УДК 517.537.72

V. CHATYRKO, YA. HATTORI

SMALL SCATTERED TOPOLOGICAL INVARIANTS

V. Chatyrko, Ya. Hattori. Small scattered topological invariants, Mat. Stud. 39 (2013), 212–222.

We present a unified approach to define dimension functions like trind, trind_p, trt and p. We show how some similar facts on these functions can be proved similarly. Moreover, several new classes of infinite-dimensional spaces close to the classes of countable-dimensional and σ -hereditarily disconnected ones are introduced. We prove a compactification theorem for these classes.

В. Чатырко, Я. Хаттори. *Малые разреженные топологические инварианты* // Мат. Студії. – 2013. – Т.39, №2. – С.212–222.

Мы предлагаем единый подход к определению таких размерностных функций, как trind, trind_p, trt и p. Мы показываем, как некоторые простые факты об этих функциях могут быть доказаны единообразно. Более того, вводится несколько новых классов бесконечномерных пространств близких к классам счётномерных пространств и σ -наследственно несвязных пространств. Мы также доказываем компактификационную теорему для этих классов.

1. Introduction. In [13] G. Steinke suggested and studied an integer valued inductive topological invariant, the separation dimension t. Recall that the separation dimension t for a topological space X is defined inductively as follows: tX = -1 if and only if $X = \emptyset$; tX = 0 if |X| = 1; let |X| > 1 and n be an integer ≥ 0 , if for each subset M of X with |M| > 1 there exist distinct points x, y of M and a partition L_M in the subspace M of X between x and y such that $tL_M \leq n-1$ then we write $tX \leq n$. One of the main property of t is the following. If $\{X_i: i \in I\}$ is the family of all connected components of a non-empty space X then $tX = \sup\{tX_i: i \in I\}$. In particular, for any space X we have tX = 0 if and only if X is hereditarily disconnected.

Recall ([6]) that, the classes of strongly countable-dimensional metrizable compacta, countable-dimensional metrizable compacta and compact metrizable C-spaces are classical objects of infinite dimension theory. In [1] F. G. Arenas, V. A. Chatyrko and M. L. Puertas considered a natural transfinite extension of t, the topological invariant trt, and showed that each metrizable compact space X with $\operatorname{trt} X \neq \infty$ must be a C-space. Moreover, every strongly countable-dimensional metrizable compact space X has $\operatorname{trt} X \leq \omega_0$. However, there exist countable-dimensional metrizable compact spaces (namely, the infinite-dimensional Cantor manifolds) of dimension $\operatorname{trt} > \omega_0$. Since the inequality $\operatorname{trt} X \leq \operatorname{trind} X$, where

2010 Mathematics Subject Classification: 54F45.

Keywords: small transfinite inductive dimension, separation dimension, countable-dimensional spaces, σ -hereditarily disconnected spaces.

trind is the small transfinite inductive dimension ([6]), holds for each T_3 -space X, every countable-dimensional metrizable compact space X satisfies trt $X < \omega_1$. Set

 $\alpha_0 = \sup\{\operatorname{trt} K : K \text{ is a countable-dimensional metrizable compact space}\}.$

It is clear that $\alpha_0 \leq \omega_1$ but the exact value of α_0 is still unknown.

In [10] T. M. Radul introduced an ordinal valued topological invariant, the dimension P, by modifying the definition of trt: the subsets M of the space X are supposed to be compact. It is easy to see that for any space X we have $PX = \sup\{\operatorname{trt} K: K \text{ is a compact subset of } X\} \leq \operatorname{trt} X$. In [10] T. M. Radul proved that each σ -hereditarily disconnected hereditarily normal space X satisfies $PX \neq \infty$. Recall (see [7] or [2]) that a space X is σ -hereditarily disconnected if X is a countable union of hereditarily disconnected subspaces. Since each zero-dimensional space in the sense of the small inductive dimension ind is hereditarily disconnected, each countable-dimensional in the sense of ind space is σ -hereditarily disconnected. Let us observe that for the subspace K^{ω_0} of the Hilbert cube I^{ω_0} consisting of points with finitely many non-zero coordinates (and so being strongly countable dimensional) we have $PK^{\omega_0} = \omega_0$. Recall that $\operatorname{trt} K^{\omega_0} > \omega_0$ ([1]) but we do not know whether $\operatorname{trt} K^{\omega_0} \neq \infty$.

It is still unclear if each metrizable compact space X with $\operatorname{trt} X \neq \infty$ has to be σ -hereditarily disconnected. The well known R. Pol's example P([9]) of a weakly infinitedimensional uncountable-dimensional metrizable compact space is a σ -hereditarily disconnected C-space, and hence by Radul's result $\operatorname{trt} P \neq \infty$. (In fact, P can be constructed so that $\operatorname{trt} P = \omega_0$, see a remark in [1].) But it is unknown whether every compact metrizable C-space X is σ -hereditarily disconnected (resp. has $\operatorname{trt} X \neq \infty$).

In this paper we show that the dimension trind (as well as the transfinite inductive invariant trind_p from ([3])) can also be defined similarly to the definition of trt. One of the subjects of the paper is to unify proofs of some facts about the invariants trind, trind_p, trt, p and introduce new classes of infinite-dimensional spaces close to the classes of countabledimensional spaces and σ -hereditarily disconnected ones. We prove a compactification theorem for these new classes. In particular, we show that, for any hereditarily disconnected separable completely metrizable space X there is a metrizable compactification Y of X such that trt $Y \leq \omega_0+1$. Furthermore, for Renska's examples (see [11] (resp.[12])) of α -dimensional metrizable Cantor trind (resp. trInd)-manifolds, where α is any isolated countable ordinal, we have the values of trt are equal to $\omega_0 + 1$.

Our terminology follows [5] and [6].

2. Definitions and common properties. All considered topological spaces are assumed to be T_3 -spaces. Let us fix for each space X a class \mathcal{A}_X of subsets of X. The family of all classes \mathcal{A}_X we denote by \mathcal{A} and call it a family of classes of subsets of spaces (in short, an SSC-family).

Definition 1. Let X be a space and \mathcal{A} be an SSC-family.

(a) The small inductive invariant $\mathcal{A}(0)$ -ind of the space X, denoted by $\mathcal{A}(0)$ -ind(X) is defined inductively as follows. $\mathcal{A}(0)$ -ind(X) = -1 if and only if $X = \emptyset$; $\mathcal{A}(0)$ -ind(X) = 0 if |X| = 1. Let |X| > 1 and n be an integer ≥ 0 , if for each element M of \mathcal{A}_X with |M| > 1 and for every pair (A, x), where A is a closed subset of M and $x \in M - A$, there is a partition L_M in the space M between x and A such that $\mathcal{A}(0)$ -ind $L_M \leq n-1$ then we write $\mathcal{A}(0)$ -ind $X \leq n$.

- (b) The small inductive invariant $\mathcal{A}(1)$ -ind of the space X, denoted by $\mathcal{A}(1)$ -ind(X) is defined inductively as follows. $\mathcal{A}(1)$ -ind(X) = -1 if and only if $X = \emptyset$; $\mathcal{A}(1)$ -ind(X) = 0if |X| = 1. Let |X| > 1 and n be an integer ≥ 0 , if for each element M of \mathcal{A}_X with |M| > 1 and for every pair (x, y) of distinct points of M there is a partition L_M in the space M between x and y such that $\mathcal{A}(1)$ -ind $L_M \leq n-1$ then we write $\mathcal{A}(1)$ -ind $X \leq n$.
- (c) The small inductive invariant $\mathcal{A}(2)$ -ind of the space X, denoted by $\mathcal{A}(2)$ -ind(X) is defined inductively as follows. $\mathcal{A}(2)$ -ind(X) = -1 if and only if $X = \emptyset$; $\mathcal{A}(2)$ -ind(X) = 0 if |X| = 1. Let |X| > 1 and n be an integer ≥ 0 , if for each element M of \mathcal{A}_X with |M| > 1 there exists a point $x \in M$ possessing the following property: for every closed subset A of the space M with $x \notin A$ there is a partition L_M in the space M between x and A such that $\mathcal{A}(2)$ -ind $L_M \leq n - 1$ then we write $\mathcal{A}(2)$ -ind $X \leq n$.
- (d) The small inductive invariant $\mathcal{A}(3)$ -ind of the space X, denoted by $\mathcal{A}(3)$ -ind(X) is defined inductively as follows. $\mathcal{A}(3)$ -ind(X) = -1 if and only if $X = \emptyset$; $\mathcal{A}(3)$ -ind(X) = 0 if |X| = 1. Let |X| > 1 and n be an integer ≥ 0 , if for each element M of \mathcal{A}_X with |M| > 1 there exists a proper closed subset A of the space M possessing the following property: for every point $x \in M - A$ there is a partition L_M in the space M between x and A such that $\mathcal{A}(3)$ -ind $L_M \leq n - 1$ then we write $\mathcal{A}(3)$ -ind $X \leq n$.
- (e) The small inductive invariant $\mathcal{A}(4)$ -ind of the space X, denoted by $\mathcal{A}(4)$ -ind(X) is defined inductively as follows. $\mathcal{A}(4)$ -ind(X) = -1 if and only if $X = \emptyset$; $\mathcal{A}(4)$ -ind(X) = 0 if |X| = 1. Let |X| > 1 and n be an integer ≥ 0 , if for each element M of \mathcal{A}_X with |M| > 1 there exist distinct points x, y of M and a partition L_M in the space M between x and y such that $\mathcal{A}(4)$ -ind $L_M \leq n - 1$ then we write $\mathcal{A}(4)$ -ind $X \leq n$.

The transfinite extension $\mathcal{A}(i)$ -trind of the invariant $\mathcal{A}(i)$ -trind is defined in the standard fashion, $i \in \{0, 1, 2, 3, 4\}$.

Let us introduce SSC-families \mathcal{A}^j , $j \in \{1, 2, 3, 4\}$, as follows: for every space X put $\mathcal{A}^1_X = \{X\}$, $\mathcal{A}^2_X = 2^X$, $\mathcal{A}^3_X = 2^X_{\text{comp}}$, $\mathcal{A}^4_X = 2^X_{\text{cl}}$, where 2^X (resp. 2^X_{comp} or 2^X_{cl}) is the family of all (resp. compact or closed) subsets of X. Note that one can suggest many other SSC-families \mathcal{A} different from \mathcal{A}^j , $j \in \{1, 2, 3, 4\}$.

Remark 1. Note that

- (a) $\mathcal{A}^1(0)$ -trind $X = \operatorname{trind} X$ and $\mathcal{A}^1(1)$ -trind $X = \operatorname{trind}_p X$ ([3]);
- (b) $\mathcal{A}^2(4)$ -trind $X = \mathcal{A}^4(4)$ -trind $X = \operatorname{trt} X$ ([1] or Corollary 2);
- (c) $\mathcal{A}^{3}(4)$ -trind X = p X ([10]).

The following statement is evidently valid for every SSC-family \mathcal{A} and every space X.

Proposition 1. (a) $\mathcal{A}(0)$ -trind $X \ge \mathcal{A}(1)$ -trind $X \ge \mathcal{A}(3)$ -trind $X \ge \mathcal{A}(4)$ -trind X and $\mathcal{A}(0)$ -trind $X \ge \mathcal{A}(2)$ -trind $X \ge \mathcal{A}(3)$ -trind X.

(b) $\mathcal{A}(i)$ -trind $X \leq \sup{\mathcal{A}(i)$ -trind $A: A \in \mathcal{A}_X}$ for every $i \in \{0, 1, 2, 3, 4\}$, whenever $A \in \mathcal{A}_A$ for each $A \in \mathcal{A}_X$ with |A| > 1. (Note that the SSC-families $\mathcal{A}^j, j \in \{1, 2, 3, 4\}$, satisfy this condition.)

Definition 2. We will say that an SSC-family \mathcal{A} possesses *property* $(*)_1$ (resp. $(*)_2$ or $(*)_3$) if for every space X and every subspace Y of X the following assertions hold:

 $(*)_1$: for each $A_Y \in \mathcal{A}_Y$ there exists an element $A_X \in \mathcal{A}_X$ such that $A_Y \subset A_X$;

 $((*)_2: \text{ for each } A_Y \in \mathcal{A}_Y \text{ we have } \operatorname{Cl}_X(A_Y) \in \mathcal{A}_X, \text{ or } (*)_3: \mathcal{A}_Y \subset \mathcal{A}_X).$

Note that if an SSC-family \mathcal{A} possesses property $(*)_2$ or property $(*)_3$ then it possesses also property $(*)_1$.

Remark 2. The families $\mathcal{A}^j, j \in \{1, 2, 3, 4\}$, possess property $(*)_1$. The families $\mathcal{A}^j, j \in \{2, 3, 4\}$, possess property $(*)_2$. The families $\mathcal{A}^j, j \in \{2, 3\}$, possess property $(*)_3$.

Proposition 2. Let an SSC-family \mathcal{A} possess the property $(*)_1$ (resp. $(*)_2$ or $(*)_3$). Then for every space X and every subspace Y of X we have

 $\mathcal{A}(i)$ -trind $X \ge \mathcal{A}(i)$ -trind Y for $i \in \{0, 1\}$ (resp. $i \in \{0, 1, 4\}$ or $i \in \{0, 1, 2, 3, 4\}$).

Proof. The case $(*)_1$. We will prove the statement only for i = 0.

Let $\mathcal{A}(0)$ -trind $X = \alpha \geq -1$. Note that for $\alpha = -1$ or for |Y| = 1 the statement is valid. Apply induction on α . Consider the case: $\alpha \geq 0$ and $|Y| \geq 2$. Let $M_Y \in \mathcal{A}_Y$ with $|M_Y| \geq 2$. By the property $(*)_1$ there exists an element $M_X \in \mathcal{A}_X$ such that $M_Y \subset M_X$. Consider a point $x \in M_Y$ and a closed subset A_Y of the space M_Y such that $x \notin A_Y$. Choose any closed subset A_X of the space M_X such that $A_Y = A_X \cap M_Y$ and note that $x \notin A_X$. Since $\mathcal{A}(0)$ -trind $X = \alpha$ there is a partition L_{M_X} in the space M_X between x and A_X such that $\mathcal{A}(0)$ -ind $L_{M_X} < \alpha$. Note that the set $L_{M_Y} = L_{M_X} \cap M_Y$ is a partition in the space M_Y between x and A_Y . By the inductive assumption we have $\mathcal{A}(0)$ -ind $L_{M_Y} \leq \mathcal{A}(0)$ -ind $L_{M_X} < \alpha$.

The case $(*)_2$. We need to prove the statement only for i = 4 (see the sentence after Definition 2). Let $\mathcal{A}(4)$ -trind $X = \alpha \geq -1$. Note that for $\alpha = -1$ or for |Y| = 1 the statement is valid. Apply induction on α . Consider the case: $\alpha \geq 0$ and $|Y| \geq 2$. Let $M_Y \in \mathcal{A}_Y$ with $|M_Y| \geq 2$. By the property $(*)_2$ the set $M_X = \operatorname{Cl}_X(M_Y)$ is an element of \mathcal{A}_X . Since $\mathcal{A}(4)$ trind $X = \alpha$ there exist distinct points x, y of M_X and a partition L_{M_X} in the space M_X between x and y such that $\mathcal{A}(4)$ -ind $L_{M_X} < \alpha$. It also implies that there exist open disjoint subsets U_X and V_X of the space M_X such that $x \in U_X$, $y \in V_X$ and $L_{M_X} = M_X \setminus (U_X \cup V_X)$. Choose a point $a \in U_X \cap M_Y$ and a point $b \in V_X \cap M_Y$ and note that the set $L_{M_Y} = L_{M_X} \cap M_Y$ is a partition between the points a and b in the space M_Y . By the inductive assumption we have $\mathcal{A}(4)$ -ind $L_{M_Y} \leq \mathcal{A}(4)$ -ind $L_{M_X} < \alpha$ and so $\mathcal{A}(4)$ -ind $Y \leq \alpha$.

The case $(*)_3$ is trivial.

Applying Propositions 1 (b) and 2 we get such a statement.

Corollary 1. Let an SSC-family \mathcal{A} possess property $(*)_1$ (resp. $(*)_2$ or $(*)_3$), X be a space and $M(\mathcal{A}, X, i) = \sup\{\mathcal{A}(i)\text{-trind } A : A \in \mathcal{A}_X\}$. Then $\mathcal{A}(i)\text{-trind } X \ge M(\mathcal{A}, X, i)$ for $i \in$ $\{0, 1\}$ (resp. $i \in \{0, 1, 4\}$ or $i \in \{0, 1, 2, 3, 4\}$). Moreover, $\mathcal{A}(i)\text{-trind } X = M(\mathcal{A}, X, i)$ for $i \in \{0, 1\}$ (resp. $i \in \{0, 1, 4\}$ or $i \in \{0, 1, 2, 3, 4\}$), whenever $A \in \mathcal{A}_A$ for each $A \in \mathcal{A}_X$ with |A| > 1.

Definition 3. We will say that an SSC-family \mathcal{A} is an upper bound of degree 1 (resp. degree 2 or degree 3) for an SSC-family \mathcal{A}' , in short, $\mathcal{A} \geq_1 \mathcal{A}'$ (resp. $\mathcal{A} \geq_2 \mathcal{A}'$ or $\mathcal{A} \geq_3 \mathcal{A}'$) if for every space X the following conditions hold:

- (1) for each $A' \in \mathcal{A}'_X$ there exists an element $A \in \mathcal{A}_X$ such that $A' \subset A$;
- (2) for each $A' \in \mathcal{A}'_X$ we have $\operatorname{Cl}_X(A') \in \mathcal{A}_X$, or (3) $\mathcal{A}'_X \subset \mathcal{A}_X$.

Note that if for SSC-families \mathcal{A} and \mathcal{A}' we have $\mathcal{A} \geq_2 \mathcal{A}'$ or $\mathcal{A} \geq_3 \mathcal{A}'$ then we have also $\mathcal{A} \geq_1 \mathcal{A}'$.

Remark 3. For every SSC-family \mathcal{A} we have that $\mathcal{A}^1 \geq_1 \mathcal{A}$, $\mathcal{A}^4 \geq_2 \mathcal{A}$ and $\mathcal{A}^2 \geq_3 \mathcal{A}$.

The following statement is evidently valid.

Proposition 3. Let \mathcal{A} and \mathcal{A}' be SSC-families such that $\mathcal{A} \geq_3 \mathcal{A}'$. Then $\mathcal{A}(i)$ -trind $X \geq \mathcal{A}'(i)$ -trind X for every space X and every $i \in \{0, 1, 2, 3, 4\}$.

Corollary 2. For every space X and every $i \in \{0, 1, 2, 3, 4\}$ we have $\mathcal{A}^1(i)$ -trind $X \leq \mathcal{A}^4(i)$ -trind $X \leq \mathcal{A}^2(i)$ -trind X and $\mathcal{A}^3(i)$ -trind $X \leq \mathcal{A}^4(i)$ -trind X.

Proposition 4. Let \mathcal{A} and \mathcal{A}' be SSC-families such that the family \mathcal{A} possesses property $(*)_1$ (resp. $(*)_2$) and $\mathcal{A} \geq_1 \mathcal{A}'$ (resp. $\mathcal{A} \geq_2 \mathcal{A}'$). Then $\mathcal{A}(i)$ -trind $X \geq \mathcal{A}'(i)$ -trind X for every space X, where $i \in \{0, 1\}$ (resp. $i \in \{0, 1, 4\}$).

Proof. The case $(*)_1$ and $\mathcal{A} \geq_1 \mathcal{A}'$. We will prove the statement only for i = 0. Let $\mathcal{A}(0)$ -trind $X = \alpha \geq -1$. Note that for $\alpha = -1$ or for |X| = 1 the statement is valid. Apply induction on α . Consider the case: $\alpha \geq 0$ and $|X| \geq 2$. Let $M' \in \mathcal{A}'_X$ with $|M'| \geq 2$. Since $\mathcal{A} \geq_1 \mathcal{A}'$, there exists $M \in \mathcal{A}_X$ such that $M' \subset M$. Consider a point $x \in M'$ and a closed subset A' of the space M' such that $x \notin A'$. Choose any closed subset A of the space M such that $A' = A \cap M'$ and note that $x \notin A$. Since $\mathcal{A}(0)$ -trind $X = \alpha$, there is a partition L_M in the space M between x and A such that $\mathcal{A}(0)$ -ind $L_M < \alpha$. Note that the set $L_{M'} = L_M \cap M'$ is a partition in the space M' between x and A'. It follows from Proposition 2 that $\mathcal{A}(0)$ -ind $L_{M'} \leq \mathcal{A}(0)$ -ind L_M . Then by the inductive assumption we have $\mathcal{A}'(0)$ -ind $L_{M'} \leq \mathcal{A}(0)$ -ind $L_{M'} < \alpha$.

The case $(*)_2$ and $\mathcal{A} \geq_2 \mathcal{A}'$. We need to prove the statement only for i = 4 (see the sentences after Definitions 2 and 3). Let $\mathcal{A}(4)$ -trind $X = \alpha \geq -1$. Note that for $\alpha = -1$ or for |X| = 1 the statement is valid. Apply induction on α . Consider the case: $\alpha \geq 0$ and $|X| \geq 2$. Let $M' \in \mathcal{A}'$ with $|M'| \geq 2$. Since $\mathcal{A} \geq_2 \mathcal{A}'$ the set $M = \operatorname{Cl}_X(M')$ is an element of \mathcal{A}_X . Recall that $\mathcal{A}(4)$ -trind $X = \alpha$. So there exist distinct points x, y of M and a partition L_M in the space M between x and y such that $\mathcal{A}(4)$ -ind $L_M < \alpha$. This also implies that there exist open disjoint subsets U and V of the space M such that $x \in U, y \in V$ and $L_M = M \setminus (U \cup V)$. Choose a point $a \in M' \cap U$ and a point $b \in M' \cap V$ and note that the set $L_{M'} = L_M \cap M'$ is a partition between the points a and b in the space M'. It follows from Proposition 2 that $\mathcal{A}(4)$ -ind $L_{M'} \leq \mathcal{A}(4)$ -ind L_M . By the inductive assumption we have $\mathcal{A}'(4)$ -ind $L_{M'} \leq \mathcal{A}(4)$ -ind $L_{M'} \leq \alpha$.

Applying additionally Remarks 2 and 3 we get the following statement.

Corollary 3. For every SSC-family \mathcal{A} and for every space X we have the following inequalities:

(a) $\mathcal{A}^1(i)$ -trind $X \ge \mathcal{A}(i)$ -trind X, where $i \in \{0, 1\}$;

(b) $\mathcal{A}^4(i)$ -trind $X \ge \mathcal{A}(i)$ -trind X, where $i \in \{0, 1, 4\}$;

(c) $\mathcal{A}^2(i)$ -trind $X \ge \mathcal{A}(i)$ -trind X, where $i \in \{0, 1, 2, 3, 4\}$.

In particular, $\mathcal{A}^1(i)$ -trind $X = \mathcal{A}^2(i)$ -trind $X = \mathcal{A}^4(i)$ -trind X, where $i \in \{0, 1\}$, and $\mathcal{A}^2(4)$ -trind $X = \mathcal{A}^4(4)$ -trind X.

Now we have the following table of the functions $\mathcal{A}^{j}(i)$ -trind, where $i \in \{0, 1, 2, 3, 4\}$, and $j \in \{1, 2, 3, 4\}$; the dots in the cells of coordinates i, j replace the notations of invariants $\mathcal{A}^{j}(i)$ -t trind's.

Table 1.

	i	0	1	2	3	4	
j							
1		trind	trind_p	•	•	•	
2		trind	trind_p	•	•	trt	
3		•	•	•	•	р	
4		trind	trind_p			trt	

Let us mention some relationship between the table invariants. We start with equalities.

Proposition 5. For each metrizable locally compact space X we have $\mathcal{A}^{j}(i)$ -ind $X = \operatorname{ind} X$ for every $j \in \{2, 4\}$ and every $i \in \{0, 1, 2, 3, 4\}$.

Proof. Recall [13] that for each metrizable locally compact space X we have t X = ind X. Hence the statement follows from Proposition 1.

Proposition 6. For every metrizable space X with $P(X) < \omega_0$ and every $i \in \{0, 1, 2, 3, 4\}$, we have $\mathcal{A}^3(i)$ -ind X = P(X).

Proof. By Proposition 1 and Remark 1 it is sufficient to show that $\mathcal{A}^3(0)$ -ind $X \leq p(X)$. Recall [10] that $p(X) = \sup\{t(A): A \text{ is compact subset of } X\}$. Since $p(X) < \omega_0$, there exists a compact subset A of X with $|A| \geq 2$ such that p(X) = t(A). Note ([13]) that ind A = t(A). It follows from Remark 1 (a) and Corollary 3 (a) that ind $A = \mathcal{A}^1(0)$ -ind $A \geq \mathcal{A}^3(0)$ -ind A. Hence $p(X) = t(A) = \operatorname{ind} A \geq \mathcal{A}^3(0)$ -ind A.

The following statement is obvious.

Proposition 7. For every compact space X we have $\mathcal{A}^3(i)$ -trind $X = \mathcal{A}^4(i)$ -trind X, where $i \in \{0, 1, 2, 3, 4\}$.

We continue with inequalities.

Remark 4. Recall ([8]) that for each integer $n \ge 1$ there exists a totally disconnected separable metrizable space X_n such that $\operatorname{ind} X_n = n$. Note that $\operatorname{ind}_p X_n = \mathcal{A}^3(0)$ -ind $X_n = 0$.

Remark 5. Recall ([4]) that there exists a compact space Y with $\operatorname{ind} Y = \operatorname{ind}_p Y = 2$ such that each its component is homeomorphic to the closed interval [0, 1]. Hence, tY = 1. Moreover, $\mathcal{A}^1(2)$ -ind Y = 1 and $\mathcal{A}^1(3)$ -ind Y = 0.

Proposition 8. For every strongly countable-dimensional compact metrizable space X we have $\mathcal{A}^4(2)$ -trind $X = \mathcal{A}^3(2)$ -trind $X \leq \omega_0$.

Proof. Since every strongly countable-dimensional compact metrizable space has a nonempty open subset with ind $< \infty$, we get the statement.

Remark 6. Recall (cf. [6]) that for each $\alpha < \omega_1$ there exists a strongly countable-dimensional compact metrizable space X_{α} with trind $X_{\alpha} = \alpha$.

Let X be a space and $X_{(k)}$ be the set of all points of X that have arbitrary small neighborhoods with boundaries of dimension ind $\leq k-1$, where k is an integer ≥ 0 . We call the space X weakly n-dimensional in the sense of ind if ind X = n and $ind(X \setminus X_{(n-1)}) < n$.

Recall (cf. [8]) that for each integer $n \ge 1$ there exists a weakly *n*-dimensional in the sense of ind separable metrizable space Y_n . Note that the subset $Y_n \setminus (Y_n)_{n-1}$ of Y_n can not be closed. However there is a metrizable weakly 1-dimensional in the sense of ind space R such that $|R \setminus R_{(0)}| = 1$ (cf. [6, Problem 4.1.B]). This implies that $\mathcal{A}^2(1)$ -ind $R = \mathcal{A}^2(2)$ -ind R = 0.

Proposition 9. Let X be a weakly n-dimensional in the sense of ind space, where $n \ge 1$. Then $\mathcal{A}^2(2)$ -ind $X \le n-1$.

Proof. Consider a subset M of X with $|M| \ge 2$.

If $M \subset X \setminus X_{(n-1)}$ then ind $M \leq n-1$. So for each point and any closed subset A of M such that $x \notin A$ there exists a partition L_M in M between x and A with $\operatorname{ind} L_M \leq n-2$. Note that $\mathcal{A}^2(2)$ -ind $L_M \leq \operatorname{ind} L_M$ by Proposition 1.

If there is a point $x \in M \setminus (X \setminus X_{(n-1)})$, so x has arbitrary small neighborhoods with at most (n-2)-dimensional in the sense of ind boundaries. This implies that for every closed subset A of M such that $x \notin A$ there exists a partition L_M in M between x and A with ind $L_M \leq n-2$. Recall again that $\mathcal{A}^2(2)$ -ind $L_M \leq \text{ind } L_M$.

Both cases imply that $\mathcal{A}^2(2)$ -ind $X \leq n-1$.

3. Zero-dimensionality with respect to $\mathcal{A}(i)$ -trind. In this section, let \mathcal{A} be any SSC-family, and put $\mathcal{C}_{\alpha}(\mathcal{A}(i)) = \{X : \mathcal{A}(i)$ -trind $X \leq \alpha\}$ for $i \in \{0, 1, 2, 3, 4\}$.

Question 1. Determine the class $C_0(\mathcal{A}(i))$, where $i \in \{0, 1, 2, 3, 4\}$.

Proposition 1 (a) and Corollaries 2 and 3 easily imply the next statement.

Proposition 10. The following assertions hold.

- (a) $\mathcal{C}_0(\mathcal{A}(0)) \subset \mathcal{C}_0(\mathcal{A}(1)) \subset \mathcal{C}_0(\mathcal{A}(3)) \subset \mathcal{C}_0(\mathcal{A}(4))$ and $\mathcal{C}_0(\mathcal{A}(0)) \subset \mathcal{C}_0(\mathcal{A}(2)) \subset \mathcal{C}_0(\mathcal{A}(4)).$
- (b) For every $i \in \{0, 1, 2, 3, 4\}$ we have $\mathcal{C}_0(\mathcal{A}^2(i)) \subset \mathcal{C}_0(\mathcal{A}^4(i)) \subset \mathcal{C}_0(\mathcal{A}^1(i))$ and $\mathcal{C}_0(\mathcal{A}^4(i)) \subset \mathcal{C}_0(\mathcal{A}^3(i))$.
- (c) $C_0(\mathcal{A}^1(i)) \subset C_0(\mathcal{A}(i))$, where $i \in \{0, 1\}$; $C_0(\mathcal{A}^4(i)) \subset C_0(\mathcal{A}(i))$, where $i \in \{0, 1, 4\}$; $C_0(\mathcal{A}^2(i)) \subset C_0(\mathcal{A}(i))$, where $i \in \{0, 1, 2, 3, 4\}$. In particular, $C_0(\mathcal{A}^1(i)) = C_0(\mathcal{A}^2(i)) = C_0(\mathcal{A}^4(i))$, where $i \in \{0, 1\}$, and $C_0(\mathcal{A}^2(4)) = C_0(\mathcal{A}^4(4))$.

Additionally, we have the following proposition.

Proposition 11. (a) $C_0(\mathcal{A}(3)) = C_0(\mathcal{A}(4)).$ (b) $C_0(\mathcal{A}^3(0)) = C_0(\mathcal{A}^3(1)) = C_0(\mathcal{A}^3(2)) = C_0(\mathcal{A}^3(3)) = C_0(\mathcal{A}^3(4)).$

Proof. (a) By Proposition 3.1 (a), it is sufficient to show that $C_0(\mathcal{A}^3(4)) \subset C_0(\mathcal{A}^3(3))$. Let $X \in C_0(\mathcal{A}^3(4))$ and $M \in \mathcal{A}_X$. Note that the subspace M of the space X is disconnected. So there are clopen disjoint non-empty subsets M_1 and M_2 of M such that $M = M_1 \cup M_2$. Put $A = M_1$ and observe that every $x \in M_2$ can be separated from A in M by the empty set. This implies that $\mathcal{A}(3)$ -ind X = 0.

(b) By Proposition 10 (a), it is sufficient to show that $\mathcal{C}_0(\mathcal{A}^3(4)) \subset \mathcal{C}_0(\mathcal{A}^3(0))$. Let $X \in \mathcal{C}_0(\mathcal{A}^3(4))$ and $M \in \mathcal{A}_X^3$ with |M| > 1. Note that X must be punctiform ([10]). Consider $M \in \mathcal{A}_X^3$, i.e. M is a compact subspace of X. Note that M is punctiform too. By [6, Theorem 1.4.5] we have ind M = 0. This implies that $\mathcal{A}^3(0)$ -ind X = 0.

We summarize the classes $C_0(\mathcal{A}^j(i)) \setminus \{X : |X| \leq 1\}$, where $i \in \{0, 1, 2, 3, 4\}$, and $j \in \{1, 2, 3, 4\}$ in the following table.

Table 2.

	i	0	1	2	3	4	
j							
1		\mathcal{Z}	\mathcal{D}_t	\mathcal{Z}_p	\mathcal{D}	\mathcal{D}	
2		\mathcal{Z}	\mathcal{D}_t	X	\mathcal{D}_h	\mathcal{D}_h	
3		\mathcal{P}	${\mathcal P}$	${\mathcal P}$	${\mathcal P}$	${\mathcal P}$	
4		\mathcal{Z}	\mathcal{D}_t	${\mathcal Y}$	\mathcal{D}_h	\mathcal{D}_h	

where

- \mathcal{Z} is the class of zero-dimensional spaces in the sense of ind with |X| > 1 (see Remark 1);
- \mathcal{D}_t is the class of totally disconnected spaces with |X| > 1 (see [6, Definition 1.4.1] and Remark 1);
- \mathcal{D}_h is the class of hereditarily disconnected spaces with |X| > 1 (see [6, Definition 1.4.2], Remark 1 and [13]);
- \mathcal{P} is the class of punctiform spaces with |X| > 1 (see [6, Definition 1.4.3], Remark 1 and [10]);
- \mathcal{D} is the class of disconnected spaces;
- \mathcal{Z}_p is the class of non-trivial spaces having at least one point at which the dimension ind is zero.
- **Remark 7.** (a) Recall that $\mathcal{Z} \subset \mathcal{D}_t \subset \mathcal{D}_h \subset \mathcal{P}$ and there are subspaces of the real plane which exhibit the difference between the classes (see [6, Examples 1.4.6-8]).
- (b) Note that $\mathcal{Z} \subset \mathcal{Z}_p \subset \mathcal{D}$ and $\mathcal{D}_h \subset \mathcal{D}$.
- (c) Let $X \oplus Y$ be the free union of topological spaces X and Y, I the closed interval [0, 1] and P a one-point space. Then observe that $P \oplus I \in \mathbb{Z}_p \setminus \mathcal{P}$, $I \oplus I \in \mathcal{D} \setminus \mathbb{Z}_p$, the space Z from [6, Example 1.4.8] is in $\mathcal{P} \setminus D$ and the Erdös' space H_0 from [6, Example 1.2.15] is in $\mathcal{D}_t \setminus \mathbb{Z}_p$.
- (d) It follows from Proposition 10 (a) and (b) that $\mathcal{Z} \subset \mathcal{X} \subset \mathcal{Y} \subset \mathcal{D}_h$ and $\mathcal{Y} \subset \mathcal{Z}_p$. Note also that every weakly 1-dimensional in the sense of ind space is in $\mathcal{X} \setminus \mathcal{Z}$ (see Proposition 9), the Erdös' space H_0 is in $\mathcal{D}_t \setminus \mathcal{Y}$ and the space $P \oplus I$ from (c) is in $\mathcal{Z}_p \setminus \mathcal{Y}$.

We have the following additional facts about the classes \mathcal{X} and \mathcal{Y} :

- (i) if $X \in \mathcal{X}, X' \subset X$ and |X'| > 1 then $X' \in \mathcal{X}$;
- (ii) if $Y \in \mathcal{Y}$, Y' is a closed subset of Y and |Y'| > 1 then $Y' \in \mathcal{Y}$;
- (iii) $\mathcal{X} = \mathcal{Y} = \mathcal{Z}$ in the realm of locally compact spaces.

Problem 1. Describe the classes \mathcal{X} and \mathcal{Y} in the realm of separable metrizable spaces (resp. metrizable spaces or topological T_3 -spaces).

4. Countable unions of spaces of $\mathcal{A}(i)$ -trind $\leq 0, i \in \{0, 1, 2, 3, 4\}$. Let \mathcal{A} be any SSC-family.

Definition 4. A space X is said to be σ - $C_0(\mathcal{A}(i))$, where $i \in \{0, 1, 2, 3, 4\}$, if $X = \bigcup_{j=1}^{\infty} X_j$, where $X_j \in C_0(\mathcal{A}(i))$ for each j.

Problem 2. Describe the class σ - $C_0(\mathcal{A}(i))$, where $i \in \{0, 1, 2, 3, 4\}$.

We will restrict now our discussion to the realm of separable metrizable spaces.

Proposition 12. Let X be a separable completely metrizable σ - $C_0(\mathcal{A}^j(i))$ space, where $i \in \{0, 1, 2, 3, 4\}$ and $j \in \{1, 2, 3, 4\}$. Then there is a metrizable compactification Y of X such that Y is also σ - $C_0(\mathcal{A}^j(i))$.

Proof. Recall ([6, Lemma 5.3.1]) that there is metrizable compactification Y of X such that the remainder $Y \setminus X$ is strongly countable-dimensional. Note that the space $Y \setminus X$ is σ - $\mathcal{C}_0(\mathcal{A}^j(i))$. Hence, Y is also σ - $\mathcal{C}_0(\mathcal{A}^j(i))$.

Remark 8. Let us recall [10] that the R. Pol's metrizable compactum P is a compactification of some complete A-strongly infinite-dimensional totally disconnected space P_0 with the reminder $P \setminus P_0 = \bigcup_{k=1}^{\infty} P_k$, where P_k is a finite-dimensional compactum for each k. Note that P is σ - $\mathcal{C}_0(\mathcal{A}^j(i))$ for every $i \in \{1, 3, 4\}$ and every $j \in \{1, 2, 3, 4\}$, and for the pair: i = 0and j = 3. We note also that P is not σ - $\mathcal{C}_0(\mathcal{A}^j(i))$ for i = 0 and every $j \in \{1, 2, 4\}$.

Question 2. Is $P \sigma$ - $C_0(\mathcal{A}^2(2))$ (resp. σ - $C_0(\mathcal{A}^4(2))$)?

The following statement is evident.

Lemma 1. Let Y be a metrizable compact space, $X \subset Y$ and $Y \setminus X = \bigcup_{i=1}^{\infty} X_i$, where for each i the set X_i is compact and $\operatorname{ind} X_i < \infty$. Assume that M is a closed subset of Y. Then either $|M \cap X| > 1$ or M is strongly countable dimensional.

Lemma 2. Let X be a separable metrizable space, $M \subset X$, $x, y \in M$ and L_M a partition of M between the points x, y. Then there is a partition L_X of X between x, y such that $L \cap M = L_M$.

Proof. Let O_x and O_y be disjoint open subsets of M such that $x \in O_x$, $y \in O_y$ and $M \setminus (O_x \cup O_y) = L_M$. Put $L = \operatorname{Cl}_X(L_M \cup O_x) \cap \operatorname{Cl}_X(L_M \cup O_y)$. Note that L is a partition of the subspace $\operatorname{Cl}_X M$ of X between the points x, y such that $L \cap M = L_M$. By [6, Lemma 1.2.9] there is a partition L_X of X between x, y such that $L_X \cap \operatorname{Cl}_X M = L$. Note that $L_X \cap M = L_M$. \Box

Proposition 13. Let Y be a metrizable compact space, $X \subset Y$ and $Y \setminus X = \bigcup_{i=1}^{\infty} X_i$, where for each i the set X_i is compact and $X_i < \infty$.

Assume that $\operatorname{trt} X = \alpha \neq \infty$. Then

$$\operatorname{trt} Y \leq \begin{cases} \omega_0 + \alpha + 1, & \text{if } \alpha < \omega_0^2; \\ \alpha + 1, & \text{if } \alpha \ge \omega_0^2. \end{cases}$$

(One can omit 1 in the formula if α is an infinite limit ordinal.)

Proof. Apply induction on $\alpha \ge 0$. Assume that $\alpha = 0$. Consider a closed subset M of Y with |M| > 1. By Lemma 1, we have two possibilities:

 $(a)_0 | M \cap X | > 1$ or $(b)_0 M$ is strongly countable dimensional.

The case $(a)_0$. Since trt X = 0, we have $trt(M \cap X) = 0$ and the empty set is a partition of $M \cap X$ between some points x, y of $M \cap X$. By Lemma 2, there is a partition L of M between the points x, y such that $L \subset M \setminus X$. Note that the space L is strongly countable dimensional and hence $\operatorname{trt} L \leq \omega_0$ (see [1]).

The case $(b)_0$. Since M is strongly countable dimensional, we have $\operatorname{trt} M \leq \omega_0$. Note that the both cases imply $\operatorname{trt} X \leq \omega_0 + 1$.

Assume that the statement is valid for all $\alpha < \gamma \ge 1$. Let now $\alpha = \gamma$. Consider a closed subset M of Y with |M| > 1. Again by Lemma 2, we have two possibilities:

 $(a)_{\gamma} |M \cap X| > 1$ or $(b)_{\gamma} M$ is strongly countable dimensional.

The case $(a)_{\gamma}$. Since $\operatorname{trt} X = \gamma$, we have $\operatorname{trt}(M \cap X) \leq \gamma$. Hence, there is a partition $L_{M \cap X}$ of $M \cap X \subset M$ between some points x, y of $M \cap X$ such that $\operatorname{trt} L_{M \cap X} < \gamma$. By Lemma 2 there is a partition L_M of M between the points x, y such that $L_M \cap (M \cap X) = L_{M \cap X}$. Note that $L_{M \cap X} = L_M \cap X$ and the space $L_M \setminus L_{M \cap X} = \bigcup_{i=1}^{\infty} (L_M \cap X_i)$ is strongly countable dimensional. Hence, by induction, we have $\operatorname{trt} L_M \leq \omega_0 + \operatorname{trt} L_{M \cap X} + 1 < \omega_0 + \gamma + 1$. (Let us observe that if γ is an infinite limit ordinal then $\omega_0 + \operatorname{trt} L_{M \cap X} + 1 < \omega_0 + \gamma$.)

The case $(b)_{\gamma}$. Since M is strongly countable dimensional, $\operatorname{trt} M \leq \omega_0$. Note that both cases imply $\operatorname{trt} X \leq \omega_0 + \gamma + 1$.

Let us recall that if $\alpha \geq \omega_0^2$ then $\omega_0 + \alpha = \alpha$.

Corollary 4. Let X be a separable completely metrizable space and $\operatorname{trt} X = \alpha \neq \infty$. Then there is a compactification Y of X such that

$$\operatorname{trt} Y \leq \begin{cases} \omega_0 + \alpha + 1, & \text{if } \alpha < \omega_0^2; \\ \alpha + 1, & \text{if } \alpha \ge \omega_0^2. \end{cases}$$

(One can omit 1 in the formula if α is an infinite limit ordinal.)

Proof. Recall ([6, Lemma 5.3.1]) that there is a metrizable compactification Y of X such that the remainder $Y \setminus X$ is strongly countable dimensional. Now, apply Proposition 13 to the space Y.

Corollary 5. For any hereditarily disconnected separable completely metrizable space X there is a metrizable compactification Y of X such that $\operatorname{trt} Y \leq \omega_0 + 1$.

Recall (see [11] (resp. [12])) that for each isolated countable infinite ordinal α there exists an α -dimensional metrizable Cantor trind-manifold Y^{α} (resp. trInd-manifold Z^{α}) which is a disjoint union of countably many Euclidean cubes and the irrationals. It follows now from Proposition 13 that for each isolated countable infinite ordinal α , trt $Y^{\alpha} = \text{trt } Z^{\alpha} = \omega_0 + 1$.

Problem 3. Is there a countable-dimensional separable metrizable space X such that $\operatorname{trt} X > \omega_0 + 1$ (and $\operatorname{trt} X \neq \infty$)?

REFERENCES

- F.G. Arenas, V.A. Chatyrko, M.L. Puertas, Transfinite extension of Steinke's dimension, Acta Math. Hungar., 88 (2000), №1-2, 105–112.
- T. Banakh, R. Cauty, On universality of countable and weak products of sigma hereditarily disconnected spaces, Fund. Math., 167 (2001), 97–109.
- 3. V.A. Chatyrko, Ordinal products of topological spaces, Fund. Math., 144 (1994), 85–117.

V. CHATYRKO, YA. HATTORI

- 4. V.A. Chatyrko, On properties of subsets of $[0, \omega_c] \times I$, Q & A in General Topology, **26** (2008), 97–104.
- 5. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- 6. R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
- 7. J. Krasinkewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology, Banach Center Publ. 18, PWN, 1986, 377–406.
- 8. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001.
- R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. AMS, 82 (1981), 634–636.
- T.M. Radul, On classification of sigma hereditary disconnected spaces, Mat. Stud. 26 (2006), №1, 97– 100.
- 11. M. Renska, On Cantor manifolds for the large transfinite dimension, Topology Appl., 112 (2001), 1–11.
- 12. M. Renska, On Cantor manifolds for the small transfinite dimension, Commentationes Mathematicae, XLVI (2006), №2, 163–168.
- 13. G. Steinke, A new dimension by means of separating sets, Arch. Math., 40 (1983), 273–282.

Department of Mathematics, Linkoping University, Sweden vitja@mai.liu.se Department of Mathematics Shimane University, Matsue, Japan hattori@riko.shimane-u.ac.jp

Received 10.01.2013