УДК 515.12

I. V. Hetman

TOPOLOGICAL CLASSIFICATION OF THE HYPERSPACES OF POLYHEDRAL CONVEX SETS IN NORMED SPACES

I. V. Hetman. Topological classification of the hyperspaces of polyhedral convex sets in normed spaces, Mat. Stud. **39** (2013), 203–211.

We prove that, for a normed space X of dimension $\dim(X) \geq 2$ the space $\mathrm{PConv}_H(X)$ of non-empty polyhedral convex subsets of X endowed with the Hausdorff metric is homeomorphic to the topological sum $\{0\} \oplus |X^*| \times (\mathbb{R} \oplus (\mathbb{R} \times \overline{\mathbb{R}}_+) \oplus l_2^f)$, where the cardinal $|X^*|$ is endowed with the discrete topology.

И. В. Гетьман. Топологическая классификация гиперпространств полиэдральных выпуклых множеств в нормированных пространствах // Мат. Студії. — 2013. — Т.39, №2. — С.203—211.

Доказано, что пространство $\mathrm{PConv}_H(X)$ всех непустых полиэдральных выпуклых подмножеств нормированного пространства X размерности $\dim(X) \geq 2$ гомеоморфно топологической сумме $\{0\} \oplus |X^*| \times (\mathbb{R} \oplus (\mathbb{R} \times \bar{\mathbb{R}}_+) \oplus l_2^f)$, где кардинал $|X^*|$ рассматривается как дискретное топологическое пространство.

1. Introduction. The theory of Hyperspaces [10], [5] is an important area of Topology which has numerous applications in various branches of mathematics. One of classical results on the borderline of the Theory of Hyperspaces and Infinite-Dimensional Topology is Curtis-Shori-West Theorem ([6], [16]) saying that the hyperspace Cld(X) of non-empty closed subsets of a non-degenerate Peano continuum X is homeomorphic to the Hilbert cube $\mathbb{I}^{\omega} = [0,1]^{\omega}$. A similar result for hyperspaces $cc(\mathbb{R}^n)$ of non-empty convex compact subsets of Euclidean spaces was obtained by S. Nadler, J. Quinn and N. M. Stavrakas ([11]). They proved that the space $cc(\mathbb{R}^n)$ is homeomorphic to the product $\mathbb{I}^{\omega} \times \overline{\mathbb{R}}_+$ of the Hilbert cube $\mathbb{I}^{\omega} = [0,1]^{\omega}$ and the closed half-line $\overline{\mathbb{R}}_+ = [0,\infty)$. This result of S. Nadler, J. Quinn and N. M. Stavrakas has been developed in many different directions ([18], [13], [14], [12], [4], [2]).

In this paper, we shall be interested in the hyperspaces $\operatorname{Conv}(X)$ of all non-empty closed convex subsets in linear topological spaces X. There are many natural topologizations of the hyperspace $\operatorname{Conv}(X)$ (see [5]). One of the most important topologies on $\operatorname{Conv}(X)$ is the topology τ_H generated by the Hausdorff uniformity \mathcal{U}_H . This uniformity is generated by the base consisting of entourages $\{(A,B) \in \operatorname{Conv}(X) \times \operatorname{Conv}(X) \colon A \subset B + U, B \subset A + U\}$, where U runs over open neighborhoods of zero in X. If (X,d) is a linear metric space then the Hausdorff uniformity on $\operatorname{Conv}(X)$ is generated by the Hausdorff distance

$$d_H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\} \in [0, \infty] \text{ for } A, B \in \text{Conv}(X).$$

 $2010\ Mathematics\ Subject\ Classification: 52A07,\ 54B20,\ 57N17.$

Keywords: hyperspace; polyhedral convex set.

The space $\operatorname{Conv}(X)$ endowed with the topology τ_H (generated by the Hausdorff uniformity \mathcal{U}_H) is denoted by $\operatorname{Conv}_H(X)$.

The topological structure of the space $\operatorname{Conv}_H(X)$ was studied in [5], [9], [13], [12], [1] and [2]. In particular, in [2] it was shown that for any Banach space X the space $\operatorname{Conv}_H(X)$ is locally connected and every connected component \mathcal{H} of $\operatorname{Conv}(X)$ is homeomorphic to one of the spaces: $\{0\}$, \mathbb{R} , $\mathbb{R} \times \bar{\mathbb{R}}_+$, $\mathbb{I}^{\omega} \times \bar{\mathbb{R}}_+$, l_2 or $l_2(\kappa)$ for some cardinal $\kappa \geq \mathfrak{c}$.

In this paper, given a normed space X, we shall study the topological structure of the subspace $\operatorname{PConv}_H(X)$ of $\operatorname{Conv}_H(X)$ consisting of all non-empty polyhedral convex subsets of X. We recall that a convex subset C of a normed space X is polyhedral if C can be written as the intersection $C = \cap \mathcal{F}$ of a finite family of closed half-spaces. A half-space in X is a convex set of the form $f^{-1}((-\infty, a])$ for some real number a and some non-zero linear continuous functional $f: X \to \mathbb{R}$. The whole space X is a polyhedral set in X, being the intersection $X = \bigcap \mathcal{F}$ of the empty family $\mathcal{F} = \emptyset$ of closed half-spaces.

In Corollary 2 we shall show that the space $\operatorname{PConv}_H(X)$ is locally connected: any two polyhedral convex sets $A, B \in \operatorname{PConv}_H(X)$ with $d_H(A, B) < \infty$ can be linked by the arc $[A, B] = \{tA + (1-t)B : t \in [0,1]\}$ consisting of convex combinations $tA + (1-t)B = \{ta + (1-t)b : a \in A, b \in B\}$ of the sets A, B. The local connectedness of the space $\operatorname{PConv}_H(X)$ ensures that it decomposes into the topological sum of its connected components. This implies that the topological structure of $\operatorname{PConv}_H(X)$ is determined by the topological structure of its connected components. In this paper we shall prove that there are only four possible topological types of connected components of $\operatorname{PConv}_H(X)$ represented by: the singleton $\{0\}$, the real line \mathbb{R} , the closed half-plane $\mathbb{R} \times \overline{\mathbb{R}}_+$ and the linear hull $l_2^f = \{(x_n)_{n \in \omega} \in l_2 : \exists n \in \omega \}$ $\forall m \in \omega \mid x_m = 0\}$ of the standard orthonormal base in the separable Hilbert space l_2 .

The following classification theorem is the main result of the paper.

Theorem 1. Let X be a normed space. Each connected component \mathcal{C} of the space $\mathrm{PConv}_H(X)$ is homeomorphic to $\{0\}$, \mathbb{R} , $\mathbb{R} \times \bar{\mathbb{R}}_+$ or l_2^f . More precisely, \mathcal{C} is homeomorphic to:

- 1) $\{0\}$ iff C contains the whole space X;
- 2) \mathbb{R} , iff \mathcal{C} contains a half-space;
- 3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{C} contains a hyperplane;
- 4) l_2^f in all other cases.

This theorem will be proved in Section 3. Since each locally connected space X decomposes into the topological sum $X = \bigoplus_{\alpha \in A} X_{\alpha}$ of its connected components, Theorem 1 implies the following corollary, which will be proved in Section 4.

Corollary 1. For any Banach space X the space $PConv_H(X)$ is homeomorphic to:

- 1) $\{0\}$ iff $\dim(X) = 0$;
- 2) $\{0\} \oplus \mathbb{R} \oplus (\mathbb{R} \times \overline{\mathbb{R}}_+) \oplus \mathbb{R} \text{ iff } \dim(X) = 1;$
- 3) $\{0\} \oplus (|X^*| \times (\mathbb{R} \oplus (\mathbb{R} \times \overline{\mathbb{R}}_+) \oplus l_2^f))$ iff $\dim(X) \ge 2$.

Here X^* stands for the dual Banach space of X and the cardinal $|X^*|$ is endowed with the discrete topology.

2. Preliminary. In this section, we collect the information which will be used in the proofs of Theorem 1 and Corollary 1.

- **2.1.** Components of the space $\operatorname{Conv}_H(X)$. As we know, for a Banach space X the topology τ_H of the space $\operatorname{Conv}_H(X)$ is generated by the Hausdorff distance d_H . The Hausdorff distance determines the equivalence relation \sim_H on $\operatorname{Conv}_H(X)$ defined by $A \sim_H B$ iff $d_H(A,B) < \infty$. This equivalence relation decomposes the space $\operatorname{Conv}_H(X)$ into closed-and-open equivalence classes called *components* of $\operatorname{Conv}_H(X)$. The restriction of the Hausdorff distance d_H to each component $\mathcal H$ is a metric on $\mathcal H$. By Remark 4.8 of [2], the components of the space $\operatorname{Conv}_H(X)$ are connected and hence coincide with the connected components of $\operatorname{Conv}_H(X)$.
- **2.2.** Characteristic cone and dual characteristic cone of a closed convex set. By a *convex cone* in a linear space X we understand a convex subset $C \subset X$ such that $t \cdot c \in C$ for all $c \in C$ and $t \in \mathbb{R}_+$. Each subset $E \subset X$ generates the convex cone

$$cone(E) = \left\{ \sum_{i=1}^{n} t_i x_i \colon n \in \mathbb{N}, \ x_1, \dots, x_n \in E, \ t_1, \dots, t_n \in \overline{\mathbb{R}}_+ \right\}$$

in X which is the smallest convex cone containing E. The convex cone cone(E) contains the convex hull conv(E) of the set E.

For subsets A, B of a linear space X, a real number t, and a subset $T \subset \mathbb{R}$, we put $A + B = \{a + b : a \in A, b \in B\}$, $tA = \{ta : a \in A\}$ and $T \cdot A = \{ta : t \in T, a \in A\}$.

To each non-empty closed convex subset C of a normed space X we can assign

- the characteristic space $L_C = \{x \in X : \forall c \in C \mid c + \mathbb{R} \cdot x \subset C\};$
- the characteristic cone $V_C = \{x \in X : \forall c \in C \mid c + \overline{\mathbb{R}}_+ \cdot x \subset C\};$
- the dual characteristic cone $V_C^* = \{x^* \in X^* : \sup x^*(C) < \infty\}.$

The dual characteristic cone V_C^* lies in the dual Banach space X^* of the normed space X. It is clear that $L_C = V_C \cap (-V_C)$.

A closed convex subset $C \subset X$ is called *line-free* if it contains no affine line. This happen if and only if the characteristic space L_C of C is trivial.

By Lemma 3.1 of [2], the characteristic cone V_C coincides with the convex cone $\{x \in X : \forall x^* \in V_C^* \ x^*(x) \leq 0\}$. This implies that for any component \mathcal{H} of $\operatorname{Conv}_H(X)$ and any two convex sets $A, B \in \mathcal{H}$ we get $V_A^* = V_B^*$, $V_A = V_B$, and $L_A = L_B$, which allows us to define the characteristic space $L_{\mathcal{H}}$, the characteristic cone $V_{\mathcal{H}}$ and the dual characteristic cone $V_{\mathcal{H}}^*$ of \mathcal{H} letting $L_{\mathcal{H}} = L_C$, $V_{\mathcal{H}} = V_C$ and $V_{\mathcal{H}}^* = V_C^*$ for any convex set $C \in \mathcal{H}$. A component \mathcal{H} of $\operatorname{Conv}_H(X)$ will be called line-free if its characteristic linear space $L_{\mathcal{H}}$ is trivial in the sense that $L_{\mathcal{H}} = \{0\}$ i. e., every $C \in \mathcal{H}$ is line-free.

The equality $V_{\mathcal{H}} = \{x \in X : \forall x^* \in V_{\mathcal{H}}^* \ x^*(x) \leq 0\}$ implies that the characteristic cone $V_{\mathcal{H}}$ and the characteristic space $L_{\mathcal{H}} = V_{\mathcal{H}} \cap (-V_{\mathcal{H}})$ are closed in X. Consequently, we can consider the quotient normed space $X/L_{\mathcal{H}}$ and the quotient operator $q_{\mathcal{H}} \colon X \to X/L_{\mathcal{H}}$. The operator q induces a map $\bar{q} \colon \mathcal{H} \to \operatorname{Conv}_H(X/L_{\mathcal{H}})$, $\bar{q} \colon C \mapsto q(C)$. The equality $C = C + L_C = C + L_{\mathcal{H}} = q^{-1}(q(C))$ implies that the convex set $\bar{q}(C) = q(C)$ is closed in the quotient normed space $X/L_{\mathcal{H}}$, so the map \bar{q} is well-defined. Moreover, the map \bar{q} is an isometry as is shown by the following lemma proved in [2, 5.2]:

Lemma 1. The image $\mathcal{H}/L_{\mathcal{H}} = \bar{q}(\mathcal{H})$ of \mathcal{H} coincides with a line-free component of the space $\operatorname{Conv}_H(X/L_{\mathcal{H}})$ and the map $\bar{q} \colon \mathcal{H} \to \mathcal{H}/L_{\mathcal{H}}$ is an isometry.

This lemma allows to reduce the study of components of the space $Conv_H(X)$ to studying its line-free components.

For polyhedral convex sets, we can additionally assume that the normed space X is finite-dimensional. Indeed, by the definition, a non-empty polyhedral convex set C in a normed space X can be written as the intersection of half-spaces $C = \bigcap_{i=1}^n f_i^{-1}((-\infty, a_i])$ for some linear continuous functional $f_1, \ldots, f_n \colon X \to \mathbb{R}$ and some real numbers a_1, \ldots, a_n . Then the characteristics cone V_C of C coincides with $\bigcap_{i=1}^n f_i^{-1}((-\infty, 0])$ and the characteristic linear subspace L_C of C coincides with $\bigcap_{i=1}^n f_i^{-1}(0)$ and hence has finite codimension in X. Consequently, the component \mathcal{H} containing C is isometric to the component $\mathcal{H}/L_{\mathcal{H}}$ of the space $Conv_H(X/L_{\mathcal{H}})$ of convex sets of the finite-dimensional normed space $X/L_{\mathcal{H}}$.

We shall often use the following classical characterization of polyhedral convex sets in finite-dimensional normed spaces (see [19, 1.2] or [8, §4.3]).

Lemma 2. A convex subset C of a finite-dimensional normed space X is polyhedral if and only if C = conv(F) + cone(E) for some finite sets $F, E \subset X$.

2.3. Embedding components of $\operatorname{Conv}_H(X)$ **into a Banach space.** In [2] it was shown that for a normed space X each component \mathcal{H} of $\operatorname{Conv}_H(X)$ is isometric to a convex set of the Banach space $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$ of all bounded functions defined on the subset $S^* \cap V_{\mathcal{H}}^* = \{x^* \in V_{\mathcal{H}}^* \colon ||x^*|| = 1\}$ of the unit sphere S^* of the dual Banach space X^* . The Banach space $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$ is endowed with the standard sup-norm $||f|| = \sup\{|f(x^*)| \colon x^* \in S^* \cap V_{\mathcal{H}}^*\}$.

For a component \mathcal{H} containing a polyhedral convex set, the isometric embedding $\delta \colon \mathcal{H} \to l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$ can be defined by assigning to each convex set $C \in \mathcal{H}$ the function $\delta_C \colon S^* \cap V_{\mathcal{H}}^* \to \mathbb{R}$, $\delta_C(x^*) = \sup x^*(C)$. Theorem 1.1 of [1] and Proposition 2.1 of [2] imply that δ is a well-defined isometric embedding of \mathcal{H} into the Banach space $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$. Moreover, the embedding δ is affine in the sense that $\delta(\overline{(1-t)A+tB}) = (1-t)\delta(A)+t\delta(B)$ for any convex sets $A, B \in \mathcal{H}$ and any real number $t \in [0,1]$, see Section 4 of [2]. This implies that $\delta(\mathcal{H})$ is a convex subset of $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$.

Lemma 3. For any normed space X and a component \mathcal{H} of $\operatorname{Conv}_H(X)$ containing a polyhedral convex set, the images $\delta(\mathcal{H})$ and $\delta(\mathcal{H} \cap \operatorname{PConv}_H(X))$ are convex subsets of the Banach space $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$.

Proof. We already know that $\delta(\mathcal{H})$ is a convex set. It remains to show that so is $\delta(\mathcal{H} \cap PConv_H(X))$.

Since \mathcal{H} contains a polyhedral convex set C, the characteristic space $L_{\mathcal{H}} = L_C$ of \mathcal{H} has finite codimension in X and hence the quotient normed space $Y = X/L_{\mathcal{H}}$ is finite-dimensional. Consider the quotient linear operator $q: X \to Y$ and the induced isometry $\bar{q}: \mathcal{H} \to \mathcal{H}'$ of \mathcal{H} onto the component $\mathcal{H}' = \mathcal{H}/L_{\mathcal{H}}$ of the space $\operatorname{Conv}_H(Y)$. Lemma 3.3 of [1] implies that $\mathcal{H} \cap \operatorname{PConv}_H(X) = \bar{q}^{-1}(\mathcal{H}' \cap \operatorname{PConv}_H(Y))$.

Since $q: X \to Y$ is a quotient operator, its dual $q^*: Y^* \to X^*$ is an isometric embedding of Y^* into X^* . This embedding induces the restriction operator $q_{\infty}^*: l_{\infty}(S_X^* \cap V_{\mathcal{H}}^*) \to l_{\infty}(S_Y^* \cap V_{\mathcal{H}'}^*)$, $q_{\infty}^*: f \mapsto f \circ q^*$. Here S_X^* and S_Y^* denote the unit sphere in the dual spaces X^* and Y^* .

Consider the isometric embeddings $\delta \colon \mathcal{H} \to l_{\infty}(S_X^* \cap V_{\mathcal{H}}^*)$ and $\delta' \colon \mathcal{H}' \to l_{\infty}(S_X^* \cap V_{\mathcal{H}}^*)$ which fit into the following commutative diagram

$$\mathcal{H} \xrightarrow{\delta} \delta(\mathcal{H}) \hookrightarrow l_{\infty}(S_X^* \cap V_{\mathcal{H}}^*)$$

$$\downarrow q_{\infty}^* | \delta(\mathcal{H}) \qquad \downarrow q_{\infty}^*$$

$$\mathcal{H}' \xrightarrow{\delta'} \delta'(\mathcal{H}') \hookrightarrow l_{\infty}(S_Y^* \cap V_{\mathcal{H}'}^*)$$

Taking into account that \bar{q} , δ and δ' are isometric embeddings and $\bar{q}(\mathcal{H} \cap \operatorname{PConv}_H(X)) = \mathcal{H}' \cap \operatorname{PConv}_H(Y)$, we conclude that the map $q_{\infty}^* | \delta(\mathcal{H}) \colon \delta(\mathcal{H}) \to \delta'(\mathcal{H}')$ is a bijective isometry mapping the set $\delta(\mathcal{H} \cap \operatorname{PConv}_H(X))$ onto the set $\delta'(\mathcal{H}' \cap \operatorname{PConv}_H(Y))$. Since q_{∞}^* is a linear operator, the convexity of the set $\delta(\mathcal{H} \cap \operatorname{PConv}_H(X))$ will be established as soon as we check that the set $\delta'(\mathcal{H}' \cap \operatorname{PConv}_H(Y))$ is convex in $l_{\infty}(S_Y^* \cap V_{\mathcal{H}'}^*)$.

As we already know, the isometric embedding $\delta' \colon \mathcal{H}' \to l_{\infty}(S_Y^* \cap V_{\mathcal{H}'}^*)$ is affine in the sense that $\delta'(\overline{(1-t)A+tB}) = (1-t)\delta'(A) + t\delta'(B)$ for any convex sets $A, B \in \mathcal{H}'$ and $t \in [0,1]$. So, it suffices to check that the set $\mathcal{H}' \cap \mathrm{PConv}_H(Y)$ is convex in the sense that $(1-t)A+tB \in \mathcal{H}' \cap \mathrm{PConv}_H(Y)$ for any polyhedral convex sets $A, B \in \mathcal{H}' \cap \mathrm{PConv}_H(Y)$ and any real number $t \in [0,1]$. By Lemma 2, there are finite sets $F_A, E_A, F_B, E_B \subset Y$ such that $A = \mathrm{conv}(F_A) + \mathrm{cone}(E_A)$ and $B = \mathrm{conv}(F_B) + \mathrm{cone}(E_B)$. Since $\mathrm{cone}(E_A) = V_A = V_{\mathcal{H}'} = V_B = \mathrm{cone}(E_B)$, we can assume that $E_A = E_B = E$ for some finite set E. Consider the finite subset $F = (1-t)F_A + tF_B = \{(1-t)a + tb \colon a \in F_A, b \in F_B\} \subset Y$ and observe that the convex set

$$(1-t)A + tB = (1-t)\operatorname{conv}(F_A) + t\operatorname{conv}(F_B) + \operatorname{cone}(E) =$$

= $\operatorname{conv}((1-t)F_A + tF_B) + \operatorname{cone}(E) = \operatorname{conv}(F) + \operatorname{cone}(E)$

is polyhedral according to Lemma 2. So, the sets $\mathcal{H}' \cap \mathrm{PConv}_H(Y)$, $\delta'(\mathcal{H}' \cap \mathrm{PConv}_H(Y))$ and $\delta(\mathcal{H} \cap \mathrm{PConv}_H(X))$ are convex.

Corollary 2. The space $PConv_H(X)$ is locally connected and each connected component of the space $PConv_H(X)$ coincides with the intersection $\mathcal{H} \cap PConv_H(X)$ for a unique component \mathcal{H} of the space $Conv_H(X)$.

Proof. For any polyhedral convex set $C \in \operatorname{PConv}_H(X)$, the component \mathcal{H} of $\operatorname{Conv}_H(X)$ containing C is a closed-and-open subset of $\operatorname{Conv}_H(X)$. By Lemma 3, the intersection $\mathcal{H} \cap \operatorname{PConv}_H(X)$ is homeomorphic to a convex subset of a Banach space and hence is connected and locally connected. Then C has a locally connected neighborhood $\mathcal{H} \cap \operatorname{PConv}_H(X)$ in $\operatorname{PConv}_H(X)$, which implies that the space $\operatorname{PConv}_H(X)$ is locally connected.

The intersection $\mathcal{H} \cap \mathrm{PConv}_H(X)$, being a connected clopen subset of $\mathrm{PConv}_H(X)$, coincides with the connected component of $\mathrm{PConv}_H(X)$ containing the set C.

2.4. Extremal points of closed convex sets. A point x of a convex set C is called *extremal* if the set $C \setminus \{x\}$ is convex. By ext(C) we denote the set of all extremal points of C.

Let us recall that a convex set C in a normed space L is called *line-free* if it contains no affine line. This holds if and only if the characteristic linear space $L_C = V_C \cap (-V_C) = \{0\}$ is trivial. The following result of Krein-Milman type can be found in [15, 1.4.4].

Lemma 4. Each line-free closed convex subset C of a finite-dimensional Banach space X can be written as the sum $C = \text{conv}(\text{ext}(C)) + V_C$.

Lemma 5. If C is a line-free polyhedral convex set in a finite-dimensional Banach space X, then its set of extreme points ext(C) coincides with the smallest finite subset $F \subset X$ such that $C = \text{conv}(F) + V_C$.

Proof. By Lemma 4, $C = \text{conv}(\text{ext}(C)) + V_C$ and by Lemma 2, $C = \text{conv}(F) + \text{cone}(E) = \text{conv}(F) + V_C$ for some finite sets $F, E \subset X$.

The lemma will follow as soon as we check that $\operatorname{ext}(C) \subset F$ for each finite subset $F \subset X$ with $C = \operatorname{conv}(F) + V_C$. Given any point $x \in \operatorname{ext}(C) \subset C = \operatorname{conv}(F) + V_C$, find two points $y \in \operatorname{conv}(F) + V_C$.

 $\operatorname{conv}(F)$ and $v \in V_C$ such that x = y + v. We claim that v = 0. In the opposite case, x is not extremal being the midpoint of the segment $[y, y + 2v] \subset C$. So, v = 0 and $x = y \in \operatorname{conv}(F)$. Assuming that $x \notin F$, we would conclude that $x \in \operatorname{conv}(F) \subset \operatorname{conv}(C \setminus \{x\}) = C \setminus \{x\}$, which is a contradiction. So, $x \in F$ and $\operatorname{ext}(C) \subset F$.

For a metric space (X,d) let $[X]^{<\omega}$ be the family of non-empty finite subsets of X, endowed with the Hausdorff metric that induces Vietoris topology. It is clear that $[X]^{<\omega} = \bigcup_{n=1}^{\infty} [X]^n$, where $[X]^n$ is the space of all n-subsets of X.

Lemma 6. For every $n \in \mathbb{N}$ and a line-free polyhedral convex cone V in a finite-dimensional Banach space X, the set $\mathcal{O}_n = \{F \in [X]^n \colon F = \text{ext}(\text{conv}(F) + V)\}$ is open in $[X]^n$.

Proof. For n=1 the set \mathcal{O}_1 coincides with $[X]^1$ and so is open. Now assume that n>1. It suffices to prove that the set $\mathcal{N}=\left\{F\in[X]^n\colon F\neq \mathrm{ext}(\mathrm{conv}(F)+V)\right\}$ is closed in $[X]^n$. Given any sequence $\{F_k\}_{k\in\omega}\subset\mathcal{N}$ convergent to some set $F_\infty\in[X]^n$, we need to show that $F_\infty\in\mathcal{N}$.

Consider the map $\pi: [X]^{<\omega} \to \operatorname{Conv}(X)$ assigning to each finite set $F \in [X]^{<\omega}$ the closed convex subset $\pi(F) = \operatorname{conv}(F) + V$ of X. It follows that the map π is non-expanding (with respect to the Hausdorff metric) and hence continuous. Then the sequence $(C_k)_{k \in \omega}$ of the convex sets $C_k = \pi(F_k)$ converges to the convex set $C_{\infty} = \pi(F_{\infty})$ in the space $\operatorname{Conv}_H(X)$.

For every $k \in \omega$, fix a point $x_k \in F_k \setminus \text{ext}(C_k)$ (such a point exists as $\text{ext}(C_k) \nsubseteq F_k \in \mathcal{N}$). Replacing the sequence (F_k) with a suitable subsequence, we can assume that the sequence x_k converges to some point $x_\infty \in F_\infty$. Taking into account that $F_\infty = \lim_{k \to \infty} F_k \in [X]^n$, we conclude that the sequence $(F_k \setminus \{x_k\})_{k \in \omega}$ converges to $F_\infty \setminus \{x_\infty\}$ in the space $[X]^{n-1}$.

It follows from

$$C_k = \operatorname{conv}(F_k) + V = \operatorname{conv}(\operatorname{ext}(C_k)) + V \subset \operatorname{conv}(F_k \setminus \{x_k\}) + V \subset \operatorname{conv}(F_k) + V = C_k$$

that $C_k = \operatorname{conv}(F_k \setminus \{x_k\}) + V$ and hence

$$C_{\infty} = \lim_{k \to \infty} C_k = \lim_{k \to \infty} (\operatorname{conv}(F_k \setminus \{x_k\}) + V) = \operatorname{conv}(F_{\infty} \setminus \{x_{\infty}\}) + V.$$

By Lemma 5, $\operatorname{ext}(C_{\infty}) \subset F_{\infty} \setminus \{x_{\infty}\}$, which means that $F_{\infty} \neq \operatorname{ext}(C_{\infty}) = \operatorname{ext}(\operatorname{conv}(F_{\infty}) + V)$ and $F_{\infty} \in \mathcal{N}$.

A topological space X is called *strongly countable-dimensional* if it can be written as a countable union of closed finite-dimensional subspaces. Observe that a topological space X is σ -compact and strongly countable-dimensional if and only if it can be written as a countable union of finite-dimensional compact subsets.

Lemma 7. Let X be a normed space. For any component \mathcal{H} of $Conv_H(X)$, the intersection $\mathcal{H} \cap PConv_H(X)$ is σ -compact and strongly countable-dimensional.

Proof. If the intersection $\mathcal{H} \cap \mathrm{PConv}_H(X)$ is empty then there is nothing to prove. So, we assume that \mathcal{H} contains some polyhedral convex set.

Since the component \mathcal{H} is isometric to the line-free component $\mathcal{H}/L_{\mathcal{H}}$ of the space $\operatorname{Conv}_{\mathcal{H}}(X/L_{\mathcal{H}})$ and $X/L_{\mathcal{H}}$ is finite-dimensional as observed after Lemma 1, we can assume that X is a finite-dimensional space and the component \mathcal{H} is line-free, and hence its characteristic space $L_{\mathcal{H}}$ is trivial. Since the component \mathcal{H} contains some polyhedral convex set, the characteristic cone $V_{\mathcal{H}}$ of \mathcal{H} is polyhedral.

In this case, the space X can be written as the union $X = \bigcup_{k \in \mathbb{N}} B_k$ of an increasing sequence of compact sets. For every $k, n \in \mathbb{N}$, the space $[B_k]^{\leq n} = \{F \in [X]^{<\omega} \colon F \subset B_k, |F| \leq n\}$ is compact and finite-dimensional (more precisely, has dimension $\dim([B_k]^{\leq n}) \leq n \cdot \dim(B_k)$ according to [17, 4.1.1]). Moreover, the space $[B_k]^n = [B_k]^{\leq n} \setminus [B_k]^{\leq n-1}$, being an open subset of $[B_k]^{\leq n}$ is σ -compact and strongly countable-dimensional and so is the space $[X]^n = \bigcup_{k \in \mathbb{N}} [B_k]^n$.

Lemma 2 implies that the space $\mathcal{H} \cap \mathrm{PConv}_H(X)$ is the image of the space $[X]^{<\omega}$ under the (non-expanding) map $\pi \colon [X]^{<\omega} \to \mathcal{H} \cap \mathrm{PConv}_H(X)$, $\pi \colon F \mapsto \mathrm{conv}(F) + V_{\mathcal{H}}$. By Lemma 4, the map π has a section $\mathrm{ext} \colon \mathcal{H} \cap \mathrm{PConv}_H(X) \to [X]^{<\omega}$ assigning to each polyhedral convex set $C \in \mathcal{H}$ its set of extremal points $\mathrm{ext}(C)$. By Lemma 6, for every $n \in \mathbb{N}$ the set $\mathcal{O}_n = \{F \in [X]^n \colon F = \mathrm{ext} \circ \pi(F)\} = \mathrm{ext}(\mathcal{H} \cap \mathrm{PConv}_H(X)) \cap [X]^n$ is open in the space $[X]^n$. Since $[X]^n$ is σ -compact and finite-dimensional (more precisely $\leq n \cdot \dim X$) by the Subset Theorem of dimension. Hence, its open subspace \mathcal{O}_n is strongly countable-dimensional (more precisely $\leq n \cdot \dim X$) by the Countable Sum Theorem. Write \mathcal{O}_n as the countable union $\mathcal{O}_n = \bigcup_{i \in \mathbb{N}} K_{n,i}$ of finite-dimensional compact sets $K_{n,i}$. For every $i \in \mathbb{N}$ the restriction $\pi \mid K_{n,i}$, being injective and continuous, is a topological embedding. Consequently, the set $\pi(K_{n,i})$ is compact and finite-dimensional, and hence the space

$$\mathcal{H} \cap \mathrm{PConv}_H(X) = \pi \circ \mathrm{ext}(\mathcal{H} \cap \mathrm{PConv}_H(X)) = \bigcup_{n \in \mathbb{N}} \pi(\mathcal{O}_n) = \bigcup_{n, i \in \mathbb{N}} \pi(K_{n,i})$$

is σ -compact and strongly countable-dimensional.

3. Proof of Theorem 1. Given a normed space X and a connected component \mathcal{C} of the space $\operatorname{PConv}_H(X)$, we need to prove that it is homeomorphic to $\{0\}$, \mathbb{R} , $\mathbb{R} \times \overline{\mathbb{R}}_+$ or l_2^f . Fix a polyhedral convex set $C \in \mathcal{C}$. By Corollary 2, the component \mathcal{C} coincides with the intersection $\mathcal{H} \cap \operatorname{PConv}_H(X)$ where \mathcal{H} is the component of the space $\operatorname{Conv}_H(X)$ containing C. Since the set C is polyhedral, its characteristic cone V_C is polyhedral and its characteristic linear subspace L_C has finite codimension in X. Let $Y = X/L_{\mathcal{H}}$ be the quotient space and $q: X \to Y$ be the quotient operator. By Lemma 1, it induces an isometry $\bar{q}: \mathcal{H} \to \mathcal{H}'$ from \mathcal{H} onto the component $\mathcal{H}' = \mathcal{H}/L_{\mathcal{H}}$ of the space $\operatorname{Conv}_H(Y)$ containing the polyhedral convex set $q(C) \subset Y$. By Lemma 3.3 of [1], this isometry maps the component $\mathcal{C} = \mathcal{H} \cap \operatorname{PConv}_H(X)$ onto the component $\mathcal{C}' = \mathcal{H}' \cap \operatorname{PConv}_H(Y)$.

Now we consider four cases appearing in Theorem 1.

- 1. If \mathcal{C} contains the whole space then we can assume that C = X. In this case, since $L_X = X$, the quotient space Y is trivial, and hence the components \mathcal{C}' and \mathcal{C} are singletons.
- 2. If \mathcal{C} contains a half-space then we can assume that the set C is a half-space. In this case, the characteristic space L_C has codimension 1 and the quotient space Y is 1-dimensional. Moreover, the convex set C' = q(C) is a half-line, and hence its component $\mathcal{H}' = \mathcal{C}'$ is isometric to the real line. Then the isometric copy \mathcal{C} of \mathcal{C}' is also isometric to the real line.
- 3. If \mathcal{C} contain a hyperplane then we can assume that the set C is a linear subspace of codimension 1. In this case, the quotient space Y is 1-dimensional, the convex set $C' = q(C) = \{0\}$ is a singleton, and its component $\mathcal{C}' = \mathcal{H}' \cap \operatorname{PConv}_H(X) = \mathcal{H}'$ is homeomorphic to the closed half-plane $\mathbb{R} \times \overline{\mathbb{R}}_+$ (see Case 1a in the proof of Theorem 1 of [2]).
- 4. Finally assume that the component \mathcal{C} contains neither the whole space nor a half-space nor a hyperplane. In this case, the quotient space Y has dimension ≥ 2 . By Lemma 3.1 of [1], the set $\mathcal{C} = \mathcal{H} \cap \mathrm{PConv}_H(Y)$ is dense in \mathcal{H} and by Theorem 1 of [2], the component \mathcal{H} is infinite-dimensional. Now consider the isometric embedding $\delta \colon \mathcal{H} \to l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$ discussed

in Subsection 2.2. By Lemma 3, the sets $\delta(\mathcal{H})$ and $\delta(\mathcal{C})$ are convex subsets of the Banach space $l_{\infty}(S^* \cap V_{\mathcal{H}}^*)$. The space $\delta(\mathcal{C})$, being a dense convex subset of the infinite-dimensional convex set $\delta(\mathcal{H})$, is infinite-dimensional. By Lemma 7, the spaces \mathcal{C} and $\delta(\mathcal{C})$ are σ -compact and strongly countable dimensional. Applying a theorem of T. Dobrowoslki ([7] or [3, 5.3.12] which says that, each convex infinite-dimensional σ -compact strongly countable dimensional subset of a normed space is homeomorphic to the pre-Hilbert space l_2^f), we conclude that the convex set $\delta(\mathcal{C})$ is homeomorphic to l_2^f . Then its isometric copy \mathcal{C} is homeomorphic to l_2^f too.

4. Proof of Corollary 1. The cases (1) and (2) follow immediately from Corollary 2 of [2] (describing the topology of the space $Conv_H(X)$) because $Conv_H(X)$ coincides with $PConv_H(X)$ if dim(X) < 2.

So, assume that $\dim(X) \geq 2$. The space $\operatorname{PConv}_H(X)$ is locally connected and hence can be written as the topological sum of its connected components. So, we can write $\operatorname{PConv}_H(X)$ as the topological sum $\{X\} \oplus \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \mathcal{A}_3$ where the set \mathcal{A}_1 (resp. \mathcal{A}_2) consists of all closed convex sets whose component contains a half-space (resp. a hyperplane), and $\mathcal{A}_3 = \operatorname{PConv}_H(X) \setminus (\{X\} \cup \mathcal{A}_1 \cup \mathcal{A}_2)$. By Theorem 1, the spaces \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 are homeomorphic to the products $\kappa_1 \times \mathbb{R}$, $\kappa_2 \times (\mathbb{R} \times \mathbb{R}_+)$, $\kappa_3 \times l_2^f$ for some cardinals κ_1 , κ_2 , κ_3 endowed with the discrete topology. It remains to show that $\kappa_1 = \kappa_2 = \kappa_3 = |X^*|$. Taking into account that each polyhedral convex set is the intersection of finitely many half-spaces, we conclude that the cardinality of the set $\operatorname{PConv}(X)$ does not exceed the cardinality of the union $\bigcup_{n \in \omega} (X^* \times \mathbb{R})^n$, which is equal to $|X^*|$. So, $\max\{\kappa_1, \kappa_2, \kappa_3\} \leq |X^*|$.

To see that $\min\{\kappa_1, \kappa_2, \kappa_3\} \geq |X^*|$, consider the following families of finite sets: $\mathcal{F}_1 = \{\{f\}: f \in S_X^*\}, \ \mathcal{F}_2 = \{\{f, -f\}: f \in S_X^*\} \text{ and } \mathcal{F}_3 = \{\{f, g\}: f, g \in S_X^*, f \notin \{g, -g\}\}\}.$ Observe that for every $i \in \{1, 2, 3\}$ and $F \in \mathcal{F}_i$ the convex cone $C_F = \bigcap_{f \in F} f^{-1}((-\infty, 0])$ belongs to the set \mathcal{A}_i . Moreover, for two distinct sets $F, E \in \mathcal{F}_i$ the cones C_F and C_E belong to distinct components of the space $PConv_H(X)$, which implies that $\kappa_i \geq |\mathcal{F}_i| = |X^*|$.

5. Acknowledgement. The author would like to express his thanks to Taras Banakh for help in writing this paper.

REFERENCES

- 1. T. Banakh, I. Hetman, A "hidden" characterization of approximatevely polyhedral convex sets in Banach spaces, Studia Math., **210** (2012), 137–157.
- T. Banakh, I. Hetman, K. Sakai, Topology of the hyperspace of closed convex subsets of a Banach space, available at: http://arxiv.org/abs/1112.6374.
- T. Banakh, T. Radul, M. Zarichnyi, Adsorbing sets in infinite-dimensional manifolds. VNTL Publ., Lviv, 1996.
- 4. L. Bazylevych, D. Repovš, M. Zarichnyi, Hyperspace of convex compacts of nonmetrizable compact convex subspaces of locally convex spaces, Topology Appl., 155 (2008), №8, 764–772.
- 5. G. Beer, Topologies on closed and closed convex sets. Kluwer Academic Publ. Group, Dordrecht, 1993.
- D.W. Curtis, R.M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math., 101 (1978), №1, 19–38.
- 7. T. Dobrowolski, The compact Z-set property in convex sets, Topology Appl., 23 (1986), №2, 163–172.
- 8. J. Gallier, Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations, book in progress available at: http://arxiv.org/abs/0805.0292.

- 9. A. Granero, M. Jimenez, J. Moreno, Convex sets in Banach spaces and a problem of Rolewicz, Studia Math., 129 (1998), №1, 19–29.
- 10. A. Illanes, S. Nadler, Hyperspaces, Marcel Dekker, Inc., New York, 1999.
- 11. S. Nadler, J. Quinn, N.M. Stavrakas, *Hyperspaces of compact convex sets*, Pacific J. Math., **83** (1979), 441–462.
- K. Sakai, The spaces of compact convex sets and bounded closed convex sets in a Banach space, Houston J. Math., 34 (2008), №1, 289–300.
- 13. K. Sakai, M. Yaguchi, *The AR-property of the spaces of closed convex sets*, Colloq. Math., **106** (2006), №1, 15–24.
- 14. K. Sakai, Z. Yang, The spaces of closed convex sets in Euclidean spaces with the Fell topology, Bull. Pol. Acad. Sci. Math., **55** (2007), №2, 139–143.
- 15. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univ. Press, 1993.
- 16. R. Schori, J. West, *The hyperspace of the closed unit interval is a Hilbert cube*, Trans. Amer. Math. Soc., **213** (1975), 217–235.
- 17. A. Teleiko, M. Zarichnyi, Categorical topology of compact Hausdorff spaces. VNTL Publ., Lviv, 1999.
- 18. M.M. Zarichnyi, S. Ivanov, Hyperspaces of convex compact subsets of the Tychonoff cube, Ukrainian Math. J., **53** (2001), №5, 809–813.
- 19. G. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.

Ivan Franko National University of Lviv ihromant@gmail.com

Received 5.11.2012