injectivity of space quasiregular mappings, Math.

Nachr., 205 (1999), 149–161.
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