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ON SOLUTIONS OF ONE CONVOLUTION EQUATION
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V. Dilnyi, I. Sheparovych. On solutions of one convolution equation generated by a “deep zero”,
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We consider a convolution type equation in the Smirnov spaces in a semi-strip. We obtain
a description of solutions for the case when the characteristic function of the equation has
a “deep zero” at infinity.

В. Дильный, И. Шепарович. О решениях одного уравнения свертки, порожденных “глу-
боким нулем” // Мат. Студiї. – 2013. – Т.39, №1. – C.45–53.

Рассматривается уравнение типа свертки в пространствах Смирнова в полуполосе.
Получено описание решений для случая, если характеристическая функция уравнения
имеет “глубокий нуль” на бесконечности.

By definition, put C+ = {z : Re z > 0}, C− = {z : Re z < 0}, C+ = {z : Im z > 0},
C− = {z : Im z < 0}. By Hp(C+), 0 < p < +∞, denote the Hardy space of analytic on C+

functions such that

‖f‖Hp(C+) = sup
{(∫ +∞

−∞
|f(x+ iy)|pdy

)1/p
: x > 0

}
< +∞.

A function f ∈ Hp(C+) (see [1]) has angular boundary values almost everywhere (a.e.) on iR
which we denote by f and f(iy) ∈ Lp(−∞; +∞). Here and below ‖ · ‖ denotes the norm for
the case p ≥ 1 and the quasi-norm for 0 < p < 1. A. M. Sedletskii established ([2]) that the
space Hp(C+), p > 0, can be defined as a class of analytic on C+ functions such that

‖f‖∗Hp(C+) = sup
{(∫ +∞

0

|f(reiϕ)|pdr
)1/p

: − π

2
< ϕ <

π

2

}
< +∞

and
2−1/p‖f‖Hp(C+) ≤ ‖f‖∗Hp(C+) ≤ ‖f‖Hp(C+). (1)

Let M be the set of all segments lying in Dσ = {z : | Im z| < σ,Re z < 0} and let M∗ be
the set of all segments lying in D∗σ = C\Dσ. Suppose M̃ and M̃∗ are the sets of all segments
which are parallel to the coordinate axes and lying in Dσ and D∗σ, respectively. We also
denote by Ep[Dσ] and Ẽp[Dσ], 0 < p < +∞, σ > 0, the spaces of analytic functions in Dσ

such that
sup
{∫

γ

|f(z)|p|dz|
}1/p

< +∞, (2)
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where the supremum is taken over all segments γ that belong to M and M̃ respectively. We
denote by Ep

∗ [Dσ] and Ẽp
∗ [Dσ], 0 < p < +∞, σ > 0, the spaces of analytic functions in D∗σ

such that inequality (2) holds, where supremum is taken over all segments γ that belong
to M∗ and M̃∗ respectively.

We claim that f ∈ Ep[Dσ] if and only if f ∈ Ẽp[Dσ] for p > 1. Indeed, if f ∈ Ẽp[Dσ] then
(see [3, Lemma 5]) f = f1+f2+f3, where f1 ∈ Hp(C+−iσ), f2 ∈ Hp(C−), f3 ∈ Hp(C−+iσ).
Here for an arbitrary γ ∈M by Sedletskii’s theorem,

∫
γ
|fj(z)|p|dz| ≤ c1 < +∞, j ∈ {1; 2; 3}.

Therefore f ∈ Ep[Dσ].

We claim that f ∈ Ep
∗ [Dσ] if and only if f ∈ Ẽp

∗ [Dσ] for p > 0. Let f ∈ Ẽp
∗ [Dσ] =

Hp(C+ + iσ) ∩ Hp(C+) ∩ Hp(C− − iσ). Then by Sedletskii’s theorem
∫
γ
|f(z)|p|dz| ≤ c2,

where c2 does not depend on γ.
The spaces Ep[Dσ] and Ep

∗ [Dσ] were studied in [3]. There it has been shown that a func-
tion f from either of these spaces has angular boundary values a.e. on ∂Dσ which will be
denoted by f(z) and f ∈ Lp[∂Dσ].

Let Hp
σ(C+), σ ≥ 0, 1 ≤ p < +∞, be the space of analytic on C+ functions, for which

‖f‖ := sup
{(∫ +∞

0

|f(reiϕ)|pe−prσ| sinϕ|dr
)1/p

: −π
2
< ϕ <

π

2

}
< +∞.

A function f ∈ Hp
σ(C+) (see [3], Lemma 2 in [4]) has angular boundary values a. e. on iR

which will be denoted by f and f(iy)e−σ|y| ∈ Lp(−∞; +∞). The space Hp
σ(C+) for the case

σ = 0 is the Hardy space Hp(C+).
Let T 2

σ (C−) be the set of all triples F = (F1, F2, F3), where F1(z)e−iσz ∈ H2(C−),
F3(z)eiσz ∈ H2(C−), F2 is an entire function of exponential type ≤ σ, F2 ∈ L2(R), and
F1(z) + F2(z) + F3(z) ≡ 0 for z ∈ C−. The equalities

Fj(z) =
1√
2π

∫
lj

f(w)e−zwdw, f ∈ E2[Dσ], j ∈ {1, 2, 3}, (3)

define (see [5, Theorem 1]) a bijection between the spaces T 2
σ (C−) and E2[Dσ], where l1, l3

and l2 are the legs of ∂Dσ respectively the rays laying under and above of the real axis, and
the segment [−iσ; iσ]) and their orientation corresponds to the positive orientation of Dσ.
The inverse formula

f(w) =
1√
2π

∫ +∞

0

F1(iy)eiywdy+
1

i
√

2π

∫ +∞

0

F2(x)exwdx− 1√
2π

∫ 0

−∞
F3(iy)eiywdy, w ∈ Dσ, (4)

is also valid.
The equation ∫ 0

−∞
f(u+ τ)g(u)du = 0, g ∈ L2(−∞; 0) (5)

is studied in [6, 7, 8]. Its generalization∫
∂Dσ

f(w + τ)g(w)dw = 0, τ ≤ 0, g ∈ E2
∗ [Dσ], (6)

is investigated in [5, 9, 10]. The equality

G(z) =
1

i
√

2π

∫
∂Dσ

g(w)ezwdw (7)
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defines a bijection between the spaces H2
σ(C+) and E2

∗ [Dσ].
In [9, 10] it is shown that equation (6) has a nontrivial solution f ∈ E2[Dσ] if and only

if one of the following conditions is valid:
1) G has at least one zero at λ ∈ C+;
2) the singular boundary function of G is not a constant;

3) lim
x→+∞

( log |G(x)|
x

+
2σ

π
log x

)
< +∞. (8)

The singular boundary function h of ψ ∈ Hp
σ(C+) is defined up to an additive constant,

and to the values at points of continuity by the equality

h(t2)− h(t1) = lim
x→0+

∫ t2

t1

log |ψ(x+ iy)|dy −
∫ t2

t1

log |ψ(iy)|dy.

The singular boundary function of analytic in C+ function ψ ∈ Hp
σ(C+) is a constant (see

[1]). For the cases 1) and 2) solutions were studied in [3] and [11]. But the problem of
constructing a representation of solutions in the third case left open. Following [12, p. 2,
1.2], we say that in this case the function G has a “deep zero”.

Note that the case has no analog for σ = 0. Indeed, for σ = 0 equation (5) has a nontrivial
solution f ∈ L2(−∞; 0) if and only if ([6]) either G(z) = 0 for some z ∈ C+, or the singular
boundary function of G is not a constant, or

lim
x→+∞

log |G(x)|
x

< 0.

In the present paper we describe the spectral analysis (see [7]) in E2[Dσ] for the case of “deep
zero”.

Theorem 1. Let f ∈ E2[Dσ], f 6≡ 0, be a solution of equation (6), a function G have no
zero in C+ and the singular boundary function of G be a constant. Then the functions F1

and F3 defined by (3) are entire,

F1(z) = eiσzea1zκ1(z)
∏
|λn|≤1

z − λn
z + λn

∏
|λn|>1

1− z/λn
1 + z/λn

exp
( z
λn

+
z

λn

)
, z ∈ C+, λn ∈ C+, (9)

F3(z) = e−iσzea3zκ3(z)
∏
|µn|≤1

z − µn
z + µn

∏
|µn|>1

1− z/µn
1 + z/µn

exp
( z
µn

+
z

µn

)
, z ∈ C+, µn ∈ C+, (10)

where a1 ∈ R, a3 ∈ R, zeros λn and µn of the functions F1 and F3 satisfy the conditions

∑
|λn|≤1

Reλn < +∞, lim
r→+∞

( ∑
1<|λn|≤r

( 1

|λn|
− |λn|

r2

)Reλn
|λn|

− σ

π
log r

)
= β1, β1 ∈ R, (11)

∑
|µn|≤1

Reµn < +∞, lim
r→+∞

( ∑
1<|µn|≤r

( 1

|µn|
− |µn|

r2

)Reµn
|µn|

− σ

π
log r

)
= β3, β3 ∈ R, (12)

κ1 ∈ H2(C+), κ3 ∈ H2(C+), the functions κ1 and κ3 have no zero in C+ and their singular
boundary functions are constants. Moreover, F1(z)e−iσz ∈ H2(C−), F3(z)eiσz ∈ H2(C−).

The following statement, in some sense, is converse to the previous one.
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Theorem 2. Assume G ∈ H2
σ(C+), G has no zero in C+, the singular boundary function

of G is a constant, and inequality (8) holds. If for the functions F1, F3, representations (9),
(10) are valid, where a1 ∈ R, a3 ∈ R, κ1 ∈ H2(C+), κ3 ∈ H2(C+) conditions (11), (12)
hold and (F1,−F1 − F3, F3) ∈ T 2

σ (C−), then for some c ≥ 0 the equality F2 = −F1 − F3 and
representation (4) give a solution of the equation∫

∂Dσ

f(w + τ)ĝ(w)dw = 0, τ ≤ 0, (13)

where ĝ(w) = 1√
2π

∫ +∞
0

Ĝ(x)e−wxdx, Ĝ(z) = G(z)e−cz.

Remark. Condition (11) cannot be replaced (see [3]) with the condition

∑
|λn|≤1

Reλn < +∞, lim
r→+∞

( ∑
1<|λn|≤r

Reλn
|λn|2

− σ

π
log r

)
= β1, β1 ∈ R.

For the proof of Theorem 1 we provide some auxiliary results.

Lemma 1. If f ∈ E2[Dσ] is a solution of equation (6), then for each c > 0 the function f is
also a solution of equation (13).

Proof. Indeed, by Theorem 2 from [5]∫
∂Dσ

f(w + τ)ĝ(w)dw =

∫ +i∞

0

F1(z)G(z)e−czeτzdz+

∫ 0

−i∞
F3(z)G(z)e−czeτzdz+

+

∫ +∞

0

F2(z)G(z)e−czeτzdz =

∫ +i∞

0

F1(z)G(z)e(τ−c)zdz +

∫ 0

−i∞
F2(z)G(z)e(τ−c)zdz+

+

∫ +∞

0

F2(z)G(z)e(τ−c)zdz.

The right-hand side of the above equality is equal to zero for all τ ∈ (−∞; 0).

Lemma 2 ([13]). If f ∈ Hp
σ(C+), 1 ≤ p < +∞, σ > 0 and f 6≡ 0, then

f(z) = eia0+a1z · Π∗f (z) · S∗f (z) · exp
{ 1

πi

∫ +∞

−∞
Q(t, z) log |f(it)|dt

}
, (14)

where a0, a1 are real constants,

Π∗f (z) =
∏
|λn|≤1

z − λn
z + λn

∏
|λn|>1

1− z/λn
1 + z/λn

exp
( z
λn

+
z

λn

)
, S∗f (z) = exp

{ 1

πi

∫ +∞

−∞
Q(t, z)dh(t)

}
,

(15)

(λn) is a zero sequence in C+ of f , Q(t, z) = (tz+i)2

(1+t2)2(t+iz)
, also the conditions∑

|λn|≤1

Reλn <∞, log |f(iy)| ∈ L1(−1; 1), f(iy)e−σ|y| ∈ Lp(R), (16)

lim
r→+∞

(
Sf (r) + Ξf (r)−Kf (r)

)
< +∞, (17)
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are valid, where

Sf (r) =
∑

1<|λn|≤r

( 1

|λn|
− |λn|

r2

)Reλn
|λn|

, Ξf (r) =
1

2π

∫
1<|t|≤r

( 1

t2
− 1

r2

)
|dh(t)|,

Kf (r) =
1

2π

∫
1<|t|≤r

( 1

t2
− 1

r2

)
log |f(it)|dt,

and all products and integrals in (14) converge absolutely and uniformly on each compact
subset of C+.

Lemma 3 ([14]). Let g ∈ E2
∗ [Dσ] and G(x) log(2 + x) ∈ L2(0; +∞) for G, defined by (7).

Then f ∈ E2[Dσ] is a solution of (6) if and only if the following conditions are valid:

1) there exists a function P1, P1(z)e−iσz ∈ H1
σ(C+), such that the angular boundary values

of P1/G from C+ coincide with the angular boundary values of F1 from C− almost
everywhere on iR;

2) there exists a function P3, P3(z)eiσz ∈ H1
σ(C+), such that the angular boundary values

of P3/G from C+ coincide with the angular boundary values of F3 from C− almost
everywhere on iR.

Lemma 4. Suppose that the function f belongs to the Smirnov space E1 in the domains
�1 = {z : 0 < Re z < 1, a < Im z < a+ 1}, �2 = {z : − 1 < Re z < 0, a < Im z < a+ 1} and
the angular boundary functions of f from�1 and�2 coincide a. e. on {z = iy : y ∈ (a; a+ 1)}.
Then f belongs to the Smirnov space E1 in the domain � = {z : −1 < Re z < 1, a < Im z <
a+ 1}.

Proof. Indeed, the Smirnov spaceE1 coincides (see [15, P. III, 7.1]) with the class of functions,
representable by the Cauchy integral formula. Therefore

1

2πi

∫
∂�1

f(t)

t− z
dt =

{
f(z), z ∈ �1;

0, z ∈ �2,

1

2πi

∫
∂�2

f(t)

t− z
dt =

{
f(z), z ∈ �2;

0, z ∈ �1,

The function

Ξ(z) =
1

2πi

∫
∂�

f(t)

t− z
dt

is analytic on �, coincides with f for z ∈ �1 and z ∈ �2, hence Ξ belongs to E1 in �.

Lemma 5 (Theorem 3 [10]). Suppose F̃1(z)e−iσz ∈ H2
σ(C+), F̃3(z)eiσz ∈ H2

σ(C+),
(F̃1(x) + F̃3(x))e

2σ
π
x log x ∈ L2(0; +∞), and

lim
x→+∞

log |F̃j(x)|
x

= −∞, j ∈ {1; 3}. (18)

Then there exists c ∈ R, such that

F̃1(z)e−iσze
2σ
π
z log ze−cz ∈ H2(C+), F̃3(z)eiσze

2σ
π
z log ze−cz ∈ H2(C+), (19)

where log z is the principal branch of the logarithm in C+.

Lemma 6 (Lemma 9 [10]). If (F1, F2, F3) ∈ T 2
σ (C−), the functions F1, F3 are entire and

(∃c1 ∈ R) : F1(z)e−iσze−c1z ∈ H2(C+), (∃c2 ∈ R) : F3(z)eiσze−c2z ∈ H2(C+),

then (F1, F2, F3) ≡ (0, 0, 0).
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Proof of Theorem 1. Let a function f ∈ E2[Dσ], f 6= 0 be a solution of equation (6). Then
by Lemma 1 f is a solution of equation (13) too. By Lemma 3 there exists a function P1,
P1(z)e−iσz ∈ H1

σ(C+), such that the angular boundary values of P1/Ĝ from C+ coincide with
the angular boundary values of F1 from C− almost everywhere on iR. Then by Lemma 2

P1(z) = eia0+a1z+iσz ·
∏
|λn|≤1

z − λn
z + λn

∏
|λn|>1

1− z/λn
1 + z/λn

exp
( z
λn

+
z

λn

)
· S∗P1

(z)×

× exp
{ 1

πi

∫ +∞

−∞
Q(t, z) log |P1(it)e

σt|dt
}
, z ∈ C+, (20)

where (λn) is a sequence of zeros of P1 in C+. By the assumptions of the theorem, G(z) 6= 0,
z ∈ C+ and the singular boundary function of G is a constant, then by Lemma 2

G(z) = eiâ0+â1z · exp
{ 1

πi

∫ +∞

−∞
Q(t, z) log |G(it)|dt

}
, z ∈ C+. (21)

If we combine this statement with (20), we obtain for z ∈ C+

P1(z)/G(z) = eiσzeiã0+ã1zΠ∗P1
(z)S∗P1

(z) · exp
{ 1

πi

∫ +∞

−∞
Q(t, z) log

∣∣∣P1(it)e
σt/G(it)

∣∣∣dt}.
The function P1/G coincides with the angular boundary values of F1(z) a.e. on iR from C−.
But F1(z)e−iσz ∈ H2(C−), hence ([1, VI. C.])∫ +∞

−∞

| log |F1(it)e
σt‖

1 + t2
dt < +∞. (22)

Using
1

i
Q(t, z) =

−1

it− z
− it(2 + t2)

(1 + t2)2
− zt2

(1 + t2)2
,

we get ([1, VI. C.])

(∃c ∈ R) : exp
{ 1

πi

∫ +∞

−∞
Q(t, z) log

∣∣∣P1(it)e
σt/G(it)

∣∣∣dt− cz}∈ H2(C+). (23)

It is clear that condition (17) of Lemma 2 is valid for functions f , such that f(z)eiσz ∈
H2
σ(C+), because Sf ≡ Sf(z)eiσz , Ξf ≡ Ξf(z)eiσz . Since

∫
1<|t|≤r(1/t

2 − 1/r2)σtdt = 0, we get
Kf (r) = Kf(z)eiσz(r) for all r > 1. Hence we will write SP1 instead of SP1(z)e−iσz , ΞP1(r) instead
of ΞP1(z)e−iσz , and KP1(r) instead of KP1(z)e−iσz . Condition (17) is valid also for functions f ,
such that f(z)e−iσz ∈ H2

σ(C+). Therefore we obtain

lim
r→+∞

(
SP1(r) + ΞP1(r)−KP1(r)

)
< +∞. (24)

We obviously have KP1(r) = KP1/G(r)+KG(r) and using the notation log+ t = max{log t; 0}
we obtain by (22)

KP1/G(r) = KP1(z)/G(z)e−iσz ≤
1

2π

∫
1<|t|≤r

( 1

t2
− 1

r2

)
log+ |P1(it)/G(it)eσt|dt ≤

≤ 1

2π

∫
1<|t|≤r

1

t2
log+ |P1(it)/G(it)eσt|dt ≤ 1

π

∫
1<|t|≤r

| log |P1(it)/G(it)eσt‖
t2 + 1

dt < +∞.
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And as

KG(r) ≤ 1

2π

∫
1<|t|≤r

( 1

t2
− 1

r2

)
log+ |G(it)|dt ≤

≤ 1

2π

∫
1<|t|≤r

( 1

t2
− 1

r2

)
log+

∣∣∣G(it)e−σ|t|
∣∣∣dt+

1

2π

∫
1<|t|≤r

1

t2
σ|t|dt ≤

≤ 1

4π

∫
1<|t|≤r

1

t2

∣∣∣G(it)e−σ|t|
∣∣∣2dt+

σ

2π

∫
1<|t|≤r

1

|t|
dt ≤ c1 +

σ

π
log r,

that

lim
r→+∞

(
SP1(r) + ΞP1(r)−

σ

π
log r

)
≤ lim

r→+∞

(
SP1(r) + ΞP1(r)−KP1(r)

)
+

+ lim
r→+∞

KP1/G(r) + lim
r→+∞

(
KG(r)− σ

π
log r

)
< +∞.

Obviously, the functions SP1/G and ΞP1/G are nonnegative, therefore

lim
r→+∞

(
SP1(r)−

σ

π
log r

)
≤ lim

r→+∞

(
SP1(r) + ΞP1(r)−

σ

π
log r

)
< +∞,

lim
r→+∞

(
ΞP1(r)−

σ

π
log r

)
≤ lim

r→+∞

(
SP1(r) + ΞP1(r)−

σ

π
log r

)
< +∞.

But by the theorem assumptions, G has no zero in C+, and the singular boundary function
of G is a constant, hence SG ≡ 0, ΞG ≡ 0 and SP1/G ≡ SP1 , ΞP1/G ≡ ΞP1 . Therefore

lim
r→+∞

(
SP1/G(r)− σ

π
log r

)
< +∞, lim

r→+∞

(
ΞP1/G(r)− σ

π
log r

)
< +∞.

From this statement, considering first condition (16), imply (see [3, 16]) the estimates∣∣∣Π∗P1/G
(z)e−iσz

∣∣∣≤ exp
(2σ

π
x log r + c1x

)
,
∣∣∣S∗P1/G

(z)e−iσz
∣∣∣≤ exp

(2σ

π
x log r + c2x

)
(25)

for z = x + iy = reiϕ ∈ C+. From the above formulas and (23) it follows that the
function P1/G belongs to the Smirnov class E2 ⊂ E1 in 4c(0; 1) for each c ∈ R, where
4c(a; b) = {z : a < Rez < b, c < Imz < c + 1}. Since the angular boundary values of P1/G
and F1 coincide almost everywhere on iR, we (see [15, P. IV, 2.5]) can consider P1/G and
F1 as an analytic function on the complex plane and we will write F1 instead of P1/G. Since
F1(z)e−iσz ∈ H2(C−), this function belongs (see [17]) also to the class E2 ⊂ E1 in 4c(−1; 0)
for each c ∈ R. Then, by Lemma 4, F1 is analytic on 4c(−1; 1) for each c ∈ R. Hence we
have that F1 is an entire function. Therefore the singular boundary function of the func-
tion F1 is a constant. But the singular boundary function of F1 coincides with the singular
boundary function of P1, hence S∗P1

(z) ≡ 1, ΞP1(r) ≡ 0. Therefore representation (14) implies
formula (9) and conditions∑

|λn|≤1

Reλn < +∞, lim
r→+∞

( ∑
1<|λn|≤r

( 1

|λn|
− |λn|

r2

)Reλn
|λn|

− σ

π
log r

)
< +∞,

are valid for P1/G. Also these formulas hold for F1, because P1/G is the analytic continuation
of F1 to C+.

Assume on the contrary to (11) that
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lim
r→+∞

( ∑
1<|λn|≤r

( 1

|λn|
− |λn|

r2

)Reλn
|λn|

− σ

π
log r

)
= −∞.

Hence (see [18])

lim
x→+∞

log
∣∣∣ ∏
|λn|≤1

x−λn
x+λn

∏
|λn|>1

1−x/λn
1+x/λn

exp
(
x
λn

+ x
λn

)∣∣∣
x

− 2σ

π
log x = −∞.

Then after the designation F̃j(z) = Fj(z)e−
2σ
π
z log z, j ∈ {1; 3} we obtain estimation (18) for

j = 1, because

lim
x→+∞

log |eiσzea1zκ1(z)|
x

< +∞.

The same is valid for j = 3. Moreover, by the first condition of (25) we have |F̃1(z)e−iσz| ≤
≤ |F1(z)| exp(2σ

π
x log r + d1x) exp(−2σ

π
x log r + 2σ

π
y arg z) = |F1(z)| exp(2σ

π
y arg z + d1x),

d1 ∈ R. Therefore F̃1(z)e−iσze−d1z ∈ H2
σ(C+), analogously F̃3(z)eiσze−d3z ∈ H2

σ(C+) for
some d3 ∈ R. If d1 < 0 and d3 < 0, then by Lemma 6 we have (F1, F2, F3) ≡ (0, 0, 0). If
d1 > 0 or d3 > 0, then we consider functions F̃1(z)e−dz, F̃3(z)e−dz instead of F̃1(z), F̃3(z),

where d = max{d1, d3}. It is clear, that (F̃1(x) + F̃3(x))e
2σ
π
x log x ∈ L2(0; +∞). Then by

Lemma 5 formulas (19) are valid. Hence by Lemma 6 we have (F1, F2, F3) ≡ (0, 0, 0) that is
impossible.

Proof of Theorem 2. If (F1,−F1 − F3, F3) ∈ T 2
σ (C−), F2 = −F1 − F3, then the function f

defined by (4) belongs to E2[Dσ]. Condition (11) implies inequalities

∑
|λn|≤1

Reλn < +∞, lim
r→+∞

( ∑
1<|λn|≤r

( 1

|λn|
− |λn|

r2

)Reλn
|λn|

− σ

π
log r

)
< +∞.

Then (see [3]) we obtain the first inequality of (25). Condition (8) is equivalent (see [19]) to

(∃c0 ∈ R) : G(z) exp
{2σ

π
z log z − c0z

}
∈ H2(C+).

Hence

|F1(z)Ĝ(z)e−iσz| ≤ ec1x
∣∣∣κ1(z)G(z) exp

{2σ

π
z log z − cz

}∣∣∣· exp
{2σ

π
x log r

}
×

× exp
{
−2σ

π
x log r +

2σ

π
yϕ
}
≤ ec1x

∣∣∣κ1(z)G(z) exp
{2σ

π
z log z − cz

}∣∣∣· exp
{2σ

π
yϕ
}

for z = x + iy = reiϕ ∈ C+. But κ1(z)G(z) exp{2σ
π
z log z − cz} ∈ H1(C+), therefore for

some c2 we have F1(z)Ĝ(z)e−iσz ∈ H1
σ(C+), analogously F3(x)Ĝ(z)eiσz ∈ H1

σ(C+). Hence by
Lemma 3, f is a solution of (13).

Example. The function ψ1(z) =
∫
l1

exp(−e− π
2σ
w)ewe−wzdw is entire, it has representa-

tion (9) with condition (11).

Indeed, the function G0(z) = exp{−2σ
π
z log z}(1 + z)−2 has no zero in C+ and

lim
x→+∞

( log |G0(x)|
x

+
2σ

π
log x

)
= lim

x→+∞

(
− log(1 + x)2

x

)
< +∞.
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Also G0 is analytic in C+, hence the singular boundary function of G is a constant. Therefore
G0 satisfies the conditions of Theorem 1. But the function (see [5]) f(w) = exp(−e− π

2σ
w)ew

is a solution of (6) for

g(w) =
1√
2π

∫ +∞

0

G0(x)e−xwdx.

Hence by Theorem 1 ψ1 is entire, it has representation (9) with condition (11).
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