V. Chatyrko, Ya. Hattori

SMALL SCATTERED TOPOLOGICAL INVARIANTS

Abstract

V. Chatyrko, Ya. Hattori. Small scattered topological invariants, Mat. Stud. 39 (2013), 212-222.

We present a unified approach to define dimension functions like trind, trind_{p}, trt and p . We show how some similar facts on these functions can be proved similarly. Moreover, several new classes of infinite-dimensional spaces close to the classes of countable-dimensional and σ-hereditarily disconnected ones are introduced. We prove a compactification theorem for these classes.

В. Чатырко, Я. Хаттори. Малье разреженные топологические инварианты // Мат. Студії. - 2013. - Т.39, №2. - С.212-222.

Мы предлагаем единый подход к определению таких размерностных функций, как trind, trind_{p}, trt и р. Мы показываем, как некоторые простые факты об этих функциях могут быть доказаны единообразно. Более того, вводится несколько новых классов бесконечномерных пространств близких к классам счётномерных пространств и σ-наследственно несвязных пространств. Мы также доказываем компактификационную теорему для этих классов.

1. Introduction. In [13] G. Steinke suggested and studied an integer valued inductive topological invariant, the separation dimension t. Recall that the separation dimension t for a topological space X is defined inductively as follows: $\mathrm{t} X=-1$ if and only if $X=\varnothing$; $\mathrm{t} X=0$ if $|X|=1$; let $|X|>1$ and n be an integer ≥ 0, if for each subset M of X with $|M|>1$ there exist distinct points x, y of M and a partition L_{M} in the subspace M of X between x and y such that $\mathrm{t} L_{M} \leq n-1$ then we write $\mathrm{t} X \leq n$. One of the main property of t is the following. If $\left\{X_{i}: i \in I\right\}$ is the family of all connected components of a non-empty space X then $\mathrm{t} X=\sup \left\{\mathrm{t} X_{i}: i \in I\right\}$. In particular, for any space X we have $\mathrm{t} X=0$ if and only if X is hereditarily disconnected.

Recall ([6]) that, the classes of strongly countable-dimensional metrizable compacta, countable-dimensional metrizable compacta and compact metrizable C-spaces are classical objects of infinite dimension theory. In [1] F. G. Arenas, V. A. Chatyrko and M. L. Puertas considered a natural transfinite extension of t , the topological invariant trt, and showed that each metrizable compact space X with $\operatorname{trt} X \neq \infty$ must be a C-space. Moreover, every strongly countable-dimensional metrizable compact space X has $\operatorname{trt} X \leq \omega_{0}$. However, there exist countable-dimensional metrizable compact spaces (namely, the infinite-dimensional Cantor manifolds) of dimension trt $>\omega_{0}$. Since the inequality $\operatorname{trt} X \leq \operatorname{trind} X$, where

[^0]trind is the small transfinite inductive dimension ([6]), holds for each T_{3}-space X, every countable-dimensional metrizable compact space X satisfies $\operatorname{trt} X<\omega_{1}$. Set
$$
\alpha_{0}=\sup \{\operatorname{trt} K: K \text { is a countable-dimensional metrizable compact space }\} .
$$

It is clear that $\alpha_{0} \leq \omega_{1}$ but the exact value of α_{0} is still unknown.
In [10] T. M. Radul introduced an ordinal valued topological invariant, the dimension p , by modifying the definition of trt: the subsets M of the space X are supposed to be compact. It is easy to see that for any space X we have $\mathrm{p} X=\sup \{\operatorname{trt} K: K$ is a compact subset of $X\}$ $\leq \operatorname{trt} X$. In [10] T. M. Radul proved that each σ-hereditarily disconnected hereditarily normal space X satisfies $\mathrm{p} X \neq \infty$. Recall (see [7] or [2]) that a space X is σ-hereditarily disconnected if X is a countable union of hereditarily disconnected subspaces. Since each zero-dimensional space in the sense of the small inductive dimension ind is hereditarily disconnected, each countable-dimensional in the sense of ind space is σ-hereditarily disconnected. Let us observe that for the subspace $K^{\omega_{0}}$ of the Hilbert cube $I^{\omega_{0}}$ consisting of points with finitely many non-zero coordinates (and so being strongly countable dimensional) we have $\mathrm{p} K^{\omega_{0}}=\omega_{0}$. Recall that $\operatorname{trt} K^{\omega_{0}}>\omega_{0}$ ([1]) but we do not know whether $\operatorname{trt} K^{\omega_{0}} \neq \infty$.

It is still unclear if each metrizable compact space X with $\operatorname{trt} X \neq \infty$ has to be σ-hereditarily disconnected. The well known R. Pol's example P ([9]) of a weakly infinitedimensional uncountable-dimensional metrizable compact space is a σ-hereditarily disconnected C-space, and hence by Radul's result trt $P \neq \infty$. (In fact, P can be constructed so that $\operatorname{trt} P=\omega_{0}$, see a remark in [1].) But it is unknown whether every compact metrizable C-space X is σ-hereditarily disconnected (resp. has $\operatorname{trt} X \neq \infty$).

In this paper we show that the dimension trind (as well as the transfinite inductive invariant trind_{p} from ([3])) can also be defined similarly to the definition of trt. One of the subjects of the paper is to unify proofs of some facts about the invariants trind, trind ${ }_{p}$, trt, p and introduce new classes of infinite-dimensional spaces close to the classes of countabledimensional spaces and σ-hereditarily disconnected ones. We prove a compactification theorem for these new classes. In particular, we show that, for any hereditarily disconnected separable completely metrizable space X there is a metrizable compactification Y of X such that $\operatorname{trt} Y \leq \omega_{0}+1$. Furthermore, for Renska's examples (see [11] (resp.[12])) of α-dimensional metrizable Cantor trind (resp. trInd)-manifolds, where α is any isolated countable ordinal, we have the values of trt are equal to $\omega_{0}+1$.

Our terminology follows [5] and [6].
2. Definitions and common properties. All considered topological spaces are assumed to be T_{3}-spaces. Let us fix for each space X a class \mathcal{A}_{X} of subsets of X. The family of all classes \mathcal{A}_{X} we denote by \mathcal{A} and call it a family of classes of subsets of spaces (in short, an SSC-family).

Definition 1. Let X be a space and \mathcal{A} be an SSC-family.
(a) The small inductive invariant $\mathcal{A}(0)$-ind of the space X, denoted by $\mathcal{A}(0)-\operatorname{ind}(X)$ is defined inductively as follows. $\mathcal{A}(0)-\operatorname{ind}(X)=-1$ if and only if $X=\varnothing ; \mathcal{A}(0)-\operatorname{ind}(X)=0$ if $|X|=1$. Let $|X|>1$ and n be an integer ≥ 0, if for each element M of \mathcal{A}_{X} with $|M|>1$ and for every pair (A, x), where A is a closed subset of M and $x \in M-A$, there is a partition L_{M} in the space M between x and A such that $\mathcal{A}(0)$-ind $L_{M} \leq n-1$ then we write $\mathcal{A}(0)$-ind $X \leq n$.
(b) The small inductive invariant $\mathcal{A}(1)$-ind of the space X, denoted by $\mathcal{A}(1)-\operatorname{ind}(X)$ is defined inductively as follows. $\mathcal{A}(1)-\operatorname{ind}(X)=-1$ if and only if $X=\varnothing ; \mathcal{A}(1)-\operatorname{ind}(X)=0$ if $|X|=1$. Let $|X|>1$ and n be an integer ≥ 0, if for each element M of \mathcal{A}_{X} with $|M|>1$ and for every pair (x, y) of distinct points of M there is a partition L_{M} in the space M between x and y such that $\mathcal{A}(1)$-ind $L_{M} \leq n-1$ then we write $\mathcal{A}(1)$-ind $X \leq n$.
(c) The small inductive invariant $\mathcal{A}(2)$-ind of the space X, denoted by $\mathcal{A}(2)-\operatorname{ind}(X)$ is defined inductively as follows. $\mathcal{A}(2)-\operatorname{ind}(X)=-1$ if and only if $X=\varnothing ; \mathcal{A}(2)-\operatorname{ind}(X)=0$ if $|X|=1$. Let $|X|>1$ and n be an integer ≥ 0, if for each element M of \mathcal{A}_{X} with $|M|>1$ there exists a point $x \in M$ possessing the following property: for every closed subset A of the space M with $x \notin A$ there is a partition L_{M} in the space M between x and A such that $\mathcal{A}(2)$-ind $L_{M} \leq n-1$ then we write $\mathcal{A}(2)$-ind $X \leq n$.
(d) The small inductive invariant $\mathcal{A}(3)$-ind of the space X, denoted by $\mathcal{A}(3)-\operatorname{ind}(X)$ is defined inductively as follows. $\mathcal{A}(3)-\operatorname{ind}(X)=-1$ if and only if $X=\varnothing ; \mathcal{A}(3)-\operatorname{ind}(X)=0$ if $|X|=1$. Let $|X|>1$ and n be an integer ≥ 0, if for each element M of \mathcal{A}_{X} with $|M|>1$ there exists a proper closed subset A of the space M possessing the following property: for every point $x \in M-A$ there is a partition L_{M} in the space M between x and A such that $\mathcal{A}(3)$-ind $L_{M} \leq n-1$ then we write $\mathcal{A}(3)$-ind $X \leq n$.
(e) The small inductive invariant $\mathcal{A}(4)$-ind of the space X, denoted by $\mathcal{A}(4)-\operatorname{ind}(X)$ is defined inductively as follows. $\mathcal{A}(4)-\operatorname{ind}(X)=-1$ if and only if $X=\varnothing ; \mathcal{A}(4)-\operatorname{ind}(X)=0$ if $|X|=1$. Let $|X|>1$ and n be an integer ≥ 0, if for each element M of \mathcal{A}_{X} with $|M|>1$ there exist distinct points x, y of M and a partition L_{M} in the space M between x and y such that $\mathcal{A}(4)$-ind $L_{M} \leq n-1$ then we write $\mathcal{A}(4)$-ind $X \leq n$.

The transfinite extension $\mathcal{A}(i)$-trind of the invariant $\mathcal{A}(i)$-trind is defined in the standard fashion, $i \in\{0,1,2,3,4\}$.

Let us introduce SSC-families $\mathcal{A}^{j}, j \in\{1,2,3,4\}$, as follows: for every space X put $\mathcal{A}_{X}^{1}=\{X\}, \mathcal{A}_{X}^{2}=2^{X}, \mathcal{A}_{X}^{3}=2_{\text {comp }}^{X}, \mathcal{A}_{X}^{4}=2_{\text {cl }}^{X}$, where 2^{X} (resp. $2_{\text {comp }}^{X}$ or $2_{\text {cl }}^{X}$) is the family of all (resp. compact or closed) subsets of X. Note that one can suggest many other SSCfamilies \mathcal{A} different from $\mathcal{A}^{j}, j \in\{1,2,3,4\}$.

Remark 1. Note that
(a) $\mathcal{A}^{1}(0)$-trind $X=\operatorname{trind} X$ and $\mathcal{A}^{1}(1)$-trind $X=\operatorname{trind}_{p} X([3])$;
(b) $\mathcal{A}^{2}(4)$-trind $X=\mathcal{A}^{4}(4)$-trind $X=\operatorname{trt} X$ ([1] or Corollary 2$)$;
(c) $\mathcal{A}^{3}(4)-\operatorname{trind} X=\mathrm{p} X([10])$.

The following statement is evidently valid for every SSC-family \mathcal{A} and every space X.
Proposition 1. (a) $\mathcal{A}(0)$-trind $X \geq \mathcal{A}(1)$-trind $X \geq \mathcal{A}(3)$-trind $X \geq \mathcal{A}(4)$-trind X and $\mathcal{A}(0)$-trind $X \geq \mathcal{A}(2)$-trind $X \geq \mathcal{A}(3)$-trind X.
(b) $\mathcal{A}(i)$-trind $X \leq \sup \left\{\mathcal{A}(i)\right.$-trind $\left.A: A \in \mathcal{A}_{X}\right\}$ for every $i \in\{0,1,2,3,4\}$, whenever $A \in$ \mathcal{A}_{A} for each $A \in \mathcal{A}_{X}$ with $|A|>1$.
(Note that the SSC-families $\mathcal{A}^{j}, j \in\{1,2,3,4\}$, satisfy this condition.)
Definition 2. We will say that an SSC-family \mathcal{A} possesses property $(*)_{1}$ (resp. $(*)_{2}$ or $\left.(*)_{3}\right)$ if for every space X and every subspace Y of X the following assertions hold:
$(*)_{1}$: for each $A_{Y} \in \mathcal{A}_{Y}$ there exists an element $A_{X} \in \mathcal{A}_{X}$ such that $A_{Y} \subset A_{X} ;$
$\left((*)_{2}:\right.$ for each $A_{Y} \in \mathcal{A}_{Y}$ we have $\mathrm{Cl}_{X}\left(A_{Y}\right) \in \mathcal{A}_{X}$, or $\left.(*)_{3}: \mathcal{A}_{Y} \subset \mathcal{A}_{X}\right)$.
Note that if an SSC-family \mathcal{A} possesses property $(*)_{2}$ or property $(*)_{3}$ then it possesses also property $(*)_{1}$.

Remark 2. The families $\mathcal{A}^{j}, j \in\{1,2,3,4\}$, possess property $(*)_{1}$. The families $\mathcal{A}^{j}, j \in$ $\{2,3,4\}$, possess property $(*)_{2}$. The families $\mathcal{A}^{j}, j \in\{2,3\}$, possess property $(*)_{3}$.

Proposition 2. Let an SSC-family \mathcal{A} possess the property $(*)_{1}$ (resp. $(*)_{2}$ or $\left.(*)_{3}\right)$. Then for every space X and every subspace Y of X we have
$\mathcal{A}(i)$-trind $X \geq \mathcal{A}(i)$-trind Y for $i \in\{0,1\}$ (resp. $i \in\{0,1,4\}$ or $i \in\{0,1,2,3,4\}$).
Proof. The case $(*)_{1}$. We will prove the statement only for $i=0$.
Let $\mathcal{A}(0)$-trind $X=\alpha \geq-1$. Note that for $\alpha=-1$ or for $|Y|=1$ the statement is valid. Apply induction on α. Consider the case: $\alpha \geq 0$ and $|Y| \geq 2$. Let $M_{Y} \in \mathcal{A}_{Y}$ with $\left|M_{Y}\right| \geq 2$. By the property $(*)_{1}$ there exists an element $M_{X} \in \mathcal{A}_{X}$ such that $M_{Y} \subset M_{X}$. Consider a point $x \in M_{Y}$ and a closed subset A_{Y} of the space M_{Y} such that $x \notin A_{Y}$. Choose any closed subset A_{X} of the space M_{X} such that $A_{Y}=A_{X} \cap M_{Y}$ and note that $x \notin A_{X}$. Since $\mathcal{A}(0)$-trind $X=\alpha$ there is a partition $L_{M_{X}}$ in the space M_{X} between x and A_{X} such that $\mathcal{A}(0)$-ind $L_{M_{X}}<\alpha$. Note that the set $L_{M_{Y}}=L_{M_{X}} \cap M_{Y}$ is a partition in the space M_{Y} between x and A_{Y}. By the inductive assumption we have $\mathcal{A}(0)$-ind $L_{M_{Y}} \leq \mathcal{A}(0)$-ind $L_{M_{X}}<\alpha$ and so $\mathcal{A}(0)$-trind $Y \leq \alpha$.

The case $(*)_{2}$. We need to prove the statement only for $i=4$ (see the sentence after Definition 2). Let $\mathcal{A}(4)$-trind $X=\alpha \geq-1$. Note that for $\alpha=-1$ or for $|Y|=1$ the statement is valid. Apply induction on α. Consider the case: $\alpha \geq 0$ and $|Y| \geq 2$. Let $M_{Y} \in \mathcal{A}_{Y}$ with $\left|M_{Y}\right| \geq 2$. By the property $(*)_{2}$ the set $M_{X}=\mathrm{Cl}_{X}\left(M_{Y}\right)$ is an element of \mathcal{A}_{X}. Since $\mathcal{A}(4)-$ trind $X=\alpha$ there exist distinct points x, y of M_{X} and a partition $L_{M_{X}}$ in the space M_{X} between x and y such that $\mathcal{A}(4)$-ind $L_{M_{X}}<\alpha$. It also implies that there exist open disjoint subsets U_{X} and V_{X} of the space M_{X} such that $x \in U_{X}, y \in V_{X}$ and $L_{M_{X}}=M_{X} \backslash\left(U_{X} \cup V_{X}\right)$. Choose a point $a \in U_{X} \cap M_{Y}$ and a point $b \in V_{X} \cap M_{Y}$ and note that the set $L_{M_{Y}}=L_{M_{X}} \cap M_{Y}$ is a partition between the points a and b in the space M_{Y}. By the inductive assumption we have $\mathcal{A}(4)$-ind $L_{M_{Y}} \leq \mathcal{A}(4)$-ind $L_{M_{X}}<\alpha$ and so $\mathcal{A}(4)$-ind $Y \leq \alpha$.

The case $(*)_{3}$ is trivial.
Applying Propositions 1 (b) and 2 we get such a statement.
Corollary 1. Let an SSC-family \mathcal{A} possess property $(*)_{1}$ (resp. $(*)_{2}$ or $\left.(*)_{3}\right)$, X be a space and $M(\mathcal{A}, X, i)=\sup \left\{\mathcal{A}(i)\right.$-trind $\left.A: A \in \mathcal{A}_{X}\right\}$. Then $\mathcal{A}(i)$-trind $X \geq M(\mathcal{A}, X, i)$ for $i \in$ $\{0,1\}$ (resp. $i \in\{0,1,4\}$ or $i \in\{0,1,2,3,4\}$). Moreover, $\mathcal{A}(i)$-trind $X=M(\mathcal{A}, X, i)$ for $i \in\{0,1\}$ (resp. $i \in\{0,1,4\}$ or $i \in\{0,1,2,3,4\}$), whenever $A \in \mathcal{A}_{A}$ for each $A \in \mathcal{A}_{X}$ with $|A|>1$.

Definition 3. We will say that an SSC-family \mathcal{A} is an upper bound of degree 1 (resp. degree 2 or degree 3) for an SSC-family \mathcal{A}^{\prime}, in short, $\mathcal{A} \geq{ }_{1} \mathcal{A}^{\prime}$ (resp. $\mathcal{A} \geq{ }_{2} \mathcal{A}^{\prime}$ or $\mathcal{A} \geq{ }_{3} \mathcal{A}^{\prime}$) if for every space X the following conditions hold:
(1) for each $A^{\prime} \in \mathcal{A}_{X}^{\prime}$ there exists an element $A \in \mathcal{A}_{X}$ such that $A^{\prime} \subset A$;
(2) for each $A^{\prime} \in \mathcal{A}_{X}^{\prime}$ we have $\mathrm{Cl}_{X}\left(A^{\prime}\right) \in \mathcal{A}_{X}$, or (3) $\mathcal{A}_{X}^{\prime} \subset \mathcal{A}_{X}$.

Note that if for SSC-families \mathcal{A} and \mathcal{A}^{\prime} we have $\mathcal{A} \geq_{2} \mathcal{A}^{\prime}$ or $\mathcal{A} \geq_{3} \mathcal{A}^{\prime}$ then we have also $\mathcal{A} \geq{ }_{1} \mathcal{A}^{\prime}$.

Remark 3. For every SSC-family \mathcal{A} we have that $\mathcal{A}^{1} \geq_{1} \mathcal{A}, \mathcal{A}^{4} \geq_{2} \mathcal{A}$ and $\mathcal{A}^{2} \geq_{3} \mathcal{A}$.
The following statement is evidently valid.
Proposition 3. Let \mathcal{A} and \mathcal{A}^{\prime} be SSC-families such that $\mathcal{A} \geq{ }_{3} \mathcal{A}^{\prime}$. Then $\mathcal{A}(i)$-trind $X \geq$ $\mathcal{A}^{\prime}(i)$-trind X for every space X and every $i \in\{0,1,2,3,4\}$.

Corollary 2. For every space X and every $i \in\{0,1,2,3,4\}$ we have $\mathcal{A}^{1}(i)$-trind $X \leq \mathcal{A}^{4}(i)$ trind $X \leq \mathcal{A}^{2}(i)$-trind X and $\mathcal{A}^{3}(i)$-trind $X \leq \mathcal{A}^{4}(i)$-trind X.

Proposition 4. Let \mathcal{A} and \mathcal{A}^{\prime} be $S S C$-families such that the family \mathcal{A} possesses property $(*)_{1}$ (resp. $\left.(*)_{2}\right)$ and $\mathcal{A} \geq{ }_{1} \mathcal{A}^{\prime}\left(\right.$ resp. $\left.\mathcal{A} \geq{ }_{2} \mathcal{A}^{\prime}\right)$. Then $\mathcal{A}(i)$-trind $X \geq \mathcal{A}^{\prime}(i)$-trind X for every space X, where $i \in\{0,1\}$ (resp. $i \in\{0,1,4\}$).

Proof. The case $(*)_{1}$ and $\mathcal{A} \geq_{1} \mathcal{A}^{\prime}$. We will prove the statement only for $i=0$. Let $\mathcal{A}(0)$-trind $X=\alpha \geq-1$. Note that for $\alpha=-1$ or for $|X|=1$ the statement is valid. Apply induction on α. Consider the case: $\alpha \geq 0$ and $|X| \geq 2$. Let $M^{\prime} \in \mathcal{A}_{X}^{\prime}$ with $\left|M^{\prime}\right| \geq 2$. Since $\mathcal{A} \geq_{1} \mathcal{A}^{\prime}$, there exists $M \in \mathcal{A}_{X}$ such that $M^{\prime} \subset M$. Consider a point $x \in M^{\prime}$ and a closed subset A^{\prime} of the space M^{\prime} such that $x \notin A^{\prime}$. Choose any closed subset A of the space M such that $A^{\prime}=A \cap M^{\prime}$ and note that $x \notin A$. Since $\mathcal{A}(0)$-trind $X=\alpha$, there is a partition L_{M} in the space M between x and A such that $\mathcal{A}(0)$-ind $L_{M}<\alpha$. Note that the set $L_{M^{\prime}}=L_{M} \cap M^{\prime}$ is a partition in the space M^{\prime} between x and A^{\prime}. It follows from Proposition 2 that $\mathcal{A}(0)$-ind $L_{M^{\prime}} \leq \mathcal{A}(0)$-ind L_{M}. Then by the inductive assumption we have $\mathcal{A}^{\prime}(0)$-ind $L_{M^{\prime}} \leq \mathcal{A}(0)$-ind $L_{M^{\prime}}<\alpha$ and so $\mathcal{A}^{\prime}(0)$-trind $X \leq \alpha$.

The case $(*)_{2}$ and $\mathcal{A} \geq_{2} \mathcal{A}^{\prime}$. We need to prove the statement only for $i=4$ (see the sentences after Definitions 2 and 3). Let $\mathcal{A}(4)$-trind $X=\alpha \geq-1$. Note that for $\alpha=-1$ or for $|X|=1$ the statement is valid. Apply induction on α. Consider the case: $\alpha \geq 0$ and $|X| \geq 2$. Let $M^{\prime} \in \mathcal{A}^{\prime}$ with $\left|M^{\prime}\right| \geq 2$. Since $\mathcal{A} \geq_{2} \mathcal{A}^{\prime}$ the set $M=\mathrm{Cl}_{X}\left(M^{\prime}\right)$ is an element of \mathcal{A}_{X}. Recall that $\mathcal{A}(4)$-trind $X=\alpha$. So there exist distinct points x, y of M and a partition L_{M} in the space M between x and y such that $\mathcal{A}(4)$-ind $L_{M}<\alpha$. This also implies that there exist open disjoint subsets U and V of the space M such that $x \in U, y \in V$ and $L_{M}=M \backslash(U \cup V)$. Choose a point $a \in M^{\prime} \cap U$ and a point $b \in M^{\prime} \cap V$ and note that the set $L_{M^{\prime}}=L_{M} \cap M^{\prime}$ is a partition between the points a and b in the space M^{\prime}. It follows from Proposition 2 that $\mathcal{A}(4)$-ind $L_{M^{\prime}} \leq \mathcal{A}(4)$-ind L_{M}. By the inductive assumption we have $\mathcal{A}^{\prime}(4)$-ind $L_{M^{\prime}} \leq \mathcal{A}(4)$-ind $L_{M^{\prime}}<\alpha$ and so $\mathcal{A}^{\prime}(4)$-ind $X \leq \alpha$.

Applying additionally Remarks 2 and 3 we get the following statement.
Corollary 3. For every SSC-family \mathcal{A} and for every space X we have the following inequalities:
(a) $\mathcal{A}^{1}(i)$-trind $X \geq \mathcal{A}(i)$-trind X, where $i \in\{0,1\}$;
(b) $\mathcal{A}^{4}(i)$-trind $X \geq \mathcal{A}(i)$-trind X, where $i \in\{0,1,4\}$;
(c) $\mathcal{A}^{2}(i)$-trind $X \geq \mathcal{A}(i)$-trind X, where $i \in\{0,1,2,3,4\}$.

In particular, $\mathcal{A}^{1}(i)$-trind $X=\mathcal{A}^{2}(i)$-trind $X=\mathcal{A}^{4}(i)$-trind X, where $i \in\{0,1\}$, and $\mathcal{A}^{2}(4)$-trind $X=\mathcal{A}^{4}(4)$-trind X.

Now we have the following table of the functions $\mathcal{A}^{j}(i)$-trind, where $i \in\{0,1,2,3,4\}$, and $j \in\{1,2,3,4\}$; the dots in the cells of coordinates i, j replace the notations of invariants $\mathcal{A}^{j}(i)-t$ trind's.

Table 1.

	i	0	1	2	3
j				4	
1	trind	trind_{p}	\cdot	\cdot	\cdot
2	trind	trind_{p}	\cdot	\cdot	trt
3	\cdot	\cdot	\cdot	\cdot	p
4		trind	trind_{p}	\cdot	\cdot
trt					

Let us mention some relationship between the table invariants. We start with equalities.
Proposition 5. For each metrizable locally compact space X we have $\mathcal{A}^{j}(i)$-ind $X=$ ind X for every $j \in\{2,4\}$ and every $i \in\{0,1,2,3,4\}$.
Proof. Recall [13] that for each metrizable locally compact space X we have $\mathrm{t} X=$ ind X. Hence the statement follows from Proposition 1.

Proposition 6. For every metrizable space X with $\mathrm{p}(X)<\omega_{0}$ and every $i \in\{0,1,2,3,4\}$, we have $\mathcal{A}^{3}(i)$-ind $X=\mathrm{p}(X)$.
Proof. By Proposition 1 and Remark 1 it is sufficient to show that $\mathcal{A}^{3}(0)$-ind $X \leq \mathrm{p}(X)$. Recall [10] that $\mathrm{p}(X)=\sup \{t(A)$: A is compact subset of $X\}$. Since $\mathrm{p}(X)<\omega_{0}$, there exists a compact subset A of X with $|A| \geq 2$ such that $\mathrm{p}(X)=\mathrm{t}(A)$. Note ([13]) that ind $A=\mathrm{t}(A)$. It follows from Remark 1 (a) and Corollary 3 (a) that ind $A=\mathcal{A}^{1}(0)$-ind $A \geq$ $\mathcal{A}^{3}(0)$-ind A. Hence $\mathrm{p}(X)=\mathrm{t}(A)=$ ind $A \geq \mathcal{A}^{3}(0)$-ind A.

The following statement is obvious.
Proposition 7. For every compact space X we have $\mathcal{A}^{3}(i)$-trind $X=\mathcal{A}^{4}(i)$-trind X, where $i \in\{0,1,2,3,4\}$.

We continue with inequalities.
Remark 4. Recall ([8]) that for each integer $n \geq 1$ there exists a totally disconnected separable metrizable space X_{n} such that ind $X_{n}=n$. Note that $\operatorname{ind}_{p} X_{n}=\mathcal{A}^{3}(0)$-ind $X_{n}=0$.

Remark 5. Recall ([4]) that there exists a compact space Y with ind $Y=\operatorname{ind}_{p} Y=2$ such that each its component is homeomorphic to the closed interval $[0,1]$. Hence, $\mathrm{t} Y=1$. Moreover, $\mathcal{A}^{1}(2)$-ind $Y=1$ and $\mathcal{A}^{1}(3)$-ind $Y=0$.

Proposition 8. For every strongly countable-dimensional compact metrizable space X we have $\mathcal{A}^{4}(2)$-trind $X=\mathcal{A}^{3}(2)$-trind $X \leq \omega_{0}$.

Proof. Since every strongly countable-dimensional compact metrizable space has a nonempty open subset with ind $<\infty$, we get the statement.
Remark 6. Recall (cf. [6]) that for each $\alpha<\omega_{1}$ there exists a strongly countable-dimensional compact metrizable space X_{α} with trind $X_{\alpha}=\alpha$.

Let X be a space and $X_{(k)}$ be the set of all points of X that have arbitrary small neighborhoods with boundaries of dimension ind $\leq k-1$, where k is an integer ≥ 0. We call the space X weakly n-dimensional in the sense of ind if ind $X=n$ and $\operatorname{ind}\left(X \backslash X_{(n-1)}\right)<n$.

Recall (cf. [8]) that for each integer $n \geq 1$ there exists a weakly n-dimensional in the sense of ind separable metrizable space Y_{n}. Note that the subset $Y_{n} \backslash\left(Y_{n}\right)_{n-1}$ of Y_{n} can not be closed. However there is a metrizable weakly 1-dimensional in the sense of ind space R such that $\left|R \backslash R_{(0)}\right|=1$ (cf. [6, Problem 4.1.B]). This implies that $\mathcal{A}^{2}(1)$-ind $R=\mathcal{A}^{2}(2)$-ind $R=0$.

Proposition 9. Let X be a weakly n-dimensional in the sense of ind space, where $n \geq 1$. Then $\mathcal{A}^{2}(2)$-ind $X \leq n-1$.

Proof. Consider a subset M of X with $|M| \geq 2$.
If $M \subset X \backslash X_{(n-1)}$ then ind $M \leq n-1$. So for each point and any closed subset A of M such that $x \notin A$ there exists a partition L_{M} in M between x and A with ind $L_{M} \leq n-2$. Note that $\mathcal{A}^{2}(2)$-ind $L_{M} \leq$ ind L_{M} by Proposition 1.

If there is a point $x \in M \backslash\left(X \backslash X_{(n-1)}\right)$, so x has arbitrary small neighborhoods with at most ($n-2$)-dimensional in the sense of ind boundaries. This implies that for every closed subset A of M such that $x \notin A$ there exists a partition L_{M} in M between x and A with ind $L_{M} \leq n-2$. Recall again that $\mathcal{A}^{2}(2)$-ind $L_{M} \leq$ ind L_{M}.

Both cases imply that $\mathcal{A}^{2}(2)$-ind $X \leq n-1$.
3. Zero-dimensionality with respect to $\mathcal{A}(i)$-trind. In this section, let \mathcal{A} be any SSCfamily, and put $\mathcal{C}_{\alpha}(\mathcal{A}(i))=\{X: \mathcal{A}(i)$-trind $X \leq \alpha\}$ for $i \in\{0,1,2,3,4\}$.

Question 1. Determine the class $\mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1,2,3,4\}$.
Proposition 1 (a) and Corollaries 2 and 3 easily imply the next statement.
Proposition 10. The following assertions hold.
(a) $\mathcal{C}_{0}(\mathcal{A}(0)) \subset \mathcal{C}_{0}(\mathcal{A}(1)) \subset \mathcal{C}_{0}(\mathcal{A}(3)) \subset \mathcal{C}_{0}(\mathcal{A}(4))$ and $\mathcal{C}_{0}(\mathcal{A}(0)) \subset \mathcal{C}_{0}(\mathcal{A}(2)) \subset \mathcal{C}_{0}(\mathcal{A}(4))$.
(b) For every $i \in\{0,1,2,3,4\}$ we have $\mathcal{C}_{0}\left(\mathcal{A}^{2}(i)\right) \subset \mathcal{C}_{0}\left(\mathcal{A}^{4}(i)\right) \subset \mathcal{C}_{0}\left(\mathcal{A}^{1}(i)\right)$ and $\mathcal{C}_{0}\left(\mathcal{A}^{4}(i)\right) \subset$ $\mathcal{C}_{0}\left(\mathcal{A}^{3}(i)\right)$.
(c) $\mathcal{C}_{0}\left(\mathcal{A}^{1}(i)\right) \subset \mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1\}$;
$\mathcal{C}_{0}\left(\mathcal{A}^{4}(i)\right) \subset \mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1,4\} ;$
$\mathcal{C}_{0}\left(\mathcal{A}^{2}(i)\right) \subset \mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1,2,3,4\}$.
In particular, $\mathcal{C}_{0}\left(\mathcal{A}^{1}(i)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{2}(i)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{4}(i)\right)$, where $i \in\{0,1\}$, and $\mathcal{C}_{0}\left(\mathcal{A}^{2}(4)\right)=$ $\mathcal{C}_{0}\left(\mathcal{A}^{4}(4)\right)$.

Additionally, we have the following proposition.
Proposition 11. (a) $\mathcal{C}_{0}(\mathcal{A}(3))=\mathcal{C}_{0}(\mathcal{A}(4))$.
(b) $\mathcal{C}_{0}\left(\mathcal{A}^{3}(0)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{3}(1)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{3}(2)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{3}(3)\right)=\mathcal{C}_{0}\left(\mathcal{A}^{3}(4)\right)$.

Proof. (a) By Proposition 3.1 (a), it is sufficient to show that $\mathcal{C}_{0}\left(\mathcal{A}^{3}(4)\right) \subset \mathcal{C}_{0}\left(\mathcal{A}^{3}(3)\right)$. Let $X \in \mathcal{C}_{0}\left(\mathcal{A}^{3}(4)\right)$ and $M \in \mathcal{A}_{X}$. Note that the subspace M of the space X is disconnected. So there are clopen disjoint non-empty subsets M_{1} and M_{2} of M such that $M=M_{1} \cup M_{2}$. Put $A=M_{1}$ and observe that every $x \in M_{2}$ can be separated from A in M by the empty set. This implies that $\mathcal{A}(3)$-ind $X=0$.
(b) By Proposition 10 (a), it is sufficient to show that $\mathcal{C}_{0}\left(\mathcal{A}^{3}(4)\right) \subset \mathcal{C}_{0}\left(\mathcal{A}^{3}(0)\right)$. Let $X \in$ $\mathcal{C}_{0}\left(\mathcal{A}^{3}(4)\right)$ and $M \in \mathcal{A}_{X}^{3}$ with $|M|>1$. Note that X must be punctiform ([10]). Consider $M \in \mathcal{A}_{X}^{3}$, i.e. M is a compact subspace of X. Note that M is punctiform too. By [6, Theorem 1.4.5] we have ind $M=0$. This implies that $\mathcal{A}^{3}(0)$-ind $X=0$.

We summarize the classes $\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right) \backslash\{X:|X| \leq 1\}$, where $i \in\{0,1,2,3,4\}$, and $j \in$ $\{1,2,3,4\}$ in the following table.

Table 2.

	i	0	1	2	3
j					
1	\mathcal{Z}	\mathcal{D}_{t}	\mathcal{Z}_{p}	\mathcal{D}	\mathcal{D}
2	\mathcal{Z}	\mathcal{D}_{t}	\mathcal{X}	\mathcal{D}_{h}	\mathcal{D}_{h}
3	\mathcal{P}	\mathcal{P}	\mathcal{P}	\mathcal{P}	\mathcal{P}
4	\mathcal{Z}	\mathcal{D}_{t}	\mathcal{Y}	\mathcal{D}_{h}	\mathcal{D}_{h}

where
\mathcal{Z} is the class of zero-dimensional spaces in the sense of ind with $|X|>1$ (see Remark 1);
\mathcal{D}_{t} is the class of totally disconnected spaces with $|X|>1$ (see [6, Definition 1.4.1] and Remark 1);
\mathcal{D}_{h} is the class of hereditarily disconnected spaces with $|X|>1$ (see [6, Definition 1.4.2], Remark 1 and [13]);
\mathcal{P} is the class of punctiform spaces with $|X|>1$ (see [6, Definition 1.4.3], Remark 1 and [10]);
\mathcal{D} is the class of disconnected spaces;
\mathcal{Z}_{p} is the class of non-trivial spaces having at least one point at which the dimension ind is zero.

Remark 7. (a) Recall that $\mathcal{Z} \subset \mathcal{D}_{t} \subset \mathcal{D}_{h} \subset \mathcal{P}$ and there are subspaces of the real plane which exhibit the difference between the classes (see [6, Examples 1.4.6-8]).
(b) Note that $\mathcal{Z} \subset \mathcal{Z}_{p} \subset \mathcal{D}$ and $\mathcal{D}_{h} \subset \mathcal{D}$.
(c) Let $X \oplus Y$ be the free union of topological spaces X and Y, I the closed interval $[0,1]$ and P a one-point space. Then observe that $P \oplus I \in \mathcal{Z}_{p} \backslash \mathcal{P}, I \oplus I \in \mathcal{D} \backslash \mathcal{Z}_{p}$, the space Z from [6, Example 1.4.8] is in $\mathcal{P} \backslash D$ and the Erdös' space H_{0} from [6, Example 1.2.15] is in $\mathcal{D}_{t} \backslash \mathcal{Z}_{p}$.
(d) It follows from Proposition 10 (a) and (b) that $\mathcal{Z} \subset \mathcal{X} \subset \mathcal{Y} \subset \mathcal{D}_{h}$ and $\mathcal{Y} \subset \mathcal{Z}_{p}$. Note also that every weakly 1-dimensional in the sense of ind space is in $\mathcal{X} \backslash \mathcal{Z}$ (see Proposition 9), the Erdös' space H_{0} is in $\mathcal{D}_{t} \backslash \mathcal{Y}$ and the space $P \oplus I$ from (c) is in $\mathcal{Z}_{p} \backslash \mathcal{Y}$.

We have the following additional facts about the classes \mathcal{X} and \mathcal{Y} :
(i) if $X \in \mathcal{X}, X^{\prime} \subset X$ and $\left|X^{\prime}\right|>1$ then $X^{\prime} \in \mathcal{X}$;
(ii) if $Y \in \mathcal{Y}, Y^{\prime}$ is a closed subset of Y and $\left|Y^{\prime}\right|>1$ then $Y^{\prime} \in \mathcal{Y}$;
(iii) $\mathcal{X}=\mathcal{Y}=\mathcal{Z}$ in the realm of locally compact spaces.

Problem 1. Describe the classes \mathcal{X} and \mathcal{Y} in the realm of separable metrizable spaces (resp. metrizable spaces or topological T_{3}-spaces).
4. Countable unions of spaces of $\mathcal{A}(i)$-trind $\leq 0, \quad i \in\{0,1,2,3,4\}$. Let \mathcal{A} be any SSC-family.

Definition 4. A space X is said to be $\sigma-\mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1,2,3,4\}$, if $X=\bigcup_{j=1}^{\infty} X_{j}$, where $X_{j} \in \mathcal{C}_{0}(\mathcal{A}(i))$ for each j.

Problem 2. Describe the class $\sigma-\mathcal{C}_{0}(\mathcal{A}(i))$, where $i \in\{0,1,2,3,4\}$.
We will restrict now our discussion to the realm of separable metrizable spaces.
Proposition 12. Let X be a separable completely metrizable $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$ space, where $i \in\{0,1,2,3,4\}$ and $j \in\{1,2,3,4\}$. Then there is a metrizable compactification Y of X such that Y is also $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$.

Proof. Recall ([6, Lemma 5.3.1]) that there is metrizable compactification Y of X such that the remainder $Y \backslash X$ is strongly countable-dimensional. Note that the space $Y \backslash X$ is $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$. Hence, Y is also $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$.

Remark 8. Let us recall [10] that the R. Pol's metrizable compactum P is a compactification of some complete A-strongly infinite-dimensional totally disconnected space P_{0} with the reminder $P \backslash P_{0}=\bigcup_{k=1}^{\infty} P_{k}$, where P_{k} is a finite-dimensional compactum for each k. Note that P is $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$ for every $i \in\{1,3,4\}$ and every $j \in\{1,2,3,4\}$, and for the pair: $i=0$ and $j=3$. We note also that P is not $\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{j}(i)\right)$ for $i=0$ and every $j \in\{1,2,4\}$.

Question 2. Is $P \sigma-\mathcal{C}_{0}\left(\mathcal{A}^{2}(2)\right)\left(\right.$ resp. $\left.\sigma-\mathcal{C}_{0}\left(\mathcal{A}^{4}(2)\right)\right)$?
The following statement is evident.
Lemma 1. Let Y be a metrizable compact space, $X \subset Y$ and $Y \backslash X=\bigcup_{i=1}^{\infty} X_{i}$, where for each i the set X_{i} is compact and ind $X_{i}<\infty$. Assume that M is a closed subset of Y. Then either $|M \cap X|>1$ or M is strongly countable dimensional.

Lemma 2. Let X be a separable metrizable space, $M \subset X, x, y \in M$ and L_{M} a partition of M between the points x, y. Then there is a partition L_{X} of X between x, y such that $L \cap M=L_{M}$.

Proof. Let O_{x} and O_{y} be disjoint open subsets of M such that $x \in O_{x}, y \in O_{y}$ and $M \backslash\left(O_{x} \cup\right.$ $\left.O_{y}\right)=L_{M}$. Put $L=\mathrm{Cl}_{X}\left(L_{M} \cup O_{x}\right) \cap \mathrm{Cl}_{X}\left(L_{M} \cup O_{y}\right)$. Note that L is a partition of the subspace $\mathrm{Cl}_{X} M$ of X between the points x, y such that $L \cap M=L_{M}$. By [6, Lemma 1.2.9] there is a partition L_{X} of X between x, y such that $L_{X} \cap \mathrm{Cl}_{X} M=L$. Note that $L_{X} \cap M=L_{M}$.

Proposition 13. Let Y be a metrizable compact space, $X \subset Y$ and $Y \backslash X=\bigcup_{i=1}^{\infty} X_{i}$, where for each i the set X_{i} is compact and ind $X_{i}<\infty$.

Assume that $\operatorname{trt} X=\alpha \neq \infty$. Then

$$
\operatorname{trt} Y \leq \begin{cases}\omega_{0}+\alpha+1, & \text { if } \alpha<\omega_{0}^{2} \\ \alpha+1, & \text { if } \alpha \geq \omega_{0}^{2}\end{cases}
$$

(One can omit 1 in the formula if α is an infinite limit ordinal.)
Proof. Apply induction on $\alpha \geq 0$. Assume that $\alpha=0$. Consider a closed subset M of Y with $|M|>1$. By Lemma 1, we have two possibilities:
$(a)_{0}|M \cap X|>1$ or $(b)_{0} M$ is strongly countable dimensional.
The case $(a)_{0}$. Since $\operatorname{trt} X=0$, we have $\operatorname{trt}(M \cap X)=0$ and the empty set is a partition of $M \cap X$ between some points x, y of $M \cap X$. By Lemma 2, there is a partition L of M
between the points x, y such that $L \subset M \backslash X$. Note that the space L is strongly countable dimensional and hence $\operatorname{trt} L \leq \omega_{0}$ (see [1]).

The case $(b)_{0}$. Since M is strongly countable dimensional, we have $\operatorname{trt} M \leq \omega_{0}$. Note that the both cases imply $\operatorname{trt} X \leq \omega_{0}+1$.

Assume that the statement is valid for all $\alpha<\gamma \geq 1$. Let now $\alpha=\gamma$. Consider a closed subset M of Y with $|M|>1$. Again by Lemma 2, we have two possibilities:
$(a)_{\gamma}|M \cap X|>1$ or $(b)_{\gamma} M$ is strongly countable dimensional.
The case $(a)_{\gamma}$. Since $\operatorname{trt} X=\gamma$, we have $\operatorname{trt}(M \cap X) \leq \gamma$. Hence, there is a partition $L_{M \cap X}$ of $M \cap X \subset M$ between some points x, y of $M \cap X$ such that trt $L_{M \cap X}<\gamma$. By Lemma 2 there is a partition L_{M} of M between the points x, y such that $L_{M} \cap(M \cap X)=L_{M \cap X}$. Note that $L_{M \cap X}=L_{M} \cap X$ and the space $L_{M} \backslash L_{M \cap X}=\bigcup_{i=1}^{\infty}\left(L_{M} \cap X_{i}\right)$ is strongly countable dimensional. Hence, by induction, we have $\operatorname{trt} L_{M} \leq \omega_{0}+\operatorname{trt} L_{M \cap X}+1<\omega_{0}+\gamma+1$. (Let us observe that if γ is an infinite limit ordinal then $\omega_{0}+\operatorname{trt} L_{M \cap X}+1<\omega_{0}+\gamma$.)

The case $(b)_{\gamma}$. Since M is strongly countable dimensional, $\operatorname{trt} M \leq \omega_{0}$. Note that both cases imply trt $X \leq \omega_{0}+\gamma+1$.

Let us recall that if $\alpha \geq \omega_{0}^{2}$ then $\omega_{0}+\alpha=\alpha$.
Corollary 4. Let X be a separable completely metrizable space and $\operatorname{trt} X=\alpha \neq \infty$. Then there is a compactification Y of X such that

$$
\operatorname{trt} Y \leq \begin{cases}\omega_{0}+\alpha+1, & \text { if } \alpha<\omega_{0}^{2} \\ \alpha+1, & \text { if } \alpha \geq \omega_{0}^{2}\end{cases}
$$

(One can omit 1 in the formula if α is an infinite limit ordinal.)
Proof. Recall ([6, Lemma 5.3.1]) that there is a metrizable compactification Y of X such that the remainder $Y \backslash X$ is strongly countable dimensional. Now, apply Proposition 13 to the space Y.

Corollary 5. For any hereditarily disconnected separable completely metrizable space X there is a metrizable compactification Y of X such that $\operatorname{trt} Y \leq \omega_{0}+1$.

Recall (see [11] (resp. [12])) that for each isolated countable infinite ordinal α there exists an α-dimensional metrizable Cantor trind-manifold Y^{α} (resp. trInd-manifold Z^{α}) which is a disjoint union of countably many Euclidean cubes and the irrationals. It follows now from Proposition 13 that for each isolated countable infinite ordinal $\alpha, \operatorname{trt} Y^{\alpha}=\operatorname{trt} Z^{\alpha}=\omega_{0}+1$.

Problem 3. Is there a countable-dimensional separable metrizable space X such that $\operatorname{trt} X>\omega_{0}+1($ and $\operatorname{trt} X \neq \infty)$?

REFERENCES

1. F.G. Arenas, V.A. Chatyrko, M.L. Puertas, Transfinite extension of Steinke's dimension, Acta Math. Hungar., 88 (2000), №1-2, 105-112.
2. T. Banakh, R. Cauty, On universality of countable and weak products of sigma hereditarily disconnected spaces, Fund. Math., 167 (2001), 97-109.
3. V.A. Chatyrko, Ordinal products of topological spaces, Fund. Math., 144 (1994), 85-117.
4. V.A. Chatyrko, On properties of subsets of $\left[0, \omega_{c}\right] \times I$, Q \& A in General Topology, 26 (2008), 97-104.
5. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
6. R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
7. J. Krasinkewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology, Banach Center Publ. 18, PWN, 1986, 377-406.
8. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001.
9. R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. AMS, 82 (1981), 634-636.
10. T.M. Radul, On classification of sigma hereditary disconnected spaces, Mat. Stud. 26 (2006), №1, 97100.
11. M. Renska, On Cantor manifolds for the large transfinite dimension, Topology Appl., 112 (2001), 1-11.
12. M. Renska, On Cantor manifolds for the small transfinite dimension, Commentationes Mathematicae, XLVI (2006), №2, 163-168.
13. G. Steinke, A new dimension by means of separating sets, Arch. Math., 40 (1983), 273-282.

Department of Mathematics, Linkoping University, Sweden
vitja@mai.liu.se
Department of Mathematics
Shimane University, Matsue, Japan
hattori@riko.shimane-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: 54F45.
 Keywords: small transfinite inductive dimension, separation dimension, countable-dimensional spaces, σ-hereditarily disconnected spaces.

