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We show how some similar facts on these functions can be proved similarly. Moreover, several
new classes of infinite-dimensional spaces close to the classes of countable-dimensional and
σ-hereditarily disconnected ones are introduced. We prove a compactification theorem for these
classes.
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Мы предлагаем единый подход к определению таких размерностных функций, как
trind, trindp, trt и p. Мы показываем, как некоторые простые факты об этих функциях мо-
гут быть доказаны единообразно. Более того, вводится несколько новых классов бесконеч-
номерных пространств близких к классам счётномерных пространств и σ-наследственно
несвязных пространств. Мы также доказываем компактификационную теорему для этих
классов.

1. Introduction. In [13] G. Steinke suggested and studied an integer valued inductive
topological invariant, the separation dimension t. Recall that the separation dimension t for
a topological space X is defined inductively as follows: tX = −1 if and only if X = ∅;
tX = 0 if |X| = 1; let |X| > 1 and n be an integer ≥ 0, if for each subset M of X with
|M | > 1 there exist distinct points x, y of M and a partition LM in the subspace M of X
between x and y such that tLM ≤ n− 1 then we write tX ≤ n. One of the main property
of t is the following. If {Xi : i ∈ I} is the family of all connected components of a non-empty
space X then tX = sup{tXi : i ∈ I}. In particular, for any space X we have tX = 0 if and
only if X is hereditarily disconnected.

Recall ([6]) that, the classes of strongly countable-dimensional metrizable compacta,
countable-dimensional metrizable compacta and compact metrizable C-spaces are classical
objects of infinite dimension theory. In [1] F. G. Arenas, V. A. Chatyrko and M. L. Puertas
considered a natural transfinite extension of t, the topological invariant trt, and showed
that each metrizable compact space X with trtX 6=∞ must be a C-space. Moreover, every
strongly countable-dimensional metrizable compact space X has trtX ≤ ω0. However, there
exist countable-dimensional metrizable compact spaces (namely, the infinite-dimensional
Cantor manifolds) of dimension trt > ω0. Since the inequality trtX ≤ trindX, where
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trind is the small transfinite inductive dimension ([6]), holds for each T3-space X, every
countable-dimensional metrizable compact space X satisfies trtX < ω1. Set

α0 = sup{trtK : K is a countable-dimensional metrizable compact space}.

It is clear that α0 ≤ ω1 but the exact value of α0 is still unknown.
In [10] T. M. Radul introduced an ordinal valued topological invariant, the dimension p,

by modifying the definition of trt : the subsetsM of the spaceX are supposed to be compact.
It is easy to see that for any spaceX we have pX = sup{trtK : K is a compact subset of X}
≤ trtX. In [10] T. M. Radul proved that each σ-hereditarily disconnected hereditarily normal
space X satisfies pX 6=∞. Recall (see [7] or [2]) that a space X is σ-hereditarily disconnected
if X is a countable union of hereditarily disconnected subspaces. Since each zero-dimensional
space in the sense of the small inductive dimension ind is hereditarily disconnected, each
countable-dimensional in the sense of ind space is σ-hereditarily disconnected. Let us observe
that for the subspace Kω0 of the Hilbert cube Iω0 consisting of points with finitely many
non-zero coordinates (and so being strongly countable dimensional) we have pKω0 = ω0.
Recall that trtKω0 > ω0 ([1]) but we do not know whether trtKω0 6=∞.

It is still unclear if each metrizable compact space X with trtX 6= ∞ has to be
σ-hereditarily disconnected. The well known R. Pol’s example P ([9]) of a weakly infinite-
dimensional uncountable-dimensional metrizable compact space is a σ-hereditarily discon-
nected C-space, and hence by Radul’s result trtP 6= ∞. (In fact, P can be constructed so
that trtP = ω0, see a remark in [1].) But it is unknown whether every compact metrizable
C-space X is σ-hereditarily disconnected (resp. has trtX 6=∞).

In this paper we show that the dimension trind (as well as the transfinite inductive
invariant trindp from ([3])) can also be defined similarly to the definition of trt. One of the
subjects of the paper is to unify proofs of some facts about the invariants trind, trindp, trt,
p and introduce new classes of infinite-dimensional spaces close to the classes of countable-
dimensional spaces and σ-hereditarily disconnected ones. We prove a compactification theo-
rem for these new classes. In particular, we show that, for any hereditarily disconnected
separable completely metrizable space X there is a metrizable compactification Y of X such
that trtY ≤ ω0+1. Furthermore, for Renska’s examples (see [11] (resp.[12])) of α-dimensional
metrizable Cantor trind (resp. trInd)-manifolds, where α is any isolated countable ordinal,
we have the values of trt are equal to ω0 + 1.

Our terminology follows [5] and [6].

2. Definitions and common properties. All considered topological spaces are assumed
to be T3-spaces. Let us fix for each space X a class AX of subsets of X. The family of all
classes AX we denote by A and call it a family of classes of subsets of spaces (in short, an
SSC-family).

Definition 1. Let X be a space and A be an SSC-family.

(a) The small inductive invariant A(0)-ind of the space X, denoted by A(0)-ind(X) is
defined inductively as follows.A(0)-ind(X) = −1 if and only ifX = ∅;A(0)-ind(X) = 0
if |X| = 1. Let |X| > 1 and n be an integer ≥ 0, if for each element M of AX with
|M | > 1 and for every pair (A, x), where A is a closed subset of M and x ∈ M − A,
there is a partition LM in the spaceM between x and A such that A(0)-indLM ≤ n−1
then we write A(0)-indX ≤ n.
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(b) The small inductive invariant A(1)-ind of the space X, denoted by A(1)-ind(X) is
defined inductively as follows.A(1)-ind(X) = −1 if and only ifX = ∅;A(1)-ind(X) = 0
if |X| = 1. Let |X| > 1 and n be an integer ≥ 0, if for each element M of AX with
|M | > 1 and for every pair (x, y) of distinct points of M there is a partition LM in the
spaceM between x and y such that A(1)-indLM ≤ n−1 then we write A(1)-indX ≤ n.

(c) The small inductive invariant A(2)-ind of the space X, denoted by A(2)-ind(X) is
defined inductively as follows.A(2)-ind(X) = −1 if and only ifX = ∅;A(2)-ind(X) = 0
if |X| = 1. Let |X| > 1 and n be an integer ≥ 0, if for each element M of AX with
|M | > 1 there exists a point x ∈ M possessing the following property: for every closed
subset A of the space M with x /∈ A there is a partition LM in the space M between x
and A such that A(2)-indLM ≤ n− 1 then we write A(2)-indX ≤ n.

(d) The small inductive invariant A(3)-ind of the space X, denoted by A(3)-ind(X) is
defined inductively as follows.A(3)-ind(X) = −1 if and only ifX = ∅;A(3)-ind(X) = 0
if |X| = 1. Let |X| > 1 and n be an integer ≥ 0, if for each element M of AX with
|M | > 1 there exists a proper closed subset A of the space M possessing the following
property: for every point x ∈ M − A there is a partition LM in the space M between
x and A such that A(3)-indLM ≤ n− 1 then we write A(3)-indX ≤ n.

(e) The small inductive invariant A(4)-ind of the space X, denoted by A(4)-ind(X) is
defined inductively as follows.A(4)-ind(X) = −1 if and only ifX = ∅;A(4)-ind(X) = 0
if |X| = 1. Let |X| > 1 and n be an integer ≥ 0, if for each element M of AX with
|M | > 1 there exist distinct points x, y ofM and a partition LM in the spaceM between
x and y such that A(4)-indLM ≤ n− 1 then we write A(4)-indX ≤ n.

The transfinite extension A(i)-trind of the invariant A(i)-trind is defined in the standard
fashion, i ∈ {0, 1, 2, 3, 4}.

Let us introduce SSC-families Aj, j ∈ {1, 2, 3, 4}, as follows: for every space X put
A1
X = {X}, A2

X = 2X , A3
X = 2Xcomp, A4

X = 2Xcl , where 2X (resp. 2Xcomp or 2Xcl ) is the family
of all (resp. compact or closed) subsets of X. Note that one can suggest many other SSC-
families A different from Aj, j ∈ {1, 2, 3, 4}.

Remark 1. Note that

(a) A1(0)-trindX = trindX and A1(1)-trindX = trindpX ([3]);

(b) A2(4)-trindX = A4(4)-trindX = trtX ([1] or Corollary 2);

(c) A3(4)-trindX = pX ([10]).

The following statement is evidently valid for every SSC-family A and every space X.

Proposition 1. (a) A(0)-trindX ≥ A(1)-trindX ≥ A(3)-trindX ≥ A(4)-trindX and
A(0)-trindX ≥ A(2)-trindX ≥ A(3)-trindX.

(b) A(i)-trindX ≤ sup{A(i)-trindA : A ∈ AX} for every i ∈ {0, 1, 2, 3, 4}, whenever A ∈
AA for each A ∈ AX with |A| > 1.
(Note that the SSC-families Aj, j ∈ {1, 2, 3, 4}, satisfy this condition.)

Definition 2. We will say that an SSC-family A possesses property (∗)1 (resp. (∗)2 or (∗)3)
if for every space X and every subspace Y of X the following assertions hold:

(∗)1: for each AY ∈ AY there exists an element AX ∈ AX such that AY ⊂ AX ;
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((∗)2: for each AY ∈ AY we have ClX(AY ) ∈ AX , or (∗)3: AY ⊂ AX).

Note that if an SSC-family A possesses property (∗)2 or property (∗)3 then it possesses
also property (∗)1.

Remark 2. The families Aj, j ∈ {1, 2, 3, 4}, possess property (∗)1. The families Aj, j ∈
{2, 3, 4}, possess property (∗)2. The families Aj, j ∈ {2, 3}, possess property (∗)3.

Proposition 2. Let an SSC-family A possess the property (∗)1 (resp. (∗)2 or (∗)3). Then
for every space X and every subspace Y of X we have
A(i)-trindX ≥ A(i)-trindY for i ∈ {0, 1} (resp. i ∈ {0, 1, 4} or i ∈ {0, 1, 2, 3, 4}).

Proof. The case (∗)1. We will prove the statement only for i = 0.
Let A(0)-trindX = α ≥ −1. Note that for α = −1 or for |Y | = 1 the statement is

valid. Apply induction on α. Consider the case: α ≥ 0 and |Y | ≥ 2. Let MY ∈ AY with
|MY | ≥ 2. By the property (∗)1 there exists an element MX ∈ AX such that MY ⊂ MX .
Consider a point x ∈MY and a closed subset AY of the space MY such that x /∈ AY . Choose
any closed subset AX of the space MX such that AY = AX ∩MY and note that x /∈ AX .
Since A(0)-trindX = α there is a partition LMX

in the space MX between x and AX such
that A(0)-indLMX

< α. Note that the set LMY
= LMX

∩MY is a partition in the space MY

between x and AY . By the inductive assumption we have A(0)-indLMY
≤ A(0)-indLMX

< α
and so A(0)-trindY ≤ α.

The case (∗)2. We need to prove the statement only for i = 4 (see the sentence after
Definition 2). Let A(4)-trindX = α ≥ −1. Note that for α = −1 or for |Y | = 1 the statement
is valid. Apply induction on α. Consider the case: α ≥ 0 and |Y | ≥ 2. Let MY ∈ AY with
|MY | ≥ 2. By the property (∗)2 the set MX = ClX(MY ) is an element of AX . Since A(4)-
trindX = α there exist distinct points x, y of MX and a partition LMX

in the space MX

between x and y such that A(4)-indLMX
< α. It also implies that there exist open disjoint

subsets UX and VX of the space MX such that x ∈ UX , y ∈ VX and LMX
=MX \ (UX ∪VX).

Choose a point a ∈ UX∩MY and a point b ∈ VX∩MY and note that the set LMY
= LMX

∩MY

is a partition between the points a and b in the space MY . By the inductive assumption we
have A(4)-indLMY

≤ A(4)-indLMX
< α and so A(4)-indY ≤ α.

The case (∗)3 is trivial.

Applying Propositions 1 (b) and 2 we get such a statement.

Corollary 1. Let an SSC-family A possess property (∗)1 (resp. (∗)2 or (∗)3), X be a space
and M(A, X, i) = sup{A(i)-trindA : A ∈ AX}. Then A(i)-trindX ≥ M(A, X, i) for i ∈
{0, 1} (resp. i ∈ {0, 1, 4} or i ∈ {0, 1, 2, 3, 4}). Moreover, A(i)-trindX = M(A, X, i) for
i ∈ {0, 1} (resp. i ∈ {0, 1, 4} or i ∈ {0, 1, 2, 3, 4}), whenever A ∈ AA for each A ∈ AX with
|A| > 1.

Definition 3. We will say that an SSC-family A is an upper bound of degree 1 (resp. degree 2
or degree 3) for an SSC-family A′, in short, A ≥1 A′ (resp. A ≥2 A′ or A ≥3 A′) if for every
space X the following conditions hold:

(1) for each A′ ∈ A′X there exists an element A ∈ AX such that A′ ⊂ A;
(2) for each A′ ∈ A′X we have ClX(A

′) ∈ AX , or (3) A′X ⊂ AX .

Note that if for SSC-families A and A′ we have A ≥2 A′ or A ≥3 A′ then we have also
A ≥1 A′.
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Remark 3. For every SSC-family A we have that A1 ≥1 A, A4 ≥2 A and A2 ≥3 A.

The following statement is evidently valid.

Proposition 3. Let A and A′ be SSC-families such that A ≥3 A′. Then A(i)-trindX ≥
A′(i)-trindX for every space X and every i ∈ {0, 1, 2, 3, 4}.

Corollary 2. For every space X and every i ∈ {0, 1, 2, 3, 4} we have A1(i)-trindX ≤ A4(i)-
trindX ≤ A2(i)-trindX and A3(i)-trindX ≤ A4(i)-trindX.

Proposition 4. LetA andA′ be SSC-families such that the familyA possesses property (∗)1
(resp. (∗)2) and A ≥1 A′ (resp. A ≥2 A′). Then A(i)-trindX ≥ A′(i)-trindX for every space
X, where i ∈ {0, 1} (resp. i ∈ {0, 1, 4}).

Proof. The case (∗)1 and A ≥1 A′. We will prove the statement only for i = 0. Let
A(0)-trindX = α ≥ −1. Note that for α = −1 or for |X| = 1 the statement is valid.
Apply induction on α. Consider the case: α ≥ 0 and |X| ≥ 2. Let M ′ ∈ A′X with |M ′| ≥ 2.
Since A ≥1 A′, there exists M ∈ AX such that M ′ ⊂ M . Consider a point x ∈ M ′ and
a closed subset A′ of the space M ′ such that x /∈ A′. Choose any closed subset A of the
space M such that A′ = A ∩M ′ and note that x /∈ A. Since A(0)-trindX = α, there is
a partition LM in the space M between x and A such that A(0)-indLM < α. Note that
the set LM ′ = LM ∩M ′ is a partition in the space M ′ between x and A′. It follows from
Proposition 2 that A(0)-indLM ′ ≤ A(0)-indLM . Then by the inductive assumption we have
A′(0)-indLM ′ ≤ A(0)-indLM ′ < α and so A′(0)-trindX ≤ α.

The case (∗)2 and A ≥2 A′. We need to prove the statement only for i = 4 (see the
sentences after Definitions 2 and 3). Let A(4)-trindX = α ≥ −1. Note that for α = −1
or for |X| = 1 the statement is valid. Apply induction on α. Consider the case: α ≥ 0 and
|X| ≥ 2. Let M ′ ∈ A′ with |M ′| ≥ 2. Since A ≥2 A′ the set M = ClX(M

′) is an element
of AX . Recall that A(4)-trindX = α. So there exist distinct points x, y ofM and a partition
LM in the space M between x and y such that A(4)-indLM < α. This also implies that
there exist open disjoint subsets U and V of the space M such that x ∈ U , y ∈ V and
LM = M \ (U ∪ V ). Choose a point a ∈ M ′ ∩ U and a point b ∈ M ′ ∩ V and note that the
set LM ′ = LM ∩M ′ is a partition between the points a and b in the space M ′. It follows
from Proposition 2 that A(4)-indLM ′ ≤ A(4)-indLM . By the inductive assumption we have
A′(4)-indLM ′ ≤ A(4)-indLM ′ < α and so A′(4)-indX ≤ α.

Applying additionally Remarks 2 and 3 we get the following statement.

Corollary 3. For every SSC-family A and for every space X we have the following inequali-
ties:

(a) A1(i)-trindX ≥ A(i)-trindX, where i ∈ {0, 1};
(b) A4(i)-trindX ≥ A(i)-trindX, where i ∈ {0, 1, 4};
(c) A2(i)-trindX ≥ A(i)-trindX, where i ∈ {0, 1, 2, 3, 4}.

In particular, A1(i)-trindX = A2(i)-trindX = A4(i)-trindX, where i ∈ {0, 1}, and
A2(4)-trindX = A4(4)-trindX.

Now we have the following table of the functions Aj(i)-trind, where i ∈ {0, 1, 2, 3, 4},
and j ∈ {1, 2, 3, 4}; the dots in the cells of coordinates i, j replace the notations of invariants
Aj(i)-t trind’s.
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Table 1.

i 0 1 2 3 4
j
1 trind trindp · · ·
2 trind trindp · · trt
3 · · · · p

4 trind trindp · · trt

Let us mention some relationship between the table invariants. We start with equalities.

Proposition 5. For each metrizable locally compact space X we have Aj(i)-indX = indX
for every j ∈ {2, 4} and every i ∈ {0, 1, 2, 3, 4}.
Proof. Recall [13] that for each metrizable locally compact space X we have tX = indX.
Hence the statement follows from Proposition 1.

Proposition 6. For every metrizable space X with p(X) < ω0 and every i ∈ {0, 1, 2, 3, 4},
we have A3(i)-indX = p(X).

Proof. By Proposition 1 and Remark 1 it is sufficient to show that A3(0)-indX ≤ p(X).
Recall [10] that p(X) = sup{t(A) : A is compact subset of X}. Since p(X) < ω0, there
exists a compact subset A of X with |A| ≥ 2 such that p(X) = t(A). Note ([13]) that
indA = t(A). It follows from Remark 1 (a) and Corollary 3 (a) that indA = A1(0)-indA ≥
A3(0)-indA. Hence p(X) = t(A) = indA ≥ A3(0)-indA.

The following statement is obvious.

Proposition 7. For every compact space X we have A3(i)-trindX = A4(i)-trindX, where
i ∈ {0, 1, 2, 3, 4}.

We continue with inequalities.

Remark 4. Recall ([8]) that for each integer n ≥ 1 there exists a totally disconnected
separable metrizable space Xn such that indXn = n. Note that indpXn = A3(0)-indXn = 0.

Remark 5. Recall ([4]) that there exists a compact space Y with indY = indp Y = 2
such that each its component is homeomorphic to the closed interval [0, 1]. Hence, tY = 1.
Moreover, A1(2)-indY = 1 and A1(3)-indY = 0.

Proposition 8. For every strongly countable-dimensional compact metrizable space X we
have A4(2)-trindX = A3(2)-trindX ≤ ω0.

Proof. Since every strongly countable-dimensional compact metrizable space has a non-
empty open subset with ind <∞, we get the statement.

Remark 6. Recall (cf. [6]) that for each α < ω1 there exists a strongly countable-dimensional
compact metrizable space Xα with trindXα = α.

Let X be a space and X(k) be the set of all points of X that have arbitrary small
neighborhoods with boundaries of dimension ind ≤ k− 1, where k is an integer ≥ 0. We call
the space X weakly n-dimensional in the sense of ind if indX = n and ind(X \X(n−1)) < n.

Recall (cf. [8]) that for each integer n ≥ 1 there exists a weakly n-dimensional in the
sense of ind separable metrizable space Yn. Note that the subset Yn\(Yn)n−1 of Yn can not be
closed. However there is a metrizable weakly 1-dimensional in the sense of ind space R such
that |R\R(0)| = 1 (cf. [6, Problem 4.1.B]). This implies that A2(1)-indR = A2(2)-indR = 0.
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Proposition 9. Let X be a weakly n-dimensional in the sense of ind space, where n ≥ 1.
Then A2(2)-indX ≤ n− 1.

Proof. Consider a subset M of X with |M | ≥ 2.
If M ⊂ X \X(n−1) then indM ≤ n− 1. So for each point and any closed subset A of M

such that x /∈ A there exists a partition LM in M between x and A with indLM ≤ n − 2.
Note that A2(2)-indLM ≤ indLM by Proposition 1.

If there is a point x ∈M \ (X \X(n−1)), so x has arbitrary small neighborhoods with at
most (n − 2)-dimensional in the sense of ind boundaries. This implies that for every closed
subset A of M such that x /∈ A there exists a partition LM in M between x and A with
indLM ≤ n− 2. Recall again that A2(2)-indLM ≤ indLM .

Both cases imply that A2(2)-indX ≤ n− 1.

3. Zero-dimensionality with respect to A(i)-trind. In this section, let A be any SSC-
family, and put Cα(A(i)) = {X : A(i)-trindX ≤ α} for i ∈ {0, 1, 2, 3, 4}.

Question 1. Determine the class C0(A(i)), where i ∈ {0, 1, 2, 3, 4}.

Proposition 1 (a) and Corollaries 2 and 3 easily imply the next statement.

Proposition 10. The following assertions hold.

(a) C0(A(0)) ⊂ C0(A(1)) ⊂ C0(A(3)) ⊂ C0(A(4)) and
C0(A(0)) ⊂ C0(A(2)) ⊂ C0(A(4)).

(b) For every i ∈ {0, 1, 2, 3, 4} we have C0(A2(i)) ⊂ C0(A4(i)) ⊂ C0(A1(i)) and C0(A4(i)) ⊂
C0(A3(i)).

(c) C0(A1(i)) ⊂ C0(A(i)), where i ∈ {0, 1};
C0(A4(i)) ⊂ C0(A(i)), where i ∈ {0, 1, 4};
C0(A2(i)) ⊂ C0(A(i)), where i ∈ {0, 1, 2, 3, 4}.
In particular, C0(A1(i)) = C0(A2(i)) = C0(A4(i)), where i ∈ {0, 1}, and C0(A2(4)) =
C0(A4(4)).

Additionally, we have the following proposition.

Proposition 11. (a) C0(A(3)) = C0(A(4)).

(b) C0(A3(0)) = C0(A3(1)) = C0(A3(2)) = C0(A3(3)) = C0(A3(4)).

Proof. (a) By Proposition 3.1 (a), it is sufficient to show that C0(A3(4)) ⊂ C0(A3(3)). Let
X ∈ C0(A3(4)) and M ∈ AX . Note that the subspace M of the space X is disconnected. So
there are clopen disjoint non-empty subsets M1 and M2 of M such that M =M1 ∪M2. Put
A = M1 and observe that every x ∈ M2 can be separated from A in M by the empty set.
This implies that A(3)-indX = 0.

(b) By Proposition 10 (a), it is sufficient to show that C0(A3(4)) ⊂ C0(A3(0)). Let X ∈
C0(A3(4)) and M ∈ A3

X with |M | > 1. Note that X must be punctiform ([10]). Consider
M ∈ A3

X , i.e.M is a compact subspace of X. Note thatM is punctiform too. By [6, Theorem
1.4.5] we have indM = 0. This implies that A3(0)-indX = 0.
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We summarize the classes C0(Aj(i)) \ {X : |X| ≤ 1}, where i ∈ {0, 1, 2, 3, 4}, and j ∈
{1, 2, 3, 4} in the following table.

Table 2.

i 0 1 2 3 4
j
1 Z Dt Zp D D
2 Z Dt X Dh Dh
3 P P P P P
4 Z Dt Y Dh Dh

where

Z is the class of zero-dimensional spaces in the sense of ind with |X| > 1 (see Remark 1);

Dt is the class of totally disconnected spaces with |X| > 1 (see [6, Definition 1.4.1] and
Remark 1);

Dh is the class of hereditarily disconnected spaces with |X| > 1 (see [6, Definition 1.4.2],
Remark 1 and [13]);

P is the class of punctiform spaces with |X| > 1 (see [6, Definition 1.4.3], Remark 1 and
[10]);

D is the class of disconnected spaces;

Zp is the class of non-trivial spaces having at least one point at which the dimension ind
is zero.

Remark 7. (a) Recall that Z ⊂ Dt ⊂ Dh ⊂ P and there are subspaces of the real plane
which exhibit the difference between the classes (see [6, Examples 1.4.6-8]).

(b) Note that Z ⊂ Zp ⊂ D and Dh ⊂ D.
(c) Let X ⊕ Y be the free union of topological spaces X and Y , I the closed interval [0, 1]

and P a one-point space. Then observe that P ⊕ I ∈ Zp \ P , I ⊕ I ∈ D \Zp, the space
Z from [6, Example 1.4.8] is in P \D and the Erdös’ space H0 from [6, Example 1.2.15]
is in Dt \ Zp.

(d) It follows from Proposition 10 (a) and (b) that Z ⊂ X ⊂ Y ⊂ Dh and Y ⊂ Zp.
Note also that every weakly 1-dimensional in the sense of ind space is in X \ Z (see
Proposition 9), the Erdös’ space H0 is in Dt \ Y and the space P ⊕ I from (c) is in
Zp \ Y .

We have the following additional facts about the classes X and Y :
(i) if X ∈ X , X ′ ⊂ X and |X ′| > 1 then X ′ ∈ X ;
(ii) if Y ∈ Y , Y ′ is a closed subset of Y and |Y ′| > 1 then Y ′ ∈ Y ;
(iii) X = Y = Z in the realm of locally compact spaces.

Problem 1. Describe the classes X and Y in the realm of separable metrizable spaces (resp.
metrizable spaces or topological T3-spaces).

4. Countable unions of spaces of A(i)-trind ≤ 0, i ∈ {0, 1, 2, 3, 4}. Let A be any
SSC-family.
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Definition 4. A space X is said to be σ-C0(A(i)), where i ∈ {0, 1, 2, 3, 4}, if X =
⋃∞
j=1Xj,

where Xj ∈ C0(A(i)) for each j.

Problem 2. Describe the class σ-C0(A(i)), where i ∈ {0, 1, 2, 3, 4}.

We will restrict now our discussion to the realm of separable metrizable spaces.

Proposition 12. Let X be a separable completely metrizable σ-C0(Aj(i)) space, where
i ∈ {0, 1, 2, 3, 4} and j ∈ {1, 2, 3, 4}. Then there is a metrizable compactification Y of X
such that Y is also σ-C0(Aj(i)).

Proof. Recall ([6, Lemma 5.3.1]) that there is metrizable compactification Y of X such
that the remainder Y \ X is strongly countable-dimensional. Note that the space Y \ X is
σ-C0(Aj(i)). Hence, Y is also σ-C0(Aj(i)).

Remark 8. Let us recall [10] that the R. Pol’s metrizable compactum P is a compactification
of some complete A-strongly infinite-dimensional totally disconnected space P0 with the
reminder P \ P0 =

⋃∞
k=1 Pk, where Pk is a finite-dimensional compactum for each k. Note

that P is σ-C0(Aj(i)) for every i ∈ {1, 3, 4} and every j ∈ {1, 2, 3, 4}, and for the pair: i = 0
and j = 3. We note also that P is not σ-C0(Aj(i)) for i = 0 and every j ∈ {1, 2, 4}.

Question 2. Is P σ-C0(A2(2)) (resp. σ-C0(A4(2)))?

The following statement is evident.

Lemma 1. Let Y be a metrizable compact space, X ⊂ Y and Y \X =
⋃∞
i=1Xi, where for

each i the set Xi is compact and indXi <∞. Assume that M is a closed subset of Y . Then
either |M ∩X| > 1 or M is strongly countable dimensional.

Lemma 2. Let X be a separable metrizable space, M ⊂ X, x, y ∈ M and LM a partition
of M between the points x, y. Then there is a partition LX of X between x, y such that
L ∩M = LM .

Proof. Let Ox and Oy be disjoint open subsets ofM such that x ∈ Ox, y ∈ Oy andM \(Ox∪
Oy) = LM . Put L = ClX(LM∪Ox)∩ClX(LM∪Oy). Note that L is a partition of the subspace
ClXM of X between the points x, y such that L ∩M = LM . By [6, Lemma 1.2.9] there is
a partition LX of X between x, y such that LX ∩ClXM = L. Note that LX ∩M = LM .

Proposition 13. Let Y be a metrizable compact space, X ⊂ Y and Y \X =
⋃∞
i=1Xi, where

for each i the set Xi is compact and indXi <∞.
Assume that trtX = α 6=∞. Then

trtY ≤

{
ω0 + α + 1, if α < ω2

0;

α + 1, if α ≥ ω2
0.

(One can omit 1 in the formula if α is an infinite limit ordinal.)

Proof. Apply induction on α ≥ 0. Assume that α = 0. Consider a closed subsetM of Y with
|M | > 1. By Lemma 1, we have two possibilities:

(a)0 |M ∩X| > 1 or (b)0 M is strongly countable dimensional.
The case (a)0. Since trtX = 0, we have trt(M ∩X) = 0 and the empty set is a partition

of M ∩ X between some points x, y of M ∩ X. By Lemma 2, there is a partition L of M
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between the points x, y such that L ⊂ M \X. Note that the space L is strongly countable
dimensional and hence trtL ≤ ω0 (see [1]).

The case (b)0. Since M is strongly countable dimensional, we have trtM ≤ ω0. Note that
the both cases imply trtX ≤ ω0 + 1.

Assume that the statement is valid for all α < γ ≥ 1. Let now α = γ. Consider a closed
subset M of Y with |M | > 1. Again by Lemma 2, we have two possibilities:

(a)γ |M ∩X| > 1 or (b)γ M is strongly countable dimensional.
The case (a)γ. Since trtX = γ, we have trt(M∩X) ≤ γ. Hence, there is a partition LM∩X

of M ∩X ⊂ M between some points x, y of M ∩X such that trtLM∩X < γ. By Lemma 2
there is a partition LM ofM between the points x, y such that LM ∩ (M ∩X) = LM∩X . Note
that LM∩X = LM ∩ X and the space LM \ LM∩X =

⋃∞
i=1(LM ∩ Xi) is strongly countable

dimensional. Hence, by induction, we have trtLM ≤ ω0 + trtLM∩X + 1 < ω0 + γ + 1. (Let
us observe that if γ is an infinite limit ordinal then ω0 + trtLM∩X + 1 < ω0 + γ.)

The case (b)γ. Since M is strongly countable dimensional, trtM ≤ ω0. Note that both
cases imply trtX ≤ ω0 + γ + 1.

Let us recall that if α ≥ ω2
0 then ω0 + α = α.

Corollary 4. Let X be a separable completely metrizable space and trtX = α 6=∞. Then
there is a compactification Y of X such that

trtY ≤

{
ω0 + α + 1, if α < ω2

0;

α + 1, if α ≥ ω2
0.

(One can omit 1 in the formula if α is an infinite limit ordinal.)

Proof. Recall ([6, Lemma 5.3.1]) that there is a metrizable compactification Y of X such
that the remainder Y \X is strongly countable dimensional. Now, apply Proposition 13 to
the space Y .

Corollary 5. For any hereditarily disconnected separable completely metrizable space X
there is a metrizable compactification Y of X such that trtY ≤ ω0 + 1.

Recall (see [11] (resp. [12])) that for each isolated countable infinite ordinal α there exists
an α-dimensional metrizable Cantor trind-manifold Y α (resp. trInd-manifold Zα) which is
a disjoint union of countably many Euclidean cubes and the irrationals. It follows now from
Proposition 13 that for each isolated countable infinite ordinal α, trtY α = trtZα = ω0 + 1.

Problem 3. Is there a countable-dimensional separable metrizable space X such that
trtX > ω0 + 1 (and trtX 6=∞)?
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