Maremaruani Crymii. T.39, Ne2 Matematychni Studii. V.39, No.2

YIOK 517.537.72
V. CHATYRKO, YA. HATTORI

SMALL SCATTERED TOPOLOGICAL INVARIANTS

V. Chatyrko, Ya. Hattori. Small scattered topological invariants, Mat. Stud. 39 (2013), 212-222.

We present a unified approach to define dimension functions like trind, trind,, trt and p.
We show how some similar facts on these functions can be proved similarly. Moreover, several
new classes of infinite-dimensional spaces close to the classes of countable-dimensional and
o-hereditarily disconnected ones are introduced. We prove a compactification theorem for these
classes.
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Ms1 mpejjiaraeM €JUHBIN II0JIXOJ K OIIPEJEJEHUI0 TaKUX Pa3MEPHOCTHBIX (DYHKIMIA, KaK
trind, trind,,, trt m P. MBI moka3eiBaeM, KaK HEKOTOPBIE TPOCTBIE (PAKTEI 00 3TNX PYHKINAX MO-
ryT OBITH JOKa3aHbl eInHO0Opa3HO. Bojiee TOro, BBOAUTCS HECKOJIBKO HOBBIX KJIACCOB OECKOHEY-
HOMEPHBIX MPOCTPAHCTB OJIM3KUX K KJIACCAM CYETHOMEPHBIX MIPOCTPAHCTB M O-HACIEICTBEHHO
HECBSI3HBIX TPOCTPAHCTB. MBI TaKKe JOKa3bIBaeM KOMIAKTU(MDUKAIMOHHYIO TEOPEMY JIJIs 9TUX
KJIACCOB.

1. Introduction. In [13] G. Steinke suggested and studied an integer valued inductive
topological invariant, the separation dimension t. Recall that the separation dimension t for
a topological space X is defined inductively as follows: t X = —1 if and only if X = &
tX = 01if | X| = 1; let |X| > 1 and n be an integer > 0, if for each subset M of X with
|M| > 1 there exist distinct points =,y of M and a partition L, in the subspace M of X
between x and y such that t Ly; < n — 1 then we write t X < n. One of the main property
of t is the following. If {X;: ¢ € I'} is the family of all connected components of a non-empty
space X then t X = sup{t X;: ¢ € I}. In particular, for any space X we have t X = 0 if and
only if X is hereditarily disconnected.

Recall (]|6]) that, the classes of strongly countable-dimensional metrizable compacta,
countable-dimensional metrizable compacta and compact metrizable C-spaces are classical
objects of infinite dimension theory. In [1] F. G. Arenas, V. A. Chatyrko and M. L. Puertas
considered a natural transfinite extension of t, the topological invariant trt, and showed
that each metrizable compact space X with trt X # oo must be a C-space. Moreover, every
strongly countable-dimensional metrizable compact space X has trt X < wy. However, there
exist countable-dimensional metrizable compact spaces (namely, the infinite-dimensional
Cantor manifolds) of dimension trt > wy. Since the inequality trt X < trind X, where
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trind is the small transfinite inductive dimension ([6]), holds for each Tj-space X, every
countable-dimensional metrizable compact space X satisfies trt X < w;. Set

ap = sup{trt K: K is a countable-dimensional metrizable compact space}.

It is clear that oy < w; but the exact value of aq is still unknown.

In [10] T. M. Radul introduced an ordinal valued topological invariant, the dimension P,
by modifying the definition of trt: the subsets M of the space X are supposed to be compact.
It is easy to see that for any space X we have P X = sup{trt K : K is a compact subset of X'}
< trt X. In [10] T. M. Radul proved that each o-hereditarily disconnected hereditarily normal
space X satisfies P X # oo. Recall (see [7] or [2]) that a space X is o-hereditarily disconnected
if X is a countable union of hereditarily disconnected subspaces. Since each zero-dimensional
space in the sense of the small inductive dimension ind is hereditarily disconnected, each
countable-dimensional in the sense of ind space is o-hereditarily disconnected. Let us observe
that for the subspace K“° of the Hilbert cube I“° consisting of points with finitely many
non-zero coordinates (and so being strongly countable dimensional) we have P K“° = wy.
Recall that trt K“° > wy ([1]) but we do not know whether trt K“° = oo.

It is still unclear if each metrizable compact space X with trt X # oo has to be
o-hereditarily disconnected. The well known R. Pol’s example P (]|9]) of a weakly infinite-
dimensional uncountable-dimensional metrizable compact space is a o-hereditarily discon-
nected C-space, and hence by Radul’s result trt P # oo. (In fact, P can be constructed so
that trt P = wy, see a remark in [1].) But it is unknown whether every compact metrizable
C-space X is o-hereditarily disconnected (resp. has trt X # 00).

In this paper we show that the dimension trind (as well as the transfinite inductive
invariant trind, from (|3])) can also be defined similarly to the definition of trt. One of the
subjects of the paper is to unify proofs of some facts about the invariants trind, trind,, trt,
P and introduce new classes of infinite-dimensional spaces close to the classes of countable-
dimensional spaces and o-hereditarily disconnected ones. We prove a compactification theo-
rem for these new classes. In particular, we show that, for any hereditarily disconnected
separable completely metrizable space X there is a metrizable compactification Y of X such
that trt Y < wp+1. Furthermore, for Renska’s examples (see [11] (resp.[12])) of a-dimensional
metrizable Cantor trind (resp. trInd)-manifolds, where « is any isolated countable ordinal,
we have the values of trt are equal to wy + 1.

Our terminology follows [5] and [6].

2. Definitions and common properties. All considered topological spaces are assumed
to be Tz-spaces. Let us fix for each space X a class Ax of subsets of X. The family of all
classes Ax we denote by A and call it a family of classes of subsets of spaces (in short, an
SSC-family).

Definition 1. Let X be a space and A be an SSC-family.

(a) The small inductive invariant A(0)-ind of the space X, denoted by A(0)-ind(X) is
defined inductively as follows. A(0)-ind(X) = —1if and only if X = @; A(0)-ind(X) =0
if | X| = 1. Let |X| > 1 and n be an integer > 0, if for each element M of Ay with
|M| > 1 and for every pair (A,x), where A is a closed subset of M and z € M — A,
there is a partition Ly in the space M between = and A such that A(0)-ind Ly <n—1
then we write A(0)-ind X < n.
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(b) The small inductive invariant A(1)-ind of the space X, denoted by A(1)-ind(X) is
defined inductively as follows. A(1)-ind(X) = —1if and only if X = &; A(1)-ind(X) =0
if |[X] = 1. Let |X| > 1 and n be an integer > 0, if for each element M of Ay with
|M| > 1 and for every pair (z,y) of distinct points of M there is a partition L, in the
space M between = and y such that A(1)-ind Ly, < n—1 then we write A(1)-ind X < n.

(¢) The small inductive invariant A(2)-ind of the space X, denoted by A(2)-ind(X) is
defined inductively as follows. A(2)-ind(X) = —1if and only if X = @; A(2)-ind(X) =0
if | X| = 1. Let |X| > 1 and n be an integer > 0, if for each element M of Ay with
|M| > 1 there exists a point x € M possessing the following property: for every closed
subset A of the space M with « ¢ A there is a partition Ly, in the space M between x
and A such that A(2)-ind Ly < n — 1 then we write A(2)-ind X < n.

(d) The small inductive invariant A(3)-ind of the space X, denoted by A(3)-ind(X) is
defined inductively as follows. A(3)-ind(X) = —1if and only if X = &; A(3)-ind(X) =0
if |[X|] = 1. Let |X| > 1 and n be an integer > 0, if for each element M of Ay with
|M| > 1 there exists a proper closed subset A of the space M possessing the following
property: for every point x € M — A there is a partition Lj; in the space M between
x and A such that A(3)-ind Ly, < n — 1 then we write A(3)-ind X < n.

(e) The small inductive invariant A(4)-ind of the space X, denoted by A(4)-ind(X) is
defined inductively as follows. A(4)-ind(X) = —1if and only if X = &; A(4)-ind(X) =0
if |[X|] = 1. Let |X| > 1 and n be an integer > 0, if for each element M of Ay with

|M| > 1 there exist distinct points z, y of M and a partition Ly, in the space M between
x and y such that A(4)-ind Ly; < n — 1 then we write A(4)-ind X < n.

The transfinite extension A(7)-trind of the invariant A(i)-trind is defined in the standard
fashion, i € {0,1,2,3,4}.

Let us introduce SSC-families A7, j € {1,2,3,4}, as follows: for every space X put
Al = {X}, A% = 2%, A% = 2% ) AL = 2% where 2% (resp. 2% or 2%) is the family

comp’ cl» comp
of all (resp. compact or closed) subsets of X. Note that one can suggest many other SSC-

families A different from A7, j € {1,2,3,4}.
Remark 1. Note that

(a) A'(0)-trind X = trind X and A'(1)-trind X = trind, X ([3]);

(b) A%(4)-trind X = A*(4)-trind X = trt X ([1] or Corollary 2);

(c) A3(4)-trind X =p X ([10]).

The following statement is evidently valid for every SSC-family A and every space X.
Proposition 1. (a) A(0)-trind X > A(1)-trind X > A(3)-trind X > A(4)-trind X and
A(0)-trind X > A(2)-trind X > A(3)-trind X.

(b) A(i)-trind X < sup{A(i)-trind A: A € Ax} for every i € {0,1,2,3,4}, whenever A €
Ay for each A € Ax with |[A] > 1.
(Note that the SSC-families A7, j € {1,2,3,4}, satisfy this condition.)

Definition 2. We will say that an SSC-family A possesses property (x); (resp. (k) or (*)s3)
if for every space X and every subspace Y of X the following assertions hold:

(%)1: for each Ay € Ay there exists an element Ay € Ax such that Ay C Ax;
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((%)9: for each Ay € Ay we have Clx(Ay) € Ay, or (x)3: Ay C Ax).

Note that if an SSC-family A possesses property (x)o or property ()3 then it possesses
also property (x);.

Remark 2. The families A’,j € {1,2,3,4}, possess property (*);. The families A’,j €
{2,3,4}, possess property (x)o. The families A7, j € {2, 3}, possess property (*)s.

Proposition 2. Let an SSC-family A possess the property (x); (resp. (x)2 or (x)s). Then
for every space X and every subspace Y of X we have
A(i)-trind X > A(i)-trind Y for i € {0,1} (resp. i € {0,1,4} ori € {0,1,2,3,4}).

Proof. The case (x);. We will prove the statement only for i = 0.

Let A(0)-trind X = a > —1. Note that for « = —1 or for |Y| = 1 the statement is
valid. Apply induction on «. Consider the case: & > 0 and |Y| > 2. Let My € Ay with
|My| > 2. By the property (x); there exists an element My € Ax such that My C My.
Consider a point x € My and a closed subset Ay of the space My such that x ¢ Ay. Choose
any closed subset Ax of the space My such that Ay = Ax N My and note that x ¢ Ax.
Since A(0)-trind X = « there is a partition Ly, in the space My between x and Ax such
that A(0)-ind Ly, < a. Note that the set Ly, = Ly, N My is a partition in the space My
between = and Ay. By the inductive assumption we have A(0)-ind Ly, < A(0)-ind Ly, < «
and so A(0)-trind Y < a.

The case (x)2. We need to prove the statement only for i = 4 (see the sentence after
Definition 2). Let A(4)-trind X = o > —1. Note that for « = —1 or for |Y| = 1 the statement
is valid. Apply induction on «. Consider the case: @ > 0 and |Y| > 2. Let My € Ay with
|My| > 2. By the property (x)y the set Mx = Clx(My) is an element of Ay. Since A(4)-
trind X = « there exist distinct points z,y of Mx and a partition L), in the space Mx
between x and y such that A(4)-ind Ly, < a. It also implies that there exist open disjoint
subsets Ux and Vy of the space Mx such that x € Ux, y € Vx and Ly, = Mx \ (Ux U V).
Choose a point a € UxNMy and a point b € VxNMy and note that the set Ly, = Ly, "My
is a partition between the points a and b in the space My . By the inductive assumption we
have A(4)-ind Ly, < A(4)-ind Ly, < a and so A(4)-indY < a.

The case (x)3 is trivial. O

Applying Propositions 1 (b) and 2 we get such a statement.

Corollary 1. Let an SSC-family A possess property (x); (resp. (%) or (x)3), X be a space
and M(A,X,i) = sup{A(i)-trind A: A € Ax}. Then A(i)-trind X > M(A, X,q) for i €
{0,1} (resp. ¢ € {0,1,4} ori € {0,1,2,3,4}). Moreover, A(i)-trind X = M(A, X,1) for
i €{0,1} (resp.i € {0,1,4} ori € {0,1,2,3,4}), whenever A € A, for each A € Ax with
|A] > 1.

Definition 3. We will say that an SSC-family A is an upper bound of degree 1 (resp. degree 2
or degree 3) for an SSC-family A’ in short, A >; A" (resp. A >5 A" or A >3 A’) if for every
space X the following conditions hold:

(1) for each A’ € A’y there exists an element A € Ax such that A" C A;

(2) for each A’ € A’y we have Clx(A") € Ay, or (3) Ay C Ax.

Note that if for SSC-families A and A’ we have A >3 A" or A >3 A’ then we have also
A> A
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Remark 3. For every SSC-family A we have that A' >; A, A* >, A and A% >3 A.
The following statement is evidently valid.

Proposition 3. Let A and A" be SSC-families such that A >3 A’. Then A(i)-trind X >
A'(i)-trind X for every space X and every i € {0,1,2,3,4}.

Corollary 2. For every space X and every i € {0, 1,2, 3,4} we have A'(i)-trind X < A*(4)-
trind X < A?(4)-trind X and A*(é)-trind X < A*(7)-trind X.

Proposition 4. Let A and A’ be SSC-families such that the family A possesses property (x);
(resp. (%)2) and A >1 A’ (resp. A >3 A’). Then A(i)-trind X > A'(i)-trind X for every space
X, where i € {0,1} (resp. i € {0,1,4}).

Proof. The case (x); and A >; A’. We will prove the statement only for ¢ = 0. Let

A(0)-trind X = a > —1. Note that for « = —1 or for |X| = 1 the statement is valid.
Apply induction on a. Consider the case: & > 0 and |X| > 2. Let M’ € A’y with |M'| > 2.
Since A >; A’, there exists M € Ax such that M’ C M. Consider a point x € M’ and
a closed subset A" of the space M’ such that = ¢ A’. Choose any closed subset A of the
space M such that A’ = AN M’ and note that z ¢ A. Since A(0)-trind X = «, there is
a partition Ly, in the space M between x and A such that A(0)-ind Ly; < «a. Note that
the set Ly = Ly N M’ is a partition in the space M’ between x and A’. It follows from
Proposition 2 that A(0)-ind Ly < A(0)-ind Ljys. Then by the inductive assumption we have
A'(0)-ind Ly < A(0)-ind Ly < o and so A'(0)-trind X < a.

The case (%) and A >3 A’. We need to prove the statement only for i = 4 (see the
sentences after Definitions 2 and 3). Let A(4)-trind X = o > —1. Note that for a = —1
or for | X| = 1 the statement is valid. Apply induction on a. Consider the case: a > 0 and
| X| > 2. Let M" € A" with |M’'| > 2. Since A >3 A’ the set M = Clx(M’') is an element
of Ax. Recall that A(4)-trind X = «a. So there exist distinct points z,y of M and a partition
Ly in the space M between x and y such that A(4)-ind Ly; < «. This also implies that
there exist open disjoint subsets U and V' of the space M such that x € U, y € V and
Ly =M\ (UUV). Choose a point a € M'NU and a point b € M’ NV and note that the
set Lyy = Ly N M’ is a partition between the points a and b in the space M’. It follows
from Proposition 2 that A(4)-ind Ly < A(4)-ind Ly,. By the inductive assumption we have
A'(4)-ind Ly < A(4)-ind Ly < a and so A’(4)-ind X < a. O

Applying additionally Remarks 2 and 3 we get the following statement.
Corollary 3. For every SSC-family A and for every space X we have the following inequali-
ties:
(a) A'(i)-trind X > A(i)-trind X, where i € {0, 1};
(b) A*(i)-trind X > A(i)-trind X, where i € {0,1,4};
(c) A%(i)-trind X > A(i)-trind X, where i € {0,1,2,3,4}.
In particular, A(i)-trind X = A%(i)-trind X = A*(i)-trind X, where i € {0,1}, and
A%(4)-trind X = A*(4)-trind X .

Now we have the following table of the functions A7(i)-trind, where i € {0,1,2,3,4},
and j € {1,2,3,4}; the dots in the cells of coordinates i, j replace the notations of invariants
A (i)t trind’s.
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Table 1.
i 0 1 2 3 4
J
1 trind  trind,
2 trind trind, - - trt
3 . . p
4 trind trind, - - trt

Let us mention some relationship between the table invariants. We start with equalities.

Proposition 5. For each metrizable locally compact space X we have A’(i)-ind X = ind X
for every j € {2,4} and every i € {0,1,2,3,4}.

Proof. Recall [13] that for each metrizable locally compact space X we have t X = ind X.
Hence the statement follows from Proposition 1. m

Proposition 6. For every metrizable space X with P(X) < wy and every i € {0,1,2,3,4},
we have A3(i)-ind X = p(X).

Proof. By Proposition 1 and Remark 1 it is sufficient to show that 43(0)-ind X < p(X).
Recall [10] that P(X) = sup{t(A): A is compact subset of X'}. Since P(X) < wy, there
exists a compact subset A of X with |A] > 2 such that P(X) = t(A). Note ([13]) that
ind A = t(A). It follows from Remark 1 (a) and Corollary 3 (a) that ind A = A*(0)-ind A >
A3(0)-ind A. Hence P(X) = t(A) = ind A > A3(0)-ind A. O

The following statement is obvious.

Proposition 7. For every compact space X we have A3(i)-trind X = A*(i)-trind X', where
i€{0,1,2,3,4}.

We continue with inequalities.

Remark 4. Recall ([8]) that for each integer n > 1 there exists a totally disconnected
separable metrizable space X,, such that ind X,, = n. Note that ind, X,, = A3(0)-ind X,, = 0.

Remark 5. Recall ([4]) that there exists a compact space Y with indY = ind,Y = 2
such that each its component is homeomorphic to the closed interval [0, 1]. Hence, tY = 1.
Moreover, A'(2)-indY =1 and A'(3)-indY = 0.

Proposition 8. For every strongly countable-dimensional compact metrizable space X we
have A*(2)-trind X = A3(2)-trind X < wy.

Proof. Since every strongly countable-dimensional compact metrizable space has a non-
empty open subset with ind < oo, we get the statement. O

Remark 6. Recall (cf. [6]) that for each ov < wy there exists a strongly countable-dimensional
compact metrizable space X, with trind X, = a.

Let X be a space and X(;) be the set of all points of X that have arbitrary small
neighborhoods with boundaries of dimension ind < k — 1, where k is an integer > 0. We call
the space X weakly n-dimensional in the sense of ind if ind X = n and ind(X \ X(,,_1)) < n.

Recall (cf. [8]) that for each integer n > 1 there exists a weakly n-dimensional in the
sense of ind separable metrizable space Y;,. Note that the subset Y,,\ (¥;,),—1 of ¥, can not be
closed. However there is a metrizable weakly 1-dimensional in the sense of ind space R such
that |R\ R(y)| = 1 (cf. [6, Problem 4.1.B]). This implies that A%*(1)-ind R = A?*(2)-ind R = 0.
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Proposition 9. Let X be a weakly n-dimensional in the sense of ind space, where n > 1.
Then A?(2)-ind X <n —1.

Proof. Consider a subset M of X with |M| > 2.

If M C X\ X—1) then ind M < n — 1. So for each point and any closed subset A of M
such that x ¢ A there exists a partition Ly, in M between x and A with ind Ly, < n — 2.
Note that A%(2)-ind Ly; < ind Ly, by Proposition 1.

If there is a point © € M \ (X \ X(,,—1)), so & has arbitrary small neighborhoods with at
most (n — 2)-dimensional in the sense of ind boundaries. This implies that for every closed
subset A of M such that x ¢ A there exists a partition Ly, in M between z and A with
ind Ly, < n — 2. Recall again that A%(2)-ind Ly; < ind Ly,.

Both cases imply that A?(2)-ind X <n — 1. O

3. Zero-dimensionality with respect to A(i)-trind. In this section, let A be any SSC-
family, and put C,(A(i)) = {X: A(i)-trind X < a} for i € {0,1,2,3,4}.

Question 1. Determine the class Co(A(i)), where i € {0,1,2,3,4}.
Proposition 1 (a) and Corollaries 2 and 3 easily imply the next statement.

Proposition 10. The following assertions hold.

(a) Co(A(0)) C Co(A(L)) € Co(A(3)) C Co(A(4)) and
Co(A(0)) € Co(A(2)) C Co(A(4))-

(b) For every i € {0,1,2,3,4} we have Co(A?(7)) C Co(A*(7)) C Co(A' (7)) and Co(A* (7)) C
Co(A%(1)).

(c) Co(A (7)) C Co(A(7)), where i € {0,1};

Co(AY (7)) C Co(A(i)), where i € {0,1,4};

Co(A2%(2)) C Co(A(7)), where i € {0,1,2,3,4}.

In particular, Co(A' (7)) = Co(A%*(i)) = Co(A*(7)), where i € {0,1}, and Co(A?(4)) =
Co(A*(4)).

Additionally, we have the following proposition.

Proposition 11. (a) Cy(A(3)) = Co(A(4)).
(b) Co(A*(0)) = Co(A*(1)) = Co(A*(2)) = Co(A*(3)) = Co(A°(4)).

Proof. (a) By Proposition 3.1 (a), it is sufficient to show that Co(A%(4)) C Co(A3(3)). Let
X € Cy(A3(4)) and M € Ax. Note that the subspace M of the space X is disconnected. So
there are clopen disjoint non-empty subsets M; and My of M such that M = M; U M,. Put
A = M, and observe that every = € M, can be separated from A in M by the empty set.
This implies that A(3)-ind X = 0.

(b) By Proposition 10 (a), it is sufficient to show that Cy(A3(4)) C Co(A3(0)). Let X €
Co(A3(4)) and M € A3 with [M| > 1. Note that X must be punctiform ([10]). Consider
M € A3, i.e. M is a compact subspace of X. Note that M is punctiform too. By [6, Theorem
1.4.5] we have ind M = 0. This implies that .43(0)-ind X = 0. O



SMALL SCATTERED TOPOLOGICAL INVARIANTS 219

We summarize the classes Co(A7(7)) \ {X: |X] < 1}, where i € {0,1,2,3,4}, and j €
{1,2,3,4} in the following table.

Table 2.
il 0 1 2 3 4

J

1 Z D Z, D D

2 Z Dt X Dh Dh

3 P P P P P

4 Z D, Y Dy, D
where

Z is the class of zero-dimensional spaces in the sense of ind with |X| > 1 (see Remark 1);

D, is the class of totally disconnected spaces with | X| > 1 (see |6, Definition 1.4.1] and
Remark 1);

Dy, is the class of hereditarily disconnected spaces with |X| > 1 (see [6, Definition 1.4.2],
Remark 1 and [13]);

P is the class of punctiform spaces with |X| > 1 (see |6, Definition 1.4.3], Remark 1 and
[10]);

D is the class of disconnected spaces;

Z, is the class of non-trivial spaces having at least one point at which the dimension ind

1S zero.

Remark 7. (a) Recall that Z C D, C D), C P and there are subspaces of the real plane
which exhibit the difference between the classes (see |6, Examples 1.4.6-8]).

(b) Note that Z C Z, C D and D, C D.

(c) Let X @Y be the free union of topological spaces X and Y, I the closed interval [0, 1]
and P a one-point space. Then observe that P& I € Z,\P, I &I € D\ Z,, the space
Z from |6, Example 1.4.8] is in P\ D and the Erdds’ space Hy from |6, Example 1.2.15]
isin Dy \ Z,.

(d) It follows from Proposition 10 (a) and (b) that 2 C X C Y C D, and Y C Z,.
Note also that every weakly 1-dimensional in the sense of ind space is in X \ Z (see
Proposition 9), the Erdos’ space Hy is in D; \ ) and the space P @ I from (c) is in
Z\ Y.

We have the following additional facts about the classes X and Y:

(i) if X e X, X' C X and |X'| > 1 then X' € &,

(i) if Y € Y, Y’ is a closed subset of Y and |Y’| > 1 then Y’ € );

(iii) X =Y = Z in the realm of locally compact spaces.

Problem 1. Describe the classes X and ) in the realm of separable metrizable spaces (resp.
metrizable spaces or topological Ts-spaces).

4. Countable unions of spaces of A(i)-trind < 0, i € {0,1,2,3,4}. Let A be any
SSC-family.
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Definition 4. A space X is said to be 0-Cy(A(i)), where i € {0,1,2,3,4}, if X = U;‘;l X;,
where X; € Cy(.A(7)) for each j.

Problem 2. Describe the class 0-Co(A(1)), where i € {0,1,2,3,4}.
We will restrict now our discussion to the realm of separable metrizable spaces.

Proposition 12. Let X be a separable completely metrizable o-Co(A?(i)) space, where
i € {0,1,2,3,4} and j € {1,2,3,4}. Then there is a metrizable compactification Y of X
such that Y is also o0-Co(A’(i)).

Proof. Recall (|6, Lemma 5.3.1]) that there is metrizable compactification ¥ of X such
that the remainder Y \ X is strongly countable-dimensional. Note that the space Y \ X is
0-Co(A?(7)). Hence, Y is also 0-Co(A’(i)). O

Remark 8. Let us recall [10] that the R. Pol’s metrizable compactum P is a compactification
of some complete A-strongly infinite-dimensional totally disconnected space P, with the
reminder P\ Py = ;- Px, where P is a finite-dimensional compactum for each k. Note
that P is 0-Co(A?(2)) for every i € {1,3,4} and every j € {1,2,3,4}, and for the pair: i =0
and j = 3. We note also that P is not 0-Co(A?(7)) for : = 0 and every j € {1,2,4}.

Question 2. Is P 0-Co(A*(2)) (resp. o-Co(A*(2)))?
The following statement is evident.

Lemma 1. Let Y be a metrizable compact space, X C Y and Y \ X = J;2, X;, where for
each i the set X; is compact and ind X; < co. Assume that M is a closed subset of Y. Then
either |[M N X| > 1 or M is strongly countable dimensional.

Lemma 2. Let X be a separable metrizable space, M C X, x,y € M and L,; a partition
of M between the points x,y. Then there is a partition Lx of X between x,y such that
LNM = Ly.

Proof. Let O, and O, be disjoint open subsets of M such that x € O,, y € O, and M\ (O, U
Oy) = L. Put L = Clx(LpyUO,)NClx (LpUO,). Note that L is a partition of the subspace
Clx M of X between the points z,y such that L " M = Ly,. By [6, Lemma 1.2.9] there is
a partition Ly of X between z,y such that Lx NCly M = L. Note that LyNM = Ly,. [

Proposition 13. Let Y be a metrizable compact space, X C' Y and Y\ X = J;°, X;, where
for each i the set X; is compact and ind X; < oco.
Assume that trt X = a # oo. Then

oty < wo+a+1, 1:foz<w§;
a+1, if @ > wi.

(One can omit 1 in the formula if « is an infinite limit ordinal.)

Proof. Apply induction on o > 0. Assume that o = 0. Consider a closed subset M of Y with
|M| > 1. By Lemma 1, we have two possibilities:

(a)o |IMNX|>1or (b)y M is strongly countable dimensional.

The case (a)g. Since trt X = 0, we have trt(M N X) = 0 and the empty set is a partition
of M N X between some points x,y of M N X. By Lemma 2, there is a partition L of M
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between the points z,y such that L C M \ X. Note that the space L is strongly countable
dimensional and hence trt L < wy (see [1]).

The case (b)y. Since M is strongly countable dimensional, we have trt M < wy. Note that
the both cases imply trt X < wgy + 1.

Assume that the statement is valid for all o < v > 1. Let now a = ~. Consider a closed
subset M of Y with |M| > 1. Again by Lemma 2, we have two possibilities:

(a)y M NX]|>1or (b), M is strongly countable dimensional.

The case (a),. Since trt X =+, we have trt(MNX) < 7. Hence, there is a partition Lynx
of M N X C M between some points z,y of M N X such that trt Ly;nx < 7. By Lemma 2
there is a partition L), of M between the points x,y such that Ly, N (M NX) = Lynx. Note
that Lynx = Ly N X and the space Ly \ Lynx = U;—(La N X;) is strongly countable
dimensional. Hence, by induction, we have trt Ly, < wo + trt Lynx +1 < wo + v+ 1. (Let
us observe that if 7 is an infinite limit ordinal then wy + trt Lyny + 1 < wo + 7.)

The case (b),. Since M is strongly countable dimensional, trt A/ < wy. Note that both
cases imply trt X < wy+ v+ 1.

Let us recall that if a@ > wg then wy + o = «. O

Corollary 4. Let X be a separable completely metrizable space and trt X = o # co. Then
there is a compactification Y of X such that

1, ifa<w?;
Y < wo + o+ 1.04 wg
a—+1, if a > wg.

(One can omit 1 in the formula if « is an infinite limit ordinal.)

Proof. Recall (|6, Lemma 5.3.1]) that there is a metrizable compactification Y of X such
that the remainder Y \ X is strongly countable dimensional. Now, apply Proposition 13 to
the space Y. O

Corollary 5. For any hereditarily disconnected separable completely metrizable space X
there is a metrizable compactification Y of X such that trtY < wqg+ 1.

Recall (see [11] (resp. [12])) that for each isolated countable infinite ordinal « there exists
an a-dimensional metrizable Cantor trind-manifold Y* (resp. trInd-manifold Z) which is
a disjoint union of countably many Fuclidean cubes and the irrationals. It follows now from
Proposition 13 that for each isolated countable infinite ordinal a, trt Y = trt Z¢ = wy + 1.

Problem 3. Is there a countable-dimensional separable metrizable space X such that
trt X > wp + 1 (and trt X # 00)?
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