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We prove that, for a normed space X of dimension dim(X) ≥ 2 the space PConvH(X) of
non-empty polyhedral convex subsets of X endowed with the Hausdorff metric is homeomorphic
to the topological sum {0} ⊕ |X∗| × (R⊕ (R× R̄+)⊕ lf2 ), where the cardinal |X∗| is endowed
with the discrete topology.

И. В. Гетьман. Топологическая классификация гиперпространств полиэдральных выпук-
лых множеств в нормированных пространствах // Мат. Студiї. – 2013. – Т.39, №2. –
C.203–211.

Доказано, что пространство PConvH(X) всех непустых полиэдральных выпуклых под-
множеств нормированного пространства X размерности dim(X) ≥ 2 гомеоморфно топо-
логической сумме {0}⊕ |X∗|× (R⊕ (R× R̄+)⊕ lf2 ), где кардинал |X∗| рассматривается как
дискретное топологическое пространство.

1. Introduction. The theory of Hyperspaces [10], [5] is an important area of Topology which
has numerous applications in various branches of mathematics. One of classical results on the
borderline of the Theory of Hyperspaces and Infinite-Dimensional Topology is Curtis-Shori-
West Theorem ([6], [16]) saying that the hyperspace Cld(X) of non-empty closed subsets
of a non-degenerate Peano continuum X is homeomorphic to the Hilbert cube Iω = [0, 1]ω.
A similar result for hyperspaces cc(Rn) of non-empty convex compact subsets of Euclidean
spaces was obtained by S. Nadler, J. Quinn and N. M. Stavrakas ([11]). They proved that
the space cc(Rn) is homeomorphic to the product Iω × R̄+ of the Hilbert cube Iω = [0, 1]ω

and the closed half-line R̄+ = [0,∞). This result of S. Nadler, J. Quinn and N. M. Stavrakas
has been developed in many different directions ([18], [13], [14], [12], [4], [2]).

In this paper, we shall be interested in the hyperspaces Conv(X) of all non-empty closed
convex subsets in linear topological spaces X. There are many natural topologizations of
the hyperspace Conv(X) (see [5]). One of the most important topologies on Conv(X) is the
topology τH generated by the Hausdorff uniformity UH . This uniformity is generated by the
base consisting of entourages {(A,B) ∈ Conv(X) × Conv(X) : A ⊂ B + U, B ⊂ A + U},
where U runs over open neighborhoods of zero in X. If (X, d) is a linear metric space then
the Hausdorff uniformity on Conv(X) is generated by the Hausdorff distance

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
∈ [0,∞] for A,B ∈ Conv(X).
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The space Conv(X) endowed with the topology τH (generated by the Hausdorff uniformity
UH) is denoted by ConvH(X).

The topological structure of the space ConvH(X) was studied in [5], [9], [13], [12], [1] and
[2]. In particular, in [2] it was shown that for any Banach space X the space ConvH(X) is
locally connected and every connected component H of Conv(X) is homeomorphic to one of
the spaces: {0}, R, R× R̄+, Iω × R̄+, l2 or l2(κ) for some cardinal κ ≥ c.

In this paper, given a normed space X, we shall study the topological structure of the
subspace PConvH(X) of ConvH(X) consisting of all non-empty polyhedral convex subsets
of X. We recall that a convex subset C of a normed space X is polyhedral if C can be written
as the intersection C = ∩F of a finite family of closed half-spaces. A half-space in X is
a convex set of the form f−1

(
(−∞, a]

)
for some real number a and some non-zero linear

continuous functional f : X → R. The whole space X is a polyhedral set in X, being the
intersection X =

⋂
F of the empty family F = ∅ of closed half-spaces.

In Corollary 2 we shall show that the space PConvH(X) is locally connected: any two
polyhedral convex sets A,B ∈ PConvH(X) with dH(A,B) < ∞ can be linked by the arc
[A,B] =

{
tA+ (1− t)B : t ∈ [0, 1]

}
consisting of convex combinations tA+ (1− t)B =

{
ta+

(1− t)b : a ∈ A, b ∈ B
}
of the sets A,B. The local connectedness of the space PConvH(X)

ensures that it decomposes into the topological sum of its connected components. This implies
that the topological structure of PConvH(X) is determined by the topological structure of
its connected components. In this paper we shall prove that there are only four possible
topological types of connected components of PConvH(X) represented by: the singleton {0},
the real line R, the closed half-plane R× R̄+ and the linear hull lf2 = {(xn)n∈ω ∈ l2 : ∃n ∈ ω
∀m ∈ ω xm = 0} of the standard orthonormal base in the separable Hilbert space l2.

The following classification theorem is the main result of the paper.

Theorem 1. Let X be a normed space. Each connected component C of the space
PConvH(X) is homeomorphic to {0}, R, R × R̄+ or lf2 . More precisely, C is homeomorphic
to:

1) {0} iff C contains the whole space X;

2) R, iff C contains a half-space;

3) R× R̄+ iff C contains a hyperplane;

4) lf2 in all other cases.

This theorem will be proved in Section 3. Since each locally connected space X decompo-
ses into the topological sum X =

⊕
α∈AXα of its connected components, Theorem 1 implies

the following corollary, which will be proved in Section 4.

Corollary 1. For any Banach space X the space PConvH(X) is homeomorphic to:

1) {0} iff dim(X) = 0;

2) {0} ⊕ R⊕ (R× R̄+)⊕ R iff dim(X) = 1;

3) {0} ⊕
(
|X∗| × (R⊕ (R× R̄+)⊕ lf2 )

)
iff dim(X) ≥ 2.

Here X∗ stands for the dual Banach space of X and the cardinal |X∗| is endowed with
the discrete topology.

2. Preliminary. In this section, we collect the information which will be used in the proofs
of Theorem 1 and Corollary 1.
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2.1. Components of the space ConvH(X). As we know, for a Banach space X the
topology τH of the space ConvH(X) is generated by the Hausdorff distance dH . The Hausdorff
distance determines the equivalence relation ∼H on ConvH(X) defined by A ∼H B iff
dH(A,B) <∞. This equivalence relation decomposes the space ConvH(X) into closed-and-
open equivalence classes called components of ConvH(X). The restriction of the Hausdorff
distance dH to each component H is a metric on H. By Remark 4.8 of [2], the components
of the space ConvH(X) are connected and hence coincide with the connected components of
ConvH(X).

2.2. Characteristic cone and dual characteristic cone of a closed convex set. By
a convex cone in a linear space X we understand a convex subset C ⊂ X such that t · c ∈ C
for all c ∈ C and t ∈ R̄+. Each subset E ⊂ X generates the convex cone

cone(E) =

{
n∑
i=1

tixi : n ∈ N, x1, . . . , xn ∈ E, t1, . . . , tn ∈ R̄+

}

in X which is the smallest convex cone containing E. The convex cone cone(E) contains the
convex hull conv(E) of the set E.

For subsets A,B of a linear space X, a real number t, and a subset T ⊂ R, we put
A+B = {a+ b : a ∈ A, b ∈ B}, tA = {ta : a ∈ A} and T · A = {ta : t ∈ T, a ∈ A}.

To each non-empty closed convex subset C of a normed space X we can assign

• the characteristic space LC = {x ∈ X : ∀c ∈ C c+ R · x ⊂ C};

• the characteristic cone VC = {x ∈ X : ∀c ∈ C c+ R̄+ · x ⊂ C};

• the dual characteristic cone V ∗C = {x∗ ∈ X∗ : supx∗(C) <∞}.

The dual characteristic cone V ∗C lies in the dual Banach space X∗ of the normed space X. It
is clear that LC = VC ∩ (−VC).

A closed convex subset C ⊂ X is called line-free if it contains no affine line. This happen
if and only if the characteristic space LC of C is trivial.

By Lemma 3.1 of [2], the characteristic cone VC coincides with the convex cone {x ∈
X : ∀x∗ ∈ V ∗C x∗(x) ≤ 0}. This implies that for any component H of ConvH(X) and any two
convex sets A,B ∈ H we get V ∗A = V ∗B, VA = VB, and LA = LB, which allows us to define
the characteristic space LH, the characteristic cone VH and the dual characteristic cone V ∗H
of H letting LH = LC , VH = VC and V ∗H = V ∗C for any convex set C ∈ H. A component H of
ConvH(X) will be called line-free if its characteristic linear space LH is trivial in the sense
that LH = {0} i. e., every C ∈ H is line-free.

The equality VH = {x ∈ X : ∀x∗ ∈ V ∗H x∗(x) ≤ 0} implies that the characteristic cone VH
and the characteristic space LH = VH∩(−VH) are closed in X. Consequently, we can consider
the quotient normed space X/LH and the quotient operator qH : X → X/LH. The operator q
induces a map q̄ : H → ConvH(X/LH), q̄ : C 7→ q(C). The equality C = C+LC = C+LH =
q−1(q(C)) implies that the convex set q̄(C) = q(C) is closed in the quotient normed space
X/LH, so the map q̄ is well-defined. Moreover, the map q̄ is an isometry as is shown by the
following lemma proved in [2, 5.2]:

Lemma 1. The image H/LH = q̄(H) of H coincides with a line-free component of the space
ConvH(X/LH) and the map q̄ : H → H/LH is an isometry.
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This lemma allows to reduce the study of components of the space ConvH(X) to studying
its line-free components.

For polyhedral convex sets, we can additionally assume that the normed space X is finite-
dimensional. Indeed, by the definition, a non-empty polyhedral convex set C in a normed
space X can be written as the intersection of half-spaces C =

⋂n
i=1 f

−1
i

(
(−∞, ai]) for some

linear continuous functional f1, . . . , fn : X → R and some real numbers a1, . . . , an. Then
the characteristics cone VC of C coincides with

⋂n
i=1 f

−1
i

(
(−∞, 0]

)
and the characteristic

linear subspace LC of C coincides with
⋂n
i=1 f

−1
i (0) and hence has finite codimension in X.

Consequently, the component H containing C is isometric to the component H/LH of the
space ConvH(X/LH) of convex sets of the finite-dimensional normed space X/LH.

We shall often use the following classical characterization of polyhedral convex sets in
finite-dimensional normed spaces (see [19, 1.2] or [8, §4.3]).

Lemma 2. A convex subset C of a finite-dimensional normed space X is polyhedral if and
only if C = conv(F ) + cone(E) for some finite sets F,E ⊂ X.

2.3. Embedding components of ConvH(X) into a Banach space. In [2] it was shown
that for a normed space X each component H of ConvH(X) is isometric to a convex set of
the Banach space l∞(S∗ ∩ V ∗H) of all bounded functions defined on the subset S∗ ∩ V ∗H =
{x∗ ∈ V ∗H : ‖x∗‖ = 1} of the unit sphere S∗ of the dual Banach space X∗. The Banach space
l∞(S∗ ∩ V ∗H) is endowed with the standard sup-norm ‖f‖ = sup{|f(x∗)| : x∗ ∈ S∗ ∩ V ∗H}.

For a component H containing a polyhedral convex set, the isometric embedding δ : H →
l∞(S∗ ∩ V ∗H) can be defined by assigning to each convex set C ∈ H the function δC : S∗ ∩
V ∗H → R, δC(x∗) = sup x∗(C). Theorem 1.1 of [1] and Proposition 2.1 of [2] imply that δ
is a well-defined isometric embedding of H into the Banach space l∞(S∗ ∩ V ∗H). Moreover,
the embedding δ is affine in the sense that δ((1− t)A+ tB) = (1 − t)δ(A) + tδ(B) for any
convex sets A,B ∈ H and any real number t ∈ [0, 1], see Section 4 of [2]. This implies that
δ(H) is a convex subset of l∞(S∗ ∩ V ∗H).

Lemma 3. For any normed spaceX and a componentH of ConvH(X) containing a polyhed-
ral convex set, the images δ(H) and δ(H ∩ PConvH(X)) are convex subsets of the Banach
space l∞(S∗ ∩ V ∗H).

Proof. We already know that δ(H) is a convex set. It remains to show that so is δ(H ∩
PConvH(X)).

Since H contains a polyhedral convex set C, the characteristic space LH = LC of H
has finite codimension in X and hence the quotient normed space Y = X/LH is finite-
dimensional. Consider the quotient linear operator q : X → Y and the induced isometry
q̄ : H → H′ of H onto the component H′ = H/LH of the space ConvH(Y ). Lemma 3.3 of [1]
implies that H ∩ PConvH(X) = q̄−1(H′ ∩ PConvH(Y )).

Since q : X → Y is a quotient operator, its dual q∗ : Y ∗ → X∗ is an isometric embedding
of Y ∗ into X∗. This embedding induces the restriction operator q∗∞ : l∞(S∗X ∩V ∗H)→ l∞(S∗Y ∩
V ∗H′), q

∗
∞ : f 7→ f ◦ q∗. Here S∗X and S∗Y denote the unit sphere in the dual spaces X∗ and Y ∗.

Consider the isometric embeddings δ : H → l∞(S∗X ∩ V ∗H) and δ′ : H′ → l∞(S∗X ∩ V ∗H)
which fit into the following commutative diagram

H δ //

q̄|H
��

δ(H) �
� //

q∗∞|δ(H)

��

l∞(S∗X ∩ V ∗H)

q∗∞
��

H′
δ′
// δ′(H′) � � // l∞(S∗Y ∩ V ∗H′)
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Taking into account that q̄, δ and δ′ are isometric embeddings and q̄(H ∩ PConvH(X)) =
H′ ∩PConvH(Y ), we conclude that the map q∗∞|δ(H) : δ(H)→ δ′(H′) is a bijective isometry
mapping the set δ(H ∩ PConvH(X)) onto the set δ′(H′ ∩ PConvH(Y )). Since q∗∞ is a linear
operator, the convexity of the set δ(H∩PConvH(X)) will be established as soon as we check
that the set δ′(H′ ∩ PConvH(Y )) is convex in l∞(S∗Y ∩ V ∗H′).

As we already know, the isometric embedding δ′ : H′ → l∞(S∗Y ∩ V ∗H′) is affine in the
sense that δ′((1− t)A+ tB) = (1 − t)δ′(A) + tδ′(B) for any convex sets A,B ∈ H′ and
t ∈ [0, 1]. So, it suffices to check that the set H′ ∩ PConvH(Y ) is convex in the sense that
(1 − t)A + tB ∈ H′ ∩ PConvH(Y ) for any polyhedral convex sets A,B ∈ H′ ∩ PConvH(Y )
and any real number t ∈ [0, 1]. By Lemma 2, there are finite sets FA, EA, FB, EB ⊂ Y such
that A = conv(FA) + cone(EA) and B = conv(FB) + cone(EB). Since cone(EA) = VA =
VH′ = VB = cone(EB), we can assume that EA = EB = E for some finite set E. Consider
the finite subset F = (1 − t)FA + tFB = {(1 − t)a + tb : a ∈ FA, b ∈ FB} ⊂ Y and observe
that the convex set

(1− t)A+ tB = (1− t)conv(FA) + tconv(FB) + cone(E) =

= conv((1− t)FA + tFB) + cone(E) = conv(F ) + cone(E)

is polyhedral according to Lemma 2. So, the sets H′∩PConvH(Y ), δ′(H′∩PConvH(Y )) and
δ(H ∩ PConvH(X)) are convex.

Corollary 2. The space PConvH(X) is locally connected and each connected component
of the space PConvH(X) coincides with the intersection H ∩ PConvH(X) for a unique
component H of the space ConvH(X).

Proof. For any polyhedral convex set C ∈ PConvH(X), the component H of ConvH(X)
containing C is a closed-and-open subset of ConvH(X). By Lemma 3, the intersection H ∩
PConvH(X) is homeomorphic to a convex subset of a Banach space and hence is connected
and locally connected. Then C has a locally connected neighborhood H ∩ PConvH(X) in
PConvH(X), which implies that the space PConvH(X) is locally connected.

The intersection H ∩ PConvH(X), being a connected clopen subset of PConvH(X), coi-
ncides with the connected component of PConvH(X) containing the set C.

2.4. Extremal points of closed convex sets. A point x of a convex set C is called
extremal if the set C \{x} is convex. By ext(C) we denote the set of all extremal points of C.

Let us recall that a convex set C in a normed space L is called line-free if it contains no
affine line. This holds if and only if the characteristic linear space LC = VC ∩ (−VC) = {0}
is trivial. The following result of Krein-Milman type can be found in [15, 1.4.4].

Lemma 4. Each line-free closed convex subset C of a finite-dimensional Banach space X
can be written as the sum C = conv(ext(C)) + VC .

Lemma 5. If C is a line-free polyhedral convex set in a finite-dimensional Banach space X,
then its set of extreme points ext(C) coincides with the smallest finite subset F ⊂ X such
that C = conv(F ) + VC .

Proof. By Lemma 4, C = conv(ext(C)) + VC and by Lemma 2, C = conv(F ) + cone(E) =
conv(F ) + VC for some finite sets F,E ⊂ X.

The lemma will follow as soon as we check that ext(C) ⊂ F for each finite subset F ⊂ X
with C = conv(F )+VC . Given any point x ∈ ext(C) ⊂ C = conv(F )+VC , find two points y ∈
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conv(F ) and v ∈ VC such that x = y+ v. We claim that v = 0. In the opposite case, x is not
extremal being the midpoint of the segment [y, y+ 2v] ⊂ C. So, v = 0 and x = y ∈ conv(F ).
Assuming that x /∈ F , we would conclude that x ∈ conv(F ) ⊂ conv(C \ {x}) = C \ {x},
which is a contradiction. So, x ∈ F and ext(C) ⊂ F .

For a metric space (X, d) let [X]<ω be the family of non-empty finite subsets of X,
endowed with the Hausdorff metric that induces Vietoris topology. It is clear that [X]<ω =⋃∞
n=1[X]n, where [X]n is the space of all n-subsets of X.

Lemma 6. For every n ∈ N and a line-free polyhedral convex cone V in a finite-dimensional
Banach space X, the set On =

{
F ∈ [X]n : F = ext(conv(F ) + V )

}
is open in [X]n.

Proof. For n = 1 the set O1 coincides with [X]1 and so is open. Now assume that n > 1.
It suffices to prove that the set N =

{
F ∈ [X]n : F 6= ext(conv(F ) + V )

}
is closed in [X]n.

Given any sequence {Fk}k∈ω ⊂ N convergent to some set F∞ ∈ [X]n, we need to show that
F∞ ∈ N .

Consider the map π : [X]<ω → Conv(X) assigning to each finite set F ∈ [X]<ω the closed
convex subset π(F ) = conv(F ) + V of X. It follows that the map π is non-expanding (with
respect to the Hausdorff metric) and hence continuous. Then the sequence (Ck)k∈ω of the
convex sets Ck = π(Fk) converges to the convex set C∞ = π(F∞) in the space ConvH(X).

For every k ∈ ω, fix a point xk ∈ Fk \ ext(Ck) (such a point exists as ext(Ck) * Fk ∈ N ).
Replacing the sequence (Fk) with a suitable subsequence, we can assume that the sequence xk
converges to some point x∞ ∈ F∞. Taking into account that F∞ = limk→∞ Fk ∈ [X]n, we
conclude that the sequence (Fk \ {xk})k∈ω converges to F∞ \ {x∞} in the space [X]n−1.

It follows from

Ck = conv(Fk) + V = conv(ext(Ck)) + V ⊂ conv(Fk \ {xk}) + V ⊂ conv(Fk) + V = Ck

that Ck = conv(Fk \ {xk}) + V and hence

C∞ = lim
k→∞

Ck = lim
k→∞

(conv(Fk \ {xk}) + V ) = conv(F∞ \ {x∞}) + V.

By Lemma 5, ext(C∞) ⊂ F∞ \{x∞}, which means that F∞ 6= ext(C∞) = ext(conv(F∞)+V )
and F∞ ∈ N .

A topological space X is called strongly countable-dimensional if it can be written as
a countable union of closed finite-dimensional subspaces. Observe that a topological space
X is σ-compact and strongly countable-dimensional if and only if it can be written as a
countable union of finite-dimensional compact subsets.

Lemma 7. Let X be a normed space. For any component H of ConvH(X), the intersection
H ∩ PConvH(X) is σ-compact and strongly countable-dimensional.

Proof. If the intersection H ∩ PConvH(X) is empty then there is nothing to prove. So, we
assume that H contains some polyhedral convex set.

Since the component H is isometric to the line-free component H/LH of the space
ConvH(X/LH) and X/LH is finite-dimensional as observed after Lemma 1, we can assume
that X is a finite-dimensional space and the component H is line-free, and hence its charac-
teristic space LH is trivial. Since the component H contains some polyhedral convex set, the
characteristic cone VH of H is polyhedral.
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In this case, the space X can be written as the union X =
⋃
k∈NBk of an increasing

sequence of compact sets. For every k, n ∈ N, the space [Bk]
≤n = {F ∈ [X]<ω : F ⊂ Bk,

|F | ≤ n} is compact and finite-dimensional (more precisely, has dimension dim([Bk]
≤n)

≤ n · dim(Bk) according to [17, 4.1.1]). Moreover, the space [Bk]
n = [Bk]

≤n \ [Bk]
≤n−1, being

an open subset of [Bk]
≤n is σ-compact and strongly countable-dimensional and so is the

space [X]n =
⋃
k∈N[Bk]

n.
Lemma 2 implies that the spaceH∩PConvH(X) is the image of the space [X]<ω under the

(non-expanding) map π : [X]<ω → H∩ PConvH(X), π : F 7→ conv(F ) + VH. By Lemma 4,
the map π has a section ext : H∩PConvH(X)→ [X]<ω assigning to each polyhedral convex
set C ∈ H its set of extremal points ext(C). By Lemma 6, for every n ∈ N the set On =
{F ∈ [X]n : F = ext ◦ π(F )} = ext(H ∩ PConvH(X)) ∩ [X]n is open in the space [X]n.
Since [X]n is σ-compact and finite-dimensional (more precisely ≤ n · dimX) by the Subset
Theorem of dimension. Hence, its open subspace On is strongly countable-dimensional (more
precisely ≤ n · dimX) by the Countable Sum Theorem. Write On as the countable union
On =

⋃
i∈NKn,i of finite-dimensional compact sets Kn,i. For every i ∈ N the restriction

π|Kn,i, being injective and continuous, is a topological embedding. Consequently, the set
π(Kn,i) is compact and finite-dimensional, and hence the space

H ∩ PConvH(X) = π ◦ ext(H ∩ PConvH(X)) =
⋃
n∈N

π(On) =
⋃
n,i∈N

π(Kn,i)

is σ-compact and strongly countable-dimensional.

3. Proof of Theorem 1. Given a normed space X and a connected component C of
the space PConvH(X), we need to prove that it is homeomorphic to {0}, R, R × R̄+ or
lf2 . Fix a polyhedral convex set C ∈ C. By Corollary 2, the component C coincides with the
intersectionH∩PConvH(X) whereH is the component of the space ConvH(X) containing C.
Since the set C is polyhedral, its characteristic cone VC is polyhedral and its characteristic
linear subspace LC has finite codimension in X. Let Y = X/LH be the quotient space and
q : X → Y be the quotient operator. By Lemma 1, it induces an isometry q̄ : H → H′ from
H onto the component H′ = H/LH of the space ConvH(Y ) containing the polyhedral convex
set q(C) ⊂ Y . By Lemma 3.3 of [1], this isometry maps the component C = H∩PConvH(X)
onto the component C ′ = H′ ∩ PConvH(Y ).

Now we consider four cases appearing in Theorem 1.
1. If C contains the whole space then we can assume that C = X. In this case, since

LX = X, the quotient space Y is trivial, and hence the components C ′ and C are singletons.
2. If C contains a half-space then we can assume that the set C is a half-space. In this case,

the characteristic space LC has codimension 1 and the quotient space Y is 1-dimensional.
Moreover, the convex set C ′ = q(C) is a half-line, and hence its component H′ = C ′ is
isometric to the real line. Then the isometric copy C of C ′ is also isometric to the real line.

3. If C contain a hyperplane then we can assume that the set C is a linear subspace
of codimension 1. In this case, the quotient space Y is 1-dimensional, the convex set C ′ =
q(C) = {0} is a singleton, and its component C ′ = H′ ∩ PConvH(X) = H′ is homeomorphic
to the closed half-plane R× R̄+ (see Case 1a in the proof of Theorem 1 of [2]).

4. Finally assume that the component C contains neither the whole space nor a half-space
nor a hyperplane. In this case, the quotient space Y has dimension ≥ 2. By Lemma 3.1 of
[1], the set C = H∩PConvH(Y ) is dense in H and by Theorem 1 of [2], the component H is
infinite-dimensional. Now consider the isometric embedding δ : H → l∞(S∗ ∩ V ∗H) discussed
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in Subsection 2.2. By Lemma 3, the sets δ(H) and δ(C) are convex subsets of the Banach
space l∞(S∗ ∩ V ∗H). The space δ(C), being a dense convex subset of the infinite-dimensional
convex set δ(H), is infinite-dimensional. By Lemma 7, the spaces C and δ(C) are σ-compact
and strongly countable dimensional. Applying a theorem of T. Dobrowoslki ([7] or [3, 5.3.12]
which says that, each convex infinite-dimensional σ-compact strongly countable dimensional
subset of a normed space is homeomorphic to the pre-Hilbert space lf2 ), we conclude that
the convex set δ(C) is homeomorphic to lf2 . Then its isometric copy C is homeomorphic to lf2
too.

4. Proof of Corollary 1. The cases (1) and (2) follow immediately from Corollary 2
of [2] (describing the topology of the space ConvH(X)) because ConvH(X) coincides with
PConvH(X) if dim(X) < 2.

So, assume that dim(X) ≥ 2. The space PConvH(X) is locally connected and hence can
be written as the topological sum of its connected components. So, we can write PConvH(X)
as the topological sum {X} ⊕ A1 ⊕ A2 ⊕ A3 where the set A1 (resp. A2) consists of all
closed convex sets whose component contains a half-space (resp. a hyperplane), and A3 =
PConvH(X) \

(
{X} ∪ A1 ∪ A2

)
. By Theorem 1, the spaces A1, A2, A3 are homeomorphic

to the products κ1 × R, κ2 × (R × R̄+), κ3 × lf2 for some cardinals κ1, κ2, κ3 endowed
with the discrete topology. It remains to show that κ1 = κ2 = κ3 = |X∗|. Taking into
account that each polyhedral convex set is the intersection of finitely many half-spaces, we
conclude that the cardinality of the set PConv(X) does not exceed the cardinality of the
union

⋃
n∈ω(X∗ × R)n, which is equal to |X∗|. So, max{κ1, κ2, κ3} ≤ |X∗|.

To see that min{κ1, κ2, κ3} ≥ |X∗|, consider the following families of finite sets: F1 ={
{f} : f ∈ S∗X

}
, F2 =

{
{f,−f} : f ∈ S∗X

}
and F3 =

{
{f, g} : f, g ∈ S∗X , f /∈ {g,−g}

}
.

Observe that for every i ∈ {1, 2, 3} and F ∈ Fi the convex cone CF =
⋂
f∈F f

−1
(
(−∞, 0]

)
belongs to the set Ai. Moreover, for two distinct sets F,E ∈ Fi the cones CF and CE belong
to distinct components of the space PConvH(X), which implies that κi ≥ |Fi| = |X∗|.

5. Acknowledgement. The author would like to express his thanks to Taras Banakh for
help in writing this paper.
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