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ON SOLUTIONS OF ONE CONVOLUTION EQUATION
GENERATED BY A "DEEP ZERO”

V. Dilnyi, I. Sheparovych. On solutions of one convolution equation generated by a “deep zero”,
Mat. Stud. 39 (2013), 45-53.

We consider a convolution type equation in the Smirnov spaces in a semi-strip. We obtain
a description of solutions for the case when the characteristic function of the equation has
a “deep zero” at infinity.
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PaccmarpuBaercss ypaBHeHHe THIIA CBEPTKH B IpocTpaHcTBax CMUPHOBA B IIOJIYIIOJIOCE.
Ilonyueno omnucanume pemreHuil st ciaydasi, eCIu XapaKTepUCTUUIecKasi (DYHKINS YPABHEHUS
nMeeT “ryryboKuil Hysb' Ha OECKOHEYTHOCTH.

By definition, put C; = {z: Rez > 0}, C_ = {z: Rez < 0}, C* = {z: Imz > 0},
C™ ={z: Imz < 0}. By H?(C,),0 < p < 400, denote the Hardy space of analytic on C,
functions such that o

e =sun { ([

A function f € HP(C, ) (see [1]) has angular boundary values almost everywhere (a.e.) on iR
which we denote by f and f(iy) € LP(—o0;+00). Here and below || - || denotes the norm for
the case p > 1 and the quasi-norm for 0 < p < 1. A. M. Sedletskii established (|2]) that the
space HP(C,), p > 0, can be defined as a class of analytic on C, functions such that

* Hoeo i 1/p T T
ey =swo{ ([ Ieeopar)™s —Z<o<Z} <0
0

1/p
]f(x—i—z'y)]pdy) x> 0} < +00.

o0

and
27| fllarcyy < W flieeny < I larcy)- (1)

Let M be the set of all segments lying in D, = {z: |Im z| < 0,Rez < 0} and let M* be
the set of all segments lying in D’ = C\D,. Suppose M and M* are the sets of all segments
which are parallel to the coordinate axes and lying in D, and D}, respectively. We also
denote by E?[D,] and EP[D,], 0 < p < +00, o > 0, the spaces of analytic functions in D,
such that

su{ [ 1t} < o )
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where the supremum is taken over all segments 7 that belong to M and M respectively. We
denote by EP[D,] and E?[D,]|, 0 < p < +00, o > 0, the spaces of analytic functions in D
such that inequality (2) holds, where supremum is taken over all segments v that belong
to M* and M* respectively. B N

We claim that f € EP[D,] if and only if f € EP[D,] for p > 1. Indeed, if f € EP[D,] then
(see 3, Lemma 5|) f = fi+ fo+ f3, where f; € HP(Ct —io), fo € HP(C_), f3 € HP(C™ +io0).
Here for an arbitrary v € M by Sedletskii’s theorem, f |fi(z)[Pldz| < ¢ < 400, j € {1;2;3}.
Therefore f € EP[D,].

We claim that f € EP[D,] if and only if f € EP[D,] for p > 0. Let f € EP[D,] =
HP(C* +i0) N HP(C4) N HP(C™ — i0). Then by Sedletskii’s theorem [ [f(2)["|dz| < e,
where ¢y does not depend on 7.

The spaces EP[D,| and EP[D,] were studied in [3]. There it has been shown that a func-
tion f from either of these spaces has angular boundary values a.e. on 0D, which will be
denoted by f(z) and f € LP[0D,].

Let HP(C,),0 > 0,1 < p < 400, be the space of analytic on C, functions, for which

oo . s 1/p s T
Il == sup{(/ |f(re™)|Pe pm'““”'dr) Py << 5} < +o0.
0
A function f € HP(C,) (see [3], Lemma 2 in [4]) has angular boundary values a. e. on iR
which will be denoted by f and f(iy)e 7 € LP(—o0; +00). The space H?(C,) for the case
o = 0 is the Hardy space H?(C,).

Let T?(C_) be the set of all triples F' = (F}, Fy, F3), where Fy(z)e™* € H?*(C.),
F3(z)e* € H?(C_), Fy is an entire function of exponential type < o, F, € L*(R), and
Fi(2) 4+ Fa(z) + F3(z) =0 for z € C_. The equalities

Fj(Z)=\/L2—7T /l_f(w)e"”dw, feED,). je{l23). (3)

define (see [5, Theorem 1]) a bijection between the spaces T2(C_) and E?[D,], where Iy, (3
and [ are the legs of 0D, respectively the rays laying under and above of the real axis, and
the segment [—io;io]) and their orientation corresponds to the positive orientation of D,.
The inverse formula

1 oo
f(w) \/%/ Fi(iy) Zy“’dy—i—z\/% Fy(x) “”dx——/ Fy(iy)e™dy, w € D,, (4)
0

is also valid.
The equation

/ Flu+ 7)g(u)du =0, g€ L2(—o00:0) (5)

is studied in [6, 7, 8|. Its generalization

flw+7)g(w)dw =0, <0, g€ EID,], (6)
0D

is investigated in [5, 9, 10]. The equality

G(z) = w)e* dw (7)

1
V21 Jop, g(
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defines a bijection between the spaces H2(C,) and E2[D,].

In [9, 10] it is shown that equation (6) has a nontrivial solution f € E?[D,] if and only
if one of the following conditions is valid:

1) G has at least one zero at A € Cy;

2) the singular boundary function of G is not a constant;

) i (o860

T—+00

20
+— log x) < +o00. (8)

The singular boundary function h of ¢ € H2(C, ) is defined up to an additive constant,
and to the values at points of continuity by the equality

bita) — h(ts) = lim [ “tog e+ ip)ldy — [ loglutin)ldy

t1
The singular boundary function of analytic in C, function ¢ € H?(C,) is a constant (see
[1]). For the cases 1) and 2) solutions were studied in [3] and [11]. But the problem of
constructing a representation of solutions in the third case left open. Following [12, p. 2,
1.2], we say that in this case the function G has a “deep zero”.

Note that the case has no analog for o = 0. Indeed, for 0 = 0 equation (5) has a nontrivial
solution f € L?(—o0;0) if and only if ([6]) either G(z) = 0 for some z € C, or the singular
boundary function of GG is not a constant, or

— log|G(z)]

lim < 0.
T—r+00 €T

In the present paper we describe the spectral analysis (see [7]) in E?[D,] for the case of “deep

zero’.

Theorem 1. Let f € E*[D,], f # 0, be a solution of equation (6), a function G have no
zero in C, and the singular boundary function of G be a constant. Then the functions F;
and Fj defined by (3) are entire,

, zZ— A 1—z/\, z z
F = 9717 — —F e —+_— R EC ,)\nEC y 9
1(z) = e on 2) H 2+ Ay |,\1_|£1 1+ z/\, Xp( An) : * + )

» 2 — 1—z/p, z z
F3(2) = e7"7%e™% 35(2 ———ex (——i——),ze@, »€Cy, (10
(2 o) T1 e T e+ 7). 2 € Covn <o 10

where ay € R, az € R, zeros \,, and u,, of the functions Fy and Fj satisfy the conditions

. 1 [M[\ReA, o B
> Re, < +oc, TETOO<1<§< <|)\n] N 7«2) N _Elogr>_51’ freRr, (1)

Z R,e,un < 400, m < Z < L — |Mn|)Relun — glogr)zﬁ& BS ER, (12>

2
lun]<1 e 1<|pin|<r ] " ]

s € H*(C,), 33 € H*(C,), the functions 3 and 3 have no zero in C and their singular
boundary functions are constants. Moreover, Fy(z)e 7% € H*(C_), F3(z)e”* € H*(C_).

The following statement, in some sense, is converse to the previous one.
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Theorem 2. Assume G € H2(C,), G has no zero in C, the singular boundary function
of G is a constant, and inequality (8) holds. If for the functions Fi, F3, representations (9),
(10) are valid, where a; € R, a3 € R, 31 € H*(C,), 53 € H?*(C,) conditions (11), (12)
hold and (Fy, —F, — F3, F3) € T?(C_), then for some ¢ > 0 the equality Fy = —F; — F3 and
representation (4) give a solution of the equation

fw+7)g(w)dw =0, 7 <0, (13)

where g(w mf Je~vrdz, G(z) = G(z)e .

Remark. Condition (11) cannot be replaced (see [3]) with the condition

— ReX, o
Z Re)\n < 400, TEIJE]QQ( Z W—;logr>=517 /81 eR.

[An|<1 1<|An|<r
For the proof of Theorem 1 we provide some auxiliary results.

Lemma 1. If f € E*[D,] is a solution of equation (6), then for each ¢ > 0 the function f is
also a solution of equation (13).

Proof. Indeed, by Theorem 2 from [5]

0

—+1200
flw+71)g(w )dw—/ Fl(z)G(z)e_cze”dz—l—/ F5(2)G(z)e" e ™ dz+
BDO- 0 — 400

0

+oo +ioco
+/ FQ(Z)G(z)eCZeTZdz:/ F1(z)G(z)e(Tc)Zdz+/ Fy(2)G(2)e™ % d 2+
0 0

—100

+o0
+ / Fy(2)G(2)e™9%dz,
0

The right-hand side of the above equality is equal to zero for all 7 € (—o0;0). ]
Lemma 2 ([13|). If f € H?(C,),1 < p < +0o0, 0 > 0 and f # 0, then

+oo

fl2) = e e - S - expd - [ Q) log i)t} (14

— 00

where aq, a, are real constants,

z2— M\ 1—z/\, z z 1 [t
I (2) = H = H —exp(— + =), S}(z) = expy — Q(t, z)dh(t)
f f ) )
a1 2T A ‘/\n|>11+z/)\n <)\n A ) {m o }
(15)
An) is a zero sequence in C, of f, Q(t,z) = (t2+i)2., also the conditions
(+£2)2(t+iz)
> Red, < oo, log|f(iy)| € L'(=1;1), fliy)e ™ € L'(R), (16)
[An]<1
TE_TOO(Sf( )+ Ey(r )—Kf(r)>< +00, (17)
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are valid, where

_ 1 [An[\ ReAn _ 1 1 1
5= Y (pp- ) 0=/ (=)l

1< An|<r [Anl

K=o [ (35— 5)oalftndr,

B 2T 1<|t|<r t2
and all products and integrals in (14) converge absolutely and uniformly on each compact
subset of C, .

Lemma 3 ([14]). Let g € E?[D,] and G(z)log(2 + x) € L*(0;+o00) for G, defined by (7).
Then f € E?|D,] is a solution of (6) if and only if the following conditions are valid:
1) there exists a function Py, Py(z)e~"* € H}(C, ), such that the angular boundary values

of P/G from C, coincide with the angular boundary values of F; from C_ almost
everywhere on iR;

2) there exists a function Py, Py(z)e”* € HX(C,), such that the angular boundary values
of P;/G from C, coincide with the angular boundary values of F3 from C_ almost
everywhere on 1R.

Lemma 4. Suppose that the function f belongs to the Smirnov space E' in the domains
O ={2:0<Rez<lia<Imz<a+1},0y={z: —1<Rez<0,a<Imz<a+ 1} and
the angular boundary functions of f from J; and Oy coincide a. e.on {z = iy: y € (a;a + 1)}.
Then f belongs to the Smirnov space E' in the domain 0= {z: —1<Rez<1,a<Imz <
a+1}.

Proof. Indeed, the Smirnov space E' coincides (see [15, P. ITI, 7.1]) with the class of functions,
representable by the Cauchy integral formula. Therefore

O[S0, [Fe) se0n 1 S0, [fE) 2Dy
270 Joo, t — 2 0, z €y, 2m Jon,t—2 0, z € [y,
The function

1 t
E(z) = — Mdt
21 Jomt — 2
is analytic on [J, coincides with f for z € J; and z € [y, hence = belongs to E! in 0. [

Lemma 5 (Theorem 3 [10]). Suppose Fi(z)e7* € H2(C,), Fy(2)e € H2(C.),
(Fy(z) + F3(z))ex 7187 ¢ [2(0; +00), and

log | F;
lim log |F5(@)] =—o0, Jje{l;3}. (18)

z—+00 x
Then there exists ¢ € R, such that
ﬁl(z)efiaze%zlogzefcz c HQ((CJF)’ ﬁ3(2>eia’ze%’zlogzefcz c HQ((CJF)’ (19)
where log 2 is the principal branch of the logarithm in C, .
Lemma 6 (Lemma 9 [10]). If (Fy, Fy, F3) € T?(C_), the functions F, F3 are entire and
(e1 €R): Fy(z)e e~ % € H*(Cy), (Fey € R): Fy(2)e'7%e 2% € H*(C,),

then (Fl,FQ,Fg) = (0,0,0)
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Proof of Theorem 1. Let a function f € E?[D,], f # 0 be a solution of equation (6). Then
by Lemma 1 f is a solution of equation (13) too. By Lemma 3 there exists a function P,

Py(z)e~"* € HY(C..), such that the angular boundary values of P, /G from C. coincide with
the angular boundary values of F; from C_ almost everywhere on ¢R. Then by Lemma 2

Pi(z) = elootarztioz, H 2= H L=2/2 Xp(i + _i) - Sp,(2)x

— — €
\An|§1’z+>‘” ‘/\n|>11+z/)\n A A
1 [t
X exp{g Q(t, 2) log |P1(z't)e"t|dt}, 2 eCy, (20)

where (A,,) is a sequence of zeros of P; in C,. By the assumptions of the theorem, G(z) # 0,
z € C, and the singular boundary function of G is a constant, then by Lemma 2

o 1 [t
G(z) = efotarz . exp{—z_ O(t, 2) log |G(z’t)|dt}, 2 eCy. (21)
m —0o0
If we combine this statement with (20), we obtain for z € C,
10z jtapg+al 2T * * 1 e N\ ot .
Py(2)/G(2) = e TETy, ()85 (2) - exp{—z_ Q(t, 2) log| Py (it)e /G(zt)’dt}.
m —0o0

The function P, /G coincides with the angular boundary values of Fi(z) a.e. on ‘R from C_.
But Fi(z)e % € H*(C_), hence (|1, VI. C.|)

o log | Fa(it)e”||
/_OO e < oo, (22)
Using
1 -1 a2+ 2t?
—Q(t,2) = - _H 22)_ 2)2°
i it—z (1412 (1+1¢2)
we get (|1, VL. C.])
1 [t
(Jc€R): exp{g Q(t, 2) log Pl(it)e”t/G(@'t)‘dt - CZ}E H*(C,). (23)

It is clear that condition (17) of Lemma 2 is valid for functions f, such that f(z)e"* €
HZ(C,), because Sy = Sp(y)eios, Zf = Zp(s)eio=. Since f1<|t|9(1/t2 — 1/r¥)otdt = 0, we get
Ky(r) = Kj()eio=(r) for all 7 > 1. Hence we will write Sp, instead of Sp, (.ye-io=, Zp, (1) instead
of Ep,(z)e-io=, and Kp, (r) instead of Kp,(,)e-io=. Condition (17) is valid also for functions f,
such that f(z)e* € H2(C,). Therefore we obtain

T (Sn(r) +Zn(r) = Kp(r)) < +oo. (24)
We obviously have Kp, (r) = Kp, /q(r)+ Kq(r) and using the notation log™ ¢t = max{log; 0}
we obtain by (22)

1 1 1

Kpja(r) = Koo < 5 " (z‘z - ﬁ>log+ Py (it) /G (it)e?t|dt <

1 1 . . 1 |log | Py (it) /G (it)e”"|
< — —log™ | P, (it Gzte"tdtg—/ dt < +o0.
21 Jic<r it/ Git)e” T Jicp<r 2 +1
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And as
1 1 1
Ko(r) < — <———>1 |G it)|dt <
(T> T 2m 1<t|<r t2 7 o8 ‘ (Z )| N
1 1 1 1
< — (———)log G —olt] dt+— —olt|dt <
21 Jicp<r NP 12 (it)e 21 Jicpy<r B2 4
1
< — ‘G (it)e —oltl dt + — / dt <c+ - logr
4 1<|t|<rt 2m 1<|t\<r| |
that

lim (SP1<7") + Zp, (1) — —logr>< lim (Sp1 (r) 4+ =Zp (r) — Kp, (r))—l—

r—-+00 r—-+00

+ lim Kp (r) + hI_El (KG( ) — %logr>< +00.

r—+400

Obviously, the functions Sp, /¢ and Zp, /¢ are nonnegative, therefore

lim <Sp1( )——logr)< lim (Spl(r)+Ep1(r)—%logr)< +00,

r—+00 r—+00
— (- o — o
T (2017 - Zior)< T (50)+ 0) - Zher )< e

But by the theorem assumptions, G has no zero in C,, and the singular boundary function
of G is a constant, hence Sg =0, Z¢ = 0 and Sp, ;g = Sp,, Zp,/¢ = Ep,. Therefore

lim (Spl/G<T) — %logr>< +00,  lim (Epl/G(T) — %10g7’>< +00.

r——+00 r—+00

From this statement, considering first condition (16), imply (see [3, 16]) the estimates

2
1< exp(—axlogr + 02:17> (25)
T

2 .
< exp(%xlogr + 0193>, ‘S}l/G(z)e—w

*Pl/G’(Z)e_wz

for z = z + iy = re € C,. From the above formulas and (23) it follows that the
function P;/G belongs to the Smirnov class E? C E' in A.(0;1) for each ¢ € R, where
Ac(a;b) = {z: a < Rez < b,c < Imz < ¢+ 1}. Since the angular boundary values of P, /G
and F coincide almost everywhere on iR, we (see [15, P. IV, 2.5]) can consider P;/G and
F} as an analytic function on the complex plane and we will write Fj instead of P;/G. Since
Fi(z)e™% € H?*(C_), this function belongs (see [17]) also to the class £ C E' in A.(—1;0)
for each ¢ € R. Then, by Lemma 4, F} is analytic on A.(—1;1) for each ¢ € R. Hence we
have that F} is an entire function. Therefore the singular boundary function of the func-
tion F} is a constant. But the singular boundary function of F; coincides with the singular
boundary function of Py, hence S}, (2) = 1, Zp, (r) = 0. Therefore representation (14) implies
formula (9) and conditions

— 1 IAn[\ReA, o
Z Re A\, < +o0, Tll)l_gl@( Z (|)\n|— 7"2) N —;10g7’)<+oo,

[An|<1 1< n|<r

are valid for P, /G. Also these formulas hold for F}, because P; /G is the analytic continuation
of F} to C,.
Assume on the contrary to (11) that
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S 1 A \ReA, o B
&%( > <|)\n| - 7’2) BN _%logr>__°°'

1< An|<r

Hence (see [18])

1—x/An x T

log’ 2= T " exp (——F——)‘

n T+ n PUREW

. a1 T s T 20
lim
T—+00 €T

Then after the designation ﬁj(z) = Fj(z)e_%a“ogz, j € {1;3} we obtain estimation (18) for
7 =1, because

o 10z ea17
lim log e (2)] < 400.

Tr—r—+00 €T

The same is valid for j = 3. Moreover by the ﬁrst condition of (25) we have |Fj(z)e 9% <
< |Fi(2)] exp(®2 xlogr+d1$) exp(—Zzlogr + Zyargz) = |Fi(2)]exp(Zyargz + diz),

d; € R. Therefore Fi(z)e 2 Mz ¢ H2(C,), analogously Fy(z)e"% e~ i € H*(C,) for
some d3 € R. If d; < 0 and d3 < 0, then by Lemma 6 we have (Fy, Fy, F3) = (0,0,0). If
d; > 0 or dy > 0, then we consider functions F(z)e™%, F3(z)e™% instead of Fy(z), F3(z),
where d = max{d,,ds}. It is clear, that (F\(z) + F3(z ))e%mlog”’ € L*(0;+400). Then by
Lemma 5 formulas (19) are valid. Hence by Lemma 6 we have (Fy, Fy, F3) = (0,0,0) that is
impossible. O

Proof of Theorem 2. If (Fy,—F, — F3,F3) € T*(C_), F, = —F, — F3, then the function f
defined by (4) belongs to E?[D,]. Condition (11) implies inequalities

— 1 IAn|\ReA, o
Z Re \, < 400, THIJ}l@( Z <’)\n‘_ 7"2) N —;logr>< +00.

[An]<1 1<|An|<r

Then (see [3]) we obtain the first inequality of (25). Condition (8) is equivalent (see [19]) to

(Jeo € R): G(z )exp{z—azlogz - coz}e H*(Cy).

Hence
~ s 20 20
|F1(2)G(2)e 7% < e (2)G(2) exp{—zlogz - cz}‘ exp{—xlogr}x
m m
2 2
7 (2)G(z )exp{—gzlogz - cz} ~exp{—0ygp}
77 m
for z = o + iy = re’ € Cy. But s(2)G(2) exp{*2zlogz — cz} € H'(C,), therefore for

some ¢, we have Fy(z)G(z)e % € H}(C,), analogously Fy(2)G(2)ei"" € H!(C,). Hence by
Lemma 3, f is a solution of (13). O

20 20 -
X exp{——xlogr + —ygo}g e
T s

Example. The function ¢;(z) = fl exp(—e~2¥)eve ?*dw is entire, it has representa-
tion (9) with condition (11).

Indeed, the function Gy(z) = exp{—22zlog z}(1 + z) 2 has no zero in C and

log |Go ()|

( < log(1 + z)?
T—+00 x

20 —
+ —log .zz:) = lim
s x

Tr——+00

>< —+00.
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Also G is analytic in C,, hence the singular boundary function of G is a constant. Therefore
Gy satisfies the conditions of Theorem 1. But the function (see [5]) f(w) = exp(—e~2%)e”
is a solution of (6) for

1 o —zw
g(w) = E/o Go(z)e *dx.

Hence by Theorem 1 1, is entire, it has representation (9) with condition (11).

10.

11.

12.

13.

14.

15.
16.

17.
18.

19.
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