V. Dilnyi, I. Sheparovych

ON SOLUTIONS OF ONE CONVOLUTION EQUATION GENERATED BY A "DEEP ZERO"

Abstract

V. Dilnyi, I. Sheparovych. On solutions of one convolution equation generated by a "deep zero", Mat. Stud. 39 (2013), 45-53.

We consider a convolution type equation in the Smirnov spaces in a semi-strip. We obtain a description of solutions for the case when the characteristic function of the equation has a "deep zero" at infinity. В. Дильный, И. Шепарович. О решениях одного уравнения свертки, порожденных "глубоким нулем" // Мат. Студії. - 2013. - Т.39, №1. - С.45-53.

Рассматривается уравнение типа свертки в пространствах Смирнова в полуполосе. Получено описание решений для случая, если характеристическая функция уравнения имеет "глубокий нуль" на бесконечности.

By definition, put $\mathbb{C}_{+}=\{z: \operatorname{Re} z>0\}, \mathbb{C}_{-}=\{z: \operatorname{Re} z<0\}, \mathbb{C}^{+}=\{z: \operatorname{Im} z>0\}$, $\mathbb{C}^{-}=\{z: \operatorname{Im} z<0\}$. By $H^{p}\left(\mathbb{C}_{+}\right), 0<p<+\infty$, denote the Hardy space of analytic on \mathbb{C}_{+} functions such that

$$
\|f\|_{H^{p}\left(\mathbb{C}_{+}\right)}=\sup \left\{\left(\int_{-\infty}^{+\infty}|f(x+i y)|^{p} d y\right)^{1 / p}: x>0\right\}<+\infty
$$

A function $f \in H^{p}\left(\mathbb{C}_{+}\right)$(see [1]) has angular boundary values almost everywhere (a.e.) on $i \mathbb{R}$ which we denote by f and $f(i y) \in L^{p}(-\infty ;+\infty)$. Here and below $\|\cdot\|$ denotes the norm for the case $p \geq 1$ and the quasi-norm for $0<p<1$. A. M. Sedletskii established ([2]) that the space $H^{p}\left(\mathbb{C}_{+}\right), p>0$, can be defined as a class of analytic on \mathbb{C}_{+}functions such that

$$
\|f\|_{H^{p}\left(\mathbb{C}_{+}\right)}^{*}=\sup \left\{\left(\int_{0}^{+\infty}\left|f\left(r e^{i \varphi}\right)\right|^{p} d r\right)^{1 / p}: \quad-\frac{\pi}{2}<\varphi<\frac{\pi}{2}\right\}<+\infty
$$

and

$$
\begin{equation*}
2^{-1 / p}\|f\|_{H^{p}\left(\mathbb{C}_{+}\right)} \leq\|f\|_{H^{p}\left(\mathbb{C}_{+}\right)}^{*} \leq\|f\|_{H^{p}\left(\mathbb{C}_{+}\right)} . \tag{1}
\end{equation*}
$$

Let M be the set of all segments lying in $D_{\sigma}=\{z:|\operatorname{Im} z|<\sigma, \operatorname{Re} z<0\}$ and let M^{*} be the set of all segments lying in $D_{\sigma}^{*}=\mathbb{C} \backslash \bar{D}_{\sigma}$. Suppose \widetilde{M} and \widetilde{M}^{*} are the sets of all segments which are parallel to the coordinate axes and lying in D_{σ} and D_{σ}^{*}, respectively. We also denote by $E^{p}\left[D_{\sigma}\right]$ and $\widetilde{E}^{p}\left[D_{\sigma}\right], 0<p<+\infty, \sigma>0$, the spaces of analytic functions in D_{σ} such that

$$
\begin{equation*}
\sup \left\{\int_{\gamma}|f(z)|^{p}|d z|\right\}^{1 / p}<+\infty \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classification: 30D55, 45E10.
Keywords: Hardy space, entire function, convolution equation.
where the supremum is taken over all segments γ that belong to M and \widetilde{M} respectively. We denote by $E_{*}^{p}\left[D_{\sigma}\right]$ and $\widetilde{E}_{*}^{p}\left[D_{\sigma}\right], 0<p<+\infty, \sigma>0$, the spaces of analytic functions in D_{σ}^{*} such that inequality (2) holds, where supremum is taken over all segments γ that belong to M^{*} and \widetilde{M}^{*} respectively.

We claim that $f \in E^{p}\left[D_{\sigma}\right]$ if and only if $f \in \widetilde{E}^{p}\left[D_{\sigma}\right]$ for $p>1$. Indeed, if $f \in \widetilde{E}^{p}\left[D_{\sigma}\right]$ then (see [3, Lemma 5]) $f=f_{1}+f_{2}+f_{3}$, where $f_{1} \in H^{p}\left(\mathbb{C}^{+}-i \sigma\right), f_{2} \in H^{p}\left(\mathbb{C}_{-}\right), f_{3} \in H^{p}\left(\mathbb{C}^{-}+i \sigma\right)$. Here for an arbitrary $\gamma \in M$ by Sedletskii's theorem, $\int_{\gamma}\left|f_{j}(z)\right|^{p}|d z| \leq c_{1}<+\infty, j \in\{1 ; 2 ; 3\}$. Therefore $f \in E^{p}\left[D_{\sigma}\right]$.

We claim that $f \in E_{*}^{p}\left[D_{\sigma}\right]$ if and only if $f \in \widetilde{E}_{*}^{p}\left[D_{\sigma}\right]$ for $p>0$. Let $f \in \widetilde{E}_{*}^{p}\left[D_{\sigma}\right]=$ $H^{p}\left(\mathbb{C}^{+}+i \sigma\right) \cap H^{p}\left(\mathbb{C}_{+}\right) \cap H^{p}\left(\mathbb{C}^{-}-i \sigma\right)$. Then by Sedletskii's theorem $\int_{\gamma}|f(z)|^{p}|d z| \leq c_{2}$, where c_{2} does not depend on γ.

The spaces $E^{p}\left[D_{\sigma}\right]$ and $E_{*}^{p}\left[D_{\sigma}\right]$ were studied in [3]. There it has been shown that a function f from either of these spaces has angular boundary values a.e. on ∂D_{σ} which will be denoted by $f(z)$ and $f \in L^{p}\left[\partial D_{\sigma}\right]$.

Let $H_{\sigma}^{p}\left(\mathbb{C}_{+}\right), \sigma \geq 0,1 \leq p<+\infty$, be the space of analytic on \mathbb{C}_{+}functions, for which

$$
\|f\|:=\sup \left\{\left(\int_{0}^{+\infty}\left|f\left(r e^{i \varphi}\right)\right|^{p} e^{-p r \sigma|\sin \varphi|} d r\right)^{1 / p}:-\frac{\pi}{2}<\varphi<\frac{\pi}{2}\right\}<+\infty .
$$

A function $f \in H_{\sigma}^{p}\left(\mathbb{C}_{+}\right)$(see [3], Lemma 2 in [4]) has angular boundary values a. e. on $i \mathbb{R}$ which will be denoted by f and $f(i y) e^{-\sigma|y|} \in L^{p}(-\infty ;+\infty)$. The space $H_{\sigma}^{p}\left(\mathbb{C}_{+}\right)$for the case $\sigma=0$ is the Hardy space $H^{p}\left(\mathbb{C}_{+}\right)$.

Let $T_{\sigma}^{2}\left(\mathbb{C}_{-}\right)$be the set of all triples $F=\left(F_{1}, F_{2}, F_{3}\right)$, where $F_{1}(z) e^{-i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right)$, $F_{3}(z) e^{i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right), F_{2}$ is an entire function of exponential type $\leq \sigma, F_{2} \in L^{2}(\mathbb{R})$, and $F_{1}(z)+F_{2}(z)+F_{3}(z) \equiv 0$ for $z \in \mathbb{C}_{-}$. The equalities

$$
\begin{equation*}
F_{j}(z)=\frac{1}{\sqrt{2 \pi}} \int_{l_{j}} f(w) e^{-z w} d w, \quad f \in E^{2}\left[D_{\sigma}\right], \quad j \in\{1,2,3\} \tag{3}
\end{equation*}
$$

define (see [5, Theorem 1]) a bijection between the spaces $T_{\sigma}^{2}\left(\mathbb{C}_{-}\right)$and $E^{2}\left[D_{\sigma}\right]$, where l_{1}, l_{3} and l_{2} are the legs of ∂D_{σ} respectively the rays laying under and above of the real axis, and the segment $[-i \sigma ; i \sigma])$ and their orientation corresponds to the positive orientation of D_{σ}. The inverse formula

$$
\begin{equation*}
f(w)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} F_{1}(i y) e^{i y w} d y+\frac{1}{i \sqrt{2 \pi}} \int_{0}^{+\infty} F_{2}(x) e^{x w} d x-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} F_{3}(i y) e^{i y w} d y, w \in D_{\sigma} \tag{4}
\end{equation*}
$$

is also valid.
The equation

$$
\begin{equation*}
\int_{-\infty}^{0} f(u+\tau) g(u) d u=0, \quad g \in L^{2}(-\infty ; 0) \tag{5}
\end{equation*}
$$

is studied in $[6,7,8]$. Its generalization

$$
\begin{equation*}
\int_{\partial D_{\sigma}} f(w+\tau) g(w) d w=0, \quad \tau \leq 0, \quad g \in E_{*}^{2}\left[D_{\sigma}\right] \tag{6}
\end{equation*}
$$

is investigated in [5, 9, 10]. The equality

$$
\begin{equation*}
G(z)=\frac{1}{i \sqrt{2 \pi}} \int_{\partial D_{\sigma}} g(w) e^{z w} d w \tag{7}
\end{equation*}
$$

defines a bijection between the spaces $H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$and $E_{*}^{2}\left[D_{\sigma}\right]$.
In $[9,10]$ it is shown that equation (6) has a nontrivial solution $f \in E^{2}\left[D_{\sigma}\right]$ if and only if one of the following conditions is valid:

1) G has at least one zero at $\lambda \in \mathbb{C}_{+}$;
2) the singular boundary function of G is not a constant;
3)

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty}\left(\frac{\log |G(x)|}{x}+\frac{2 \sigma}{\pi} \log x\right)<+\infty \tag{8}
\end{equation*}
$$

The singular boundary function h of $\psi \in H_{\sigma}^{p}\left(\mathbb{C}_{+}\right)$is defined up to an additive constant, and to the values at points of continuity by the equality

$$
h\left(t_{2}\right)-h\left(t_{1}\right)=\lim _{x \rightarrow 0+} \int_{t_{1}}^{t_{2}} \log |\psi(x+i y)| d y-\int_{t_{1}}^{t_{2}} \log |\psi(i y)| d y .
$$

The singular boundary function of analytic in $\overline{\mathbb{C}}_{+}$function $\psi \in H_{\sigma}^{p}\left(\mathbb{C}_{+}\right)$is a constant (see [1]). For the cases 1) and 2) solutions were studied in [3] and [11]. But the problem of constructing a representation of solutions in the third case left open. Following [12, p. 2, 1.2], we say that in this case the function G has a "deep zero".

Note that the case has no analog for $\sigma=0$. Indeed, for $\sigma=0$ equation (5) has a nontrivial solution $f \in L^{2}(-\infty ; 0)$ if and only if $([6])$ either $G(z)=0$ for some $z \in \mathbb{C}_{+}$, or the singular boundary function of G is not a constant, or

$$
\varlimsup_{x \rightarrow+\infty} \frac{\log |G(x)|}{x}<0
$$

In the present paper we describe the spectral analysis (see [7]) in $E^{2}\left[D_{\sigma}\right]$ for the case of "deep zero".

Theorem 1. Let $f \in E^{2}\left[D_{\sigma}\right], f \not \equiv 0$, be a solution of equation (6), a function G have no zero in \mathbb{C}_{+}and the singular boundary function of G be a constant. Then the functions F_{1} and F_{3} defined by (3) are entire,

$$
\begin{align*}
& F_{1}(z)=e^{i \sigma z} e^{a_{1} z} \varkappa_{1}(z) \prod_{\left|\lambda_{n}\right| \leq 1} \frac{z-\lambda_{n}}{z+\bar{\lambda}_{n}} \prod_{\left|\lambda_{n}\right|>1} \frac{1-z / \lambda_{n}}{1+z / \bar{\lambda}_{n}} \exp \left(\frac{z}{\lambda_{n}}+\frac{z}{\bar{\lambda}_{n}}\right), z \in \mathbb{C}_{+}, \lambda_{n} \in \mathbb{C}_{+}, \tag{9}\\
& F_{3}(z)=e^{-i \sigma z} e^{a_{3} z} \varkappa_{3}(z) \prod_{\left|\mu_{n}\right| \leq 1} \frac{z-\mu_{n}}{z+\bar{\mu}_{n}} \prod_{\left|\mu_{n}\right|>1} \frac{1-z / \mu_{n}}{1+z / \bar{\mu}_{n}} \exp \left(\frac{z}{\mu_{n}}+\frac{z}{\bar{\mu}_{n}}\right), z \in \mathbb{C}_{+}, \mu_{n} \in \mathbb{C}_{+}, \tag{10}
\end{align*}
$$

where $a_{1} \in \mathbb{R}, a_{3} \in \mathbb{R}$, zeros λ_{n} and μ_{n} of the functions F_{1} and F_{3} satisfy the conditions

$$
\begin{align*}
& \sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\lambda_{n}\right| \leq r}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \frac{\operatorname{Re} \lambda_{n}}{\left|\lambda_{n}\right|}-\frac{\sigma}{\pi} \log r\right)=\beta_{1}, \quad \beta_{1} \in \mathbb{R}, \tag{11}\\
& \sum_{\left|\mu_{n}\right| \leq 1} \operatorname{Re} \mu_{n}<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\mu_{n}\right| \leq r}\left(\frac{1}{\left|\mu_{n}\right|}-\frac{\left|\mu_{n}\right|}{r^{2}}\right) \frac{\operatorname{Re} \mu_{n}}{\left|\mu_{n}\right|}-\frac{\sigma}{\pi} \log r\right)=\beta_{3}, \quad \beta_{3} \in \mathbb{R}, \tag{12}
\end{align*}
$$

$\varkappa_{1} \in H^{2}\left(\mathbb{C}_{+}\right), \varkappa_{3} \in H^{2}\left(\mathbb{C}_{+}\right)$, the functions \varkappa_{1} and \varkappa_{3} have no zero in \mathbb{C}_{+}and their singular boundary functions are constants. Moreover, $F_{1}(z) e^{-i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right), F_{3}(z) e^{i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right)$.

The following statement, in some sense, is converse to the previous one.

Theorem 2. Assume $G \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$, G has no zero in \mathbb{C}_{+}, the singular boundary function of G is a constant, and inequality (8) holds. If for the functions F_{1}, F_{3}, representations (9), (10) are valid, where $a_{1} \in \mathbb{R}, a_{3} \in \mathbb{R}$, $\varkappa_{1} \in H^{2}\left(\mathbb{C}_{+}\right)$, $\varkappa_{3} \in H^{2}\left(\mathbb{C}_{+}\right)$conditions (11), (12) hold and $\left(F_{1},-F_{1}-F_{3}, F_{3}\right) \in T_{\sigma}^{2}\left(\mathbb{C}_{-}\right)$, then for some $c \geq 0$ the equality $F_{2}=-F_{1}-F_{3}$ and representation (4) give a solution of the equation

$$
\begin{equation*}
\int_{\partial D_{\sigma}} f(w+\tau) \widehat{g}(w) d w=0, \tau \leq 0 \tag{13}
\end{equation*}
$$

where $\widehat{g}(w)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \widehat{G}(x) e^{-w x} d x, \widehat{G}(z)=G(z) e^{-c z}$.
Remark. Condition (11) cannot be replaced (see [3]) with the condition

$$
\sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\lambda_{n}\right| \leq r} \frac{\operatorname{Re} \lambda_{n}}{\left|\lambda_{n}\right|^{2}}-\frac{\sigma}{\pi} \log r\right)=\beta_{1}, \quad \beta_{1} \in \mathbb{R}
$$

For the proof of Theorem 1 we provide some auxiliary results.
Lemma 1. If $f \in E^{2}\left[D_{\sigma}\right]$ is a solution of equation (6), then for each $c>0$ the function f is also a solution of equation (13).

Proof. Indeed, by Theorem 2 from [5]

$$
\begin{aligned}
\int_{\partial D_{\sigma}} f(w+\tau) \widehat{g}(w) d w= & \int_{0}^{+i \infty} F_{1}(z) G(z) e^{-c z} e^{\tau z} d z+\int_{-i \infty}^{0} F_{3}(z) G(z) e^{-c z} e^{\tau z} d z+ \\
+\int_{0}^{+\infty} F_{2}(z) G(z) e^{-c z} e^{\tau z} d z= & \int_{0}^{+i \infty} F_{1}(z) G(z) e^{(\tau-c) z} d z+\int_{-i \infty}^{0} F_{2}(z) G(z) e^{(\tau-c) z} d z+ \\
& +\int_{0}^{+\infty} F_{2}(z) G(z) e^{(\tau-c) z} d z
\end{aligned}
$$

The right-hand side of the above equality is equal to zero for all $\tau \in(-\infty ; 0)$.
Lemma 2 ([13]). If $f \in H_{\sigma}^{p}\left(\mathbb{C}_{+}\right), 1 \leq p<+\infty, \sigma>0$ and $f \not \equiv 0$, then

$$
\begin{equation*}
f(z)=e^{i a_{0}+a_{1} z} \cdot \Pi_{f}^{*}(z) \cdot S_{f}^{*}(z) \cdot \exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) \log |f(i t)| d t\right\} \tag{14}
\end{equation*}
$$

where a_{0}, a_{1} are real constants,

$$
\begin{equation*}
\Pi_{f}^{*}(z)=\prod_{\left|\lambda_{n}\right| \leq 1} \frac{z-\lambda_{n}}{z+\bar{\lambda}_{n}} \prod_{\left|\lambda_{n}\right|>1} \frac{1-z / \lambda_{n}}{1+z / \bar{\lambda}_{n}} \exp \left(\frac{z}{\lambda_{n}}+\frac{z}{\bar{\lambda}_{n}}\right), S_{f}^{*}(z)=\exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) d h(t)\right\} \tag{15}
\end{equation*}
$$

$\left(\lambda_{n}\right)$ is a zero sequence in \mathbb{C}_{+}of $f, Q(t, z)=\frac{(t z+i)^{2}}{\left(1+t^{2}\right)^{2}(t+i z)}$, also the conditions

$$
\begin{gather*}
\sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<\infty, \log |f(i y)| \in L^{1}(-1 ; 1), f(i y) e^{-\sigma|y|} \in L^{p}(\mathbb{R}), \tag{16}\\
\varlimsup_{r \rightarrow+\infty}\left(S_{f}(r)+\Xi_{f}(r)-K_{f}(r)\right)<+\infty \tag{17}
\end{gather*}
$$

are valid, where

$$
\begin{gathered}
S_{f}(r)=\sum_{1<\left|\lambda_{n}\right| \leq r}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \frac{R e \lambda_{n}}{\left|\lambda_{n}\right|}, \quad \Xi_{f}(r)=\frac{1}{2 \pi} \int_{1<|t| \leq r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right)|d h(t)|, \\
K_{f}(r)=\frac{1}{2 \pi} \int_{1<|t| \leq r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right) \log |f(i t)| d t,
\end{gathered}
$$

and all products and integrals in (14) converge absolutely and uniformly on each compact subset of \mathbb{C}_{+}.

Lemma 3 ([14]). Let $g \in E_{*}^{2}\left[D_{\sigma}\right]$ and $G(x) \log (2+x) \in L^{2}(0 ;+\infty)$ for G, defined by (7). Then $f \in E^{2}\left[D_{\sigma}\right]$ is a solution of (6) if and only if the following conditions are valid:

1) there exists a function $P_{1}, P_{1}(z) e^{-i \sigma z} \in H_{\sigma}^{1}\left(\mathbb{C}_{+}\right)$, such that the angular boundary values of P_{1} / G from \mathbb{C}_{+}coincide with the angular boundary values of F_{1} from \mathbb{C}_{-}almost everywhere on $i \mathbb{R}$;
2) there exists a function $P_{3}, P_{3}(z) e^{i \sigma z} \in H_{\sigma}^{1}\left(\mathbb{C}_{+}\right)$, such that the angular boundary values of P_{3} / G from \mathbb{C}_{+}coincide with the angular boundary values of F_{3} from \mathbb{C}_{-}almost everywhere on $i \mathbb{R}$.

Lemma 4. Suppose that the function f belongs to the Smirnov space E^{1} in the domains $\square_{1}=\{z: 0<\operatorname{Re} z<1, a<\operatorname{Im} z<a+1\}, \square_{2}=\{z:-1<\operatorname{Re} z<0, a<\operatorname{Im} z<a+1\}$ and the angular boundary functions of f from \square_{1} and \square_{2} coincide a. e. on $\{z=i y: y \in(a ; a+1)\}$. Then f belongs to the Smirnov space E^{1} in the domain $\square=\{z:-1<\operatorname{Re} z<1, a<\operatorname{Im} z<$ $a+1\}$.

Proof. Indeed, the Smirnov space E^{1} coincides (see [15, P. III, 7.1]) with the class of functions, representable by the Cauchy integral formula. Therefore

$$
\frac{1}{2 \pi i} \int_{\partial \square_{1}} \frac{f(t)}{t-z} d t=\left\{\begin{array}{ll}
f(z), & z \in \square_{1} ; \\
0, & z \in \square_{2},
\end{array} \quad \frac{1}{2 \pi i} \int_{\partial \square_{2}} \frac{f(t)}{t-z} d t= \begin{cases}f(z), & z \in \square_{2} \\
0, & z \in \square_{1}\end{cases}\right.
$$

The function

$$
\Xi(z)=\frac{1}{2 \pi i} \int_{\partial \square} \frac{f(t)}{t-z} d t
$$

is analytic on \square, coincides with f for $z \in \square_{1}$ and $z \in \square_{2}$, hence Ξ belongs to E^{1} in \square.
Lemma 5 (Theorem 3 [10]). Suppose $\widetilde{F}_{1}(z) e^{-i \sigma z} \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$, $\widetilde{F}_{3}(z) e^{i \sigma z} \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$, $\left(\widetilde{F}_{1}(x)+\widetilde{F}_{3}(x)\right) e^{\frac{2 \sigma}{\pi} x \log x} \in L^{2}(0 ;+\infty)$, and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\log \left|\widetilde{F}_{j}(x)\right|}{x}=-\infty, \quad j \in\{1 ; 3\} . \tag{18}
\end{equation*}
$$

Then there exists $c \in \mathbb{R}$, such that

$$
\begin{equation*}
\widetilde{F}_{1}(z) e^{-i \sigma z} e^{\frac{2 \sigma}{\pi} z \log z} e^{-c z} \in H^{2}\left(\mathbb{C}_{+}\right), \quad \widetilde{F}_{3}(z) e^{i \sigma z} e^{\frac{2 \sigma}{\pi} z \log z} e^{-c z} \in H^{2}\left(\mathbb{C}_{+}\right), \tag{19}
\end{equation*}
$$

where $\log z$ is the principal branch of the logarithm in \mathbb{C}_{+}.
Lemma 6 (Lemma $9[10])$. If $\left(F_{1}, F_{2}, F_{3}\right) \in T_{\sigma}^{2}\left(\mathbb{C}_{-}\right)$, the functions F_{1}, F_{3} are entire and

$$
\left(\exists c_{1} \in \mathbb{R}\right): F_{1}(z) e^{-i \sigma z} e^{-c_{1} z} \in H^{2}\left(\mathbb{C}_{+}\right),\left(\exists c_{2} \in \mathbb{R}\right): F_{3}(z) e^{i \sigma z} e^{-c_{2} z} \in H^{2}\left(\mathbb{C}_{+}\right)
$$

then $\left(F_{1}, F_{2}, F_{3}\right) \equiv(0,0,0)$.

Proof of Theorem 1. Let a function $f \in E^{2}\left[D_{\sigma}\right], f \neq 0$ be a solution of equation (6). Then by Lemma $1 f$ is a solution of equation (13) too. By Lemma 3 there exists a function P_{1}, $P_{1}(z) e^{-i \sigma z} \in H_{\sigma}^{1}\left(\mathbb{C}_{+}\right)$, such that the angular boundary values of P_{1} / \widehat{G} from \mathbb{C}_{+}coincide with the angular boundary values of F_{1} from \mathbb{C}_{-}almost everywhere on $i \mathbb{R}$. Then by Lemma 2

$$
\begin{gather*}
P_{1}(z)=e^{i a_{0}+a_{1} z+i \sigma z} \cdot \prod_{\left|\lambda_{n}\right| \leq 1} \frac{z-\lambda_{n}}{z+\bar{\lambda}_{n}} \prod_{\left|\lambda_{n}\right|>1} \frac{1-z / \lambda_{n}}{1+z / \bar{\lambda}_{n}} \exp \left(\frac{z}{\lambda_{n}}+\frac{z}{\bar{\lambda}_{n}}\right) \cdot S_{P_{1}}^{*}(z) \times \\
\quad \times \exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) \log \left|P_{1}(i t) e^{\sigma t}\right| d t\right\}, \quad z \in \mathbb{C}_{+} \tag{20}
\end{gather*}
$$

where $\left(\lambda_{n}\right)$ is a sequence of zeros of P_{1} in \mathbb{C}_{+}. By the assumptions of the theorem, $G(z) \neq 0$, $z \in \mathbb{C}_{+}$and the singular boundary function of G is a constant, then by Lemma 2

$$
\begin{equation*}
G(z)=e^{i \widehat{a}_{0}+\widehat{a}_{1} z} \cdot \exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) \log |G(i t)| d t\right\}, \quad z \in \mathbb{C}_{+} \tag{21}
\end{equation*}
$$

If we combine this statement with (20), we obtain for $z \in \mathbb{C}_{+}$

$$
P_{1}(z) / G(z)=e^{i \sigma z} e^{i \widetilde{a}_{0}+\widetilde{a}_{1} z} \Pi_{P_{1}}^{*}(z) S_{P_{1}}^{*}(z) \cdot \exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) \log \left|P_{1}(i t) e^{\sigma t} / G(i t)\right| d t\right\} .
$$

The function P_{1} / G coincides with the angular boundary values of $F_{1}(z)$ a.e. on $i \mathbb{R}$ from \mathbb{C}_{-}. But $F_{1}(z) e^{-i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right)$, hence ([1, VI. C.])

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{|\log | F_{1}(i t) e^{\sigma t} \mid}{1+t^{2}} d t<+\infty \tag{22}
\end{equation*}
$$

Using

$$
\frac{1}{i} Q(t, z)=\frac{-1}{i t-z}-\frac{i t\left(2+t^{2}\right)}{\left(1+t^{2}\right)^{2}}-\frac{z t^{2}}{\left(1+t^{2}\right)^{2}},
$$

we get ([1, VI. C.])

$$
\begin{equation*}
(\exists c \in \mathbb{R}): \exp \left\{\frac{1}{\pi i} \int_{-\infty}^{+\infty} Q(t, z) \log \left|P_{1}(i t) e^{\sigma t} / G(i t)\right| d t-c z\right\} \in H^{2}\left(\mathbb{C}_{+}\right) \tag{23}
\end{equation*}
$$

It is clear that condition (17) of Lemma 2 is valid for functions f, such that $f(z) e^{i \sigma z} \in$ $H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$, because $S_{f} \equiv S_{f(z) e^{i \sigma z}}, \Xi_{f} \equiv \Xi_{f(z) e^{i \sigma z}}$. Since $\int_{1<|t| \leq r}\left(1 / t^{2}-1 / r^{2}\right) \sigma t d t=0$, we get $K_{f}(r)=K_{f(z) e^{i \sigma z}}(r)$ for all $r>1$. Hence we will write $S_{P_{1}}$ instead of $S_{P_{1}(z) e^{-i \sigma z}}, \Xi_{P_{1}}(r)$ instead of $\Xi_{P_{1}(z) e^{-i \sigma z}}$, and $K_{P_{1}}(r)$ instead of $K_{P_{1}(z) e^{-i \sigma z}}$. Condition (17) is valid also for functions f, such that $f(z) e^{-i \sigma z} \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$. Therefore we obtain

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)+\Xi_{P_{1}}(r)-K_{P_{1}}(r)\right)<+\infty . \tag{24}
\end{equation*}
$$

We obviously have $K_{P_{1}}(r)=K_{P_{1} / G}(r)+K_{G}(r)$ and using the notation $\log ^{+} t=\max \{\log t ; 0\}$ we obtain by (22)

$$
\begin{gathered}
K_{P_{1} / G}(r)=K_{P_{1}(z) / G(z) e^{-i \sigma z}} \leq \frac{1}{2 \pi} \int_{1<|t| \leq r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right) \log ^{+}\left|P_{1}(i t) / G(i t) e^{\sigma t}\right| d t \leq \\
\leq \frac{1}{2 \pi} \int_{1<|t| \leq r} \frac{1}{t^{2}} \log ^{+}\left|P_{1}(i t) / G(i t) e^{\sigma t}\right| d t \leq \frac{1}{\pi} \int_{1<|t| \leq r} \frac{|\log | P_{1}(i t) / G(i t) e^{\sigma t} \mid}{t^{2}+1} d t<+\infty .
\end{gathered}
$$

And as

$$
\begin{gathered}
K_{G}(r) \leq \frac{1}{2 \pi} \int_{1<|t| \leq r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right) \log ^{+}|G(i t)| d t \leq \\
\leq \frac{1}{2 \pi} \int_{1<|t| \leq r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right) \log ^{+}\left|G(i t) e^{-\sigma|t|}\right| d t+\frac{1}{2 \pi} \int_{1<|t| \leq r} \frac{1}{t^{2}} \sigma|t| d t \leq \\
\leq \frac{1}{4 \pi} \int_{1<|t| \leq r} \frac{1}{t^{2}}\left|G(i t) e^{-\sigma|t|}\right|^{2} d t+\frac{\sigma}{2 \pi} \int_{1<|t| \leq r} \frac{1}{|t|} d t \leq c_{1}+\frac{\sigma}{\pi} \log r
\end{gathered}
$$

that

$$
\begin{gathered}
\varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)+\Xi_{P_{1}}(r)-\frac{\sigma}{\pi} \log r\right) \leq \varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)+\Xi_{P_{1}}(r)-K_{P_{1}}(r)\right)+ \\
+\varlimsup_{r \rightarrow+\infty} K_{P_{1} / G}(r)+\varlimsup_{r \rightarrow+\infty}\left(K_{G}(r)-\frac{\sigma}{\pi} \log r\right)<+\infty
\end{gathered}
$$

Obviously, the functions $S_{P_{1} / G}$ and $\Xi_{P_{1} / G}$ are nonnegative, therefore

$$
\begin{aligned}
& \varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)-\frac{\sigma}{\pi} \log r\right) \leq \varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)+\Xi_{P_{1}}(r)-\frac{\sigma}{\pi} \log r\right)<+\infty, \\
& \varlimsup_{r \rightarrow+\infty}\left(\Xi_{P_{1}}(r)-\frac{\sigma}{\pi} \log r\right) \leq \varlimsup_{r \rightarrow+\infty}\left(S_{P_{1}}(r)+\Xi_{P_{1}}(r)-\frac{\sigma}{\pi} \log r\right)<+\infty .
\end{aligned}
$$

But by the theorem assumptions, G has no zero in \mathbb{C}_{+}, and the singular boundary function of G is a constant, hence $S_{G} \equiv 0, \Xi_{G} \equiv 0$ and $S_{P_{1} / G} \equiv S_{P_{1}}, \Xi_{P_{1} / G} \equiv \Xi_{P_{1}}$. Therefore

$$
\varlimsup_{r \rightarrow+\infty}\left(S_{P_{1} / G}(r)-\frac{\sigma}{\pi} \log r\right)<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\Xi_{P_{1} / G}(r)-\frac{\sigma}{\pi} \log r\right)<+\infty
$$

From this statement, considering first condition (16), imply (see [3, 16]) the estimates

$$
\begin{equation*}
\left|\Pi_{P_{1} / G}^{*}(z) e^{-i \sigma z}\right| \leq \exp \left(\frac{2 \sigma}{\pi} x \log r+c_{1} x\right), \quad\left|S_{P_{1} / G}^{*}(z) e^{-i \sigma z}\right| \leq \exp \left(\frac{2 \sigma}{\pi} x \log r+c_{2} x\right) \tag{25}
\end{equation*}
$$

for $z=x+i y=r e^{i \varphi} \in \mathbb{C}_{+}$. From the above formulas and (23) it follows that the function P_{1} / G belongs to the Smirnov class $E^{2} \subset E^{1}$ in $\triangle_{c}(0 ; 1)$ for each $c \in \mathbb{R}$, where $\triangle_{c}(a ; b)=\{z: a<\operatorname{Re} z<b, c<\operatorname{Im} z<c+1\}$. Since the angular boundary values of P_{1} / G and F_{1} coincide almost everywhere on $i \mathbb{R}$, we (see [15, P. IV, 2.5]) can consider P_{1} / G and F_{1} as an analytic function on the complex plane and we will write F_{1} instead of P_{1} / G. Since $F_{1}(z) e^{-i \sigma z} \in H^{2}\left(\mathbb{C}_{-}\right)$, this function belongs (see [17]) also to the class $E^{2} \subset E^{1}$ in $\triangle_{c}(-1 ; 0)$ for each $c \in \mathbb{R}$. Then, by Lemma $4, F_{1}$ is analytic on $\triangle_{c}(-1 ; 1)$ for each $c \in \mathbb{R}$. Hence we have that F_{1} is an entire function. Therefore the singular boundary function of the function F_{1} is a constant. But the singular boundary function of F_{1} coincides with the singular boundary function of P_{1}, hence $S_{P_{1}}^{*}(z) \equiv 1, \Xi_{P_{1}}(r) \equiv 0$. Therefore representation (14) implies formula (9) and conditions

$$
\sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\lambda_{n}\right| \leq r}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \frac{\operatorname{Re} \lambda_{n}}{\left|\lambda_{n}\right|}-\frac{\sigma}{\pi} \log r\right)<+\infty
$$

are valid for P_{1} / G. Also these formulas hold for F_{1}, because P_{1} / G is the analytic continuation of F_{1} to \mathbb{C}_{+}.

Assume on the contrary to (11) that

$$
\varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\lambda_{n}\right| \leq r}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \frac{\operatorname{Re} \lambda_{n}}{\left|\lambda_{n}\right|}-\frac{\sigma}{\pi} \log r\right)=-\infty .
$$

Hence (see [18])

$$
\lim _{x \rightarrow+\infty} \frac{\log \left|\prod_{\left|\lambda_{n}\right| \leq 1} \frac{x-\lambda_{n}}{x+\lambda_{n}} \prod_{\left|\lambda_{n}\right|>1} \frac{1-x / \lambda_{n}}{1+x / \lambda_{n}} \exp \left(\frac{x}{\lambda_{n}}+\frac{x}{\lambda_{n}}\right)\right|}{x}-\frac{2 \sigma}{\pi} \log x=-\infty
$$

Then after the designation $\widetilde{F}_{j}(z)=F_{j}(z) e^{-\frac{2 \sigma}{\pi} z \log z}, j \in\{1 ; 3\}$ we obtain estimation (18) for $j=1$, because

$$
\varlimsup_{x \rightarrow+\infty} \frac{\log \left|e^{i \sigma z} e^{a_{1} z} \varkappa_{1}(z)\right|}{x}<+\infty .
$$

The same is valid for $j=3$. Moreover, by the first condition of (25) we have $\left|\widetilde{F}_{1}(z) e^{-i \sigma z}\right| \leq$ $\leq\left|F_{1}(z)\right| \exp \left(\frac{2 \sigma}{\pi} x \log r+d_{1} x\right) \exp \left(-\frac{2 \sigma}{\pi} x \log r+\frac{2 \sigma}{\pi} y \arg z\right)=\left|F_{1}(z)\right| \exp \left(\frac{2 \sigma}{\pi} y \arg z+d_{1} x\right)$, $d_{1} \in \mathbb{R}$. Therefore $\widetilde{F}_{1}(z) e^{-i \sigma z} e^{-d_{1} z} \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$, analogously $\widetilde{F}_{3}(z) e^{i \sigma z} e^{-d_{3} z} \in H_{\sigma}^{2}\left(\mathbb{C}_{+}\right)$for some $d_{3} \in \mathbb{R}$. If $d_{1}<0$ and $d_{3}<0$, then by Lemma 6 we have $\left(F_{1}, F_{2}, F_{3}\right) \equiv(0,0,0)$. If $d_{1}>0$ or $d_{3}>0$, then we consider functions $\widetilde{F}_{1}(z) e^{-d z}, \widetilde{F}_{3}(z) e^{-d z}$ instead of $\widetilde{F}_{1}(z), \widetilde{F}_{3}(z)$, where $d=\max \left\{d_{1}, d_{3}\right\}$. It is clear, that $\left(\widetilde{F}_{1}(x)+\widetilde{F}_{3}(x)\right) e^{\frac{2 \sigma}{\pi} x \log x} \in L^{2}(0 ;+\infty)$. Then by Lemma 5 formulas (19) are valid. Hence by Lemma 6 we have $\left(F_{1}, F_{2}, F_{3}\right) \equiv(0,0,0)$ that is impossible.

Proof of Theorem 2. If $\left(F_{1},-F_{1}-F_{3}, F_{3}\right) \in T_{\sigma}^{2}\left(\mathbb{C}_{-}\right), F_{2}=-F_{1}-F_{3}$, then the function f defined by (4) belongs to $E^{2}\left[D_{\sigma}\right]$. Condition (11) implies inequalities

$$
\sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<+\infty, \quad \varlimsup_{r \rightarrow+\infty}\left(\sum_{1<\left|\lambda_{n}\right| \leq r}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \frac{\operatorname{Re} \lambda_{n}}{\left|\lambda_{n}\right|}-\frac{\sigma}{\pi} \log r\right)<+\infty
$$

Then (see [3]) we obtain the first inequality of (25). Condition (8) is equivalent (see [19]) to

$$
\left(\exists c_{0} \in \mathbb{R}\right): G(z) \exp \left\{\frac{2 \sigma}{\pi} z \log z-c_{0} z\right\} \in H^{2}\left(\mathbb{C}_{+}\right)
$$

Hence

$$
\begin{aligned}
&\left|F_{1}(z) \widehat{G}(z) e^{-i \sigma z}\right| \leq e^{c_{1} x}\left|\varkappa_{1}(z) G(z) \exp \left\{\frac{2 \sigma}{\pi} z \log z-c z\right\}\right| \cdot \exp \left\{\frac{2 \sigma}{\pi} x \log r\right\} \times \\
& \times \exp \left\{-\frac{2 \sigma}{\pi} x \log r+\frac{2 \sigma}{\pi} y \varphi\right\} \leq e^{c_{1} x}\left|\varkappa_{1}(z) G(z) \exp \left\{\frac{2 \sigma}{\pi} z \log z-c z\right\}\right| \cdot \exp \left\{\frac{2 \sigma}{\pi} y \varphi\right\}
\end{aligned}
$$

for $z=x+i y=r e^{i \varphi} \in \mathbb{C}_{+}$. But $\varkappa_{1}(z) G(z) \exp \left\{\frac{2 \sigma}{\pi} z \log z-c z\right\} \in H^{1}\left(\mathbb{C}_{+}\right)$, therefore for some c_{2} we have $F_{1}(z) \widehat{G}(z) e^{-i \sigma z} \in H_{\sigma}^{1}\left(\mathbb{C}_{+}\right)$, analogously $F_{3}(x) \widehat{G}(z) e^{i \sigma z} \in H_{\sigma}^{1}\left(\mathbb{C}_{+}\right)$. Hence by Lemma 3, f is a solution of (13).

Example. The function $\psi_{1}(z)=\int_{l_{1}} \exp \left(-e^{-\frac{\pi}{2 \sigma} w}\right) e^{w} e^{-w z} d w$ is entire, it has representation (9) with condition (11).

Indeed, the function $G_{0}(z)=\exp \left\{-\frac{2 \sigma}{\pi} z \log z\right\}(1+z)^{-2}$ has no zero in \mathbb{C}_{+}and

$$
\varlimsup_{x \rightarrow+\infty}\left(\frac{\log \left|G_{0}(x)\right|}{x}+\frac{2 \sigma}{\pi} \log x\right)=\varlimsup_{x \rightarrow+\infty}\left(-\frac{\log (1+x)^{2}}{x}\right)<+\infty .
$$

Also G_{0} is analytic in $\overline{\mathbb{C}}_{+}$, hence the singular boundary function of G is a constant. Therefore G_{0} satisfies the conditions of Theorem 1. But the function (see [5]) $f(w)=\exp \left(-e^{-\frac{\pi}{2 \sigma} w}\right) e^{w}$ is a solution of (6) for

$$
g(w)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} G_{0}(x) e^{-x w} d x
$$

Hence by Theorem $1 \psi_{1}$ is entire, it has representation (9) with condition (11).

REFERENCES

1. Koosis P. Introduction to H^{p} spaces. - Second edition. Cambridge Tracts in Mathematics, V.115, Cambridge University Press, Cambridge, 1998.
2. Sedletskii A.M. Equivalent definition of the Hardy spaces a half-plane and some offers, Math. USSR Sb., 96 (1975), 75-82.
3. Vinnitskii B. On zeros of functions analytic on a half plane and completeness of systems of exponents, Ukr. Math. Jour., 46 (1994), 484-500.
4. Vinnitskii B. On zeros of some classes of functions analytic on half-plane functions analytic in half-plane, Mat. Stud., 6 (1996), 67-72. (in Ukrainian)
5. Vinnitsky B. Solutions of gomogeneous convolution equation in one class of functions analytical in a semistrip, Mat. Stud., 7 (1997), 41-52. (in Ukrainian)
6. Lax P. Translation invariant subspaces, Acta math., 101 (1959), 163-178.
7. Gurariy V.P. The spectral analysis of the bounded functions on a semiaxis Teor. func., func. anal i ih prolozh., 5 (1965), 210-231. (in Russian)
8. Gurariy V.P. Group methods of a commutative Fourier analysis, Modern problems of mathematics. VINITI, 25 (1988), 1-312. (in Russian)
9. Vinnitskii B., Dil'nyi V. On extension of Beurling-Lax theorem, Math. Notes, 79 (2006), 362-368.
10. Dilnyi V. On cyclic functions in weighted hardy spaces, Journ. of Math. Phys., Anal., Geom., 7 (2011), 19-33.
11. Vynnyts'kyi B., Dil'nyi V. On solutions of homogeneous convolution equation generated by singularity, Mat. Stud., 19 (2003), 149-155.
12. Erikke B., Havin V. Indeterminacy principle in harmonic analysis, VINITI, Itogi nauki i tehniki. Commutative harmonic analysis, 72 (1991), 181-260. (in Russian)
13. Vynnytskyi B., Dil'nyi V. On necessary conditions for existence of solutions of convolution type equation, Mat. Stud., 16 (2001), 61-70. (in Ukrainian)
14. Dil'nyi V. On solutions of homogeneous convolution equation in a Hardy-Smirnov class of functions, Mat. Stud., 14 (2000), 171-174. (in Ukrainian)
15. Privalov I. Randeigenschaften analytischer Funktionen. - VEB Deutscher Verlag Wiss. Berlin, 1956.
16. Vynnytskyi B., Sharan V. On the factorization of one class of functions analytic on the half-plane, Mat. Stud., 14 (2000), 41-48.
17. Dilnyi V. Equivalent definition of some weighted Hardy spaces, Ukr. Math. Journ., 60 (2008), 1280-1284.
18. Dil'nyi V. On specification of an Nevanlinna-Weierstrass' product, Mat. Stud., 28 (2007), 41-44. (in Ukrainian)
19. Dilnyi V. On the equivalence of some conditions for weighted Hardy spaces, Ukr. Math. Journ., 58 (2006), 1425-1432.

Institute of Physics and Mathematics Drorobych State Pedagogical University dilnyi@ukr.net

